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ABSTRACT rithm, fall short of explaining convergence due to the ex-

. . . . . istence of loops in the turbo decoder graph. Information
In this paper we show that the iterative decoding algorithm eometry B, 7, 8, 9, 10] provides for an elegant descrip-

can be viewed as descending a nonlinear least squares cogt . .
: -~ “~Tion of the decoding algorithm, but here too arguments for
function. When at least one component code has a likeli-

hood function that can be written as the product of its bit- convergence have been inhibited by the inability to describ

) : . . . . . intrinsic information extraction as an information prdjea
wise marginals, the iterative decoding algorithm is exactl . : o ) .
. . on an invariant set. Due to this time variant nature of the in-
a steepest descent on this cost function. Furthermore, when . . . ; : o
trinsic information extraction, attempts at connectionthw

the iterative decoder converges to infinite log likelihoad r projection algorithms in information spaces], such as

tos, we show that 'ts _trajectorles mu_st locally desc_end thethe EM algorithm, have also encountered shortcomings.
cost function. Conditions are then given under which the

iterative decoder may be thought of as globally descending
this cost function. This suggests, together with its positi

definiteness, that the proposed cost function makes a suit- I_n th'S. paper, we argue fpr a simplistic mterpretaﬂqn of
) the iterative decoding algorithm as descent on a particular
able Lyapunov function.

cost function. In the case where the iterative decoder has
already been proven to converdgd, [the iterative decoder

1. INTRODUCTION is exactly a steepest descent on this cost function. Further
_ . . more, when the turbo decoder converges to infinite log like-
The introduction of turbo codes iri] brought the perfor-  |ihood ratios and thus bitwise probabilities of zero or one,

mance of error control codes closer than ever to theoret-it must locally descend this cost function. This motivates
ically attainable limits. A key element of the success of the use of this cost function as a Lyapunov function for the
turbo codes is the iterative decoding algorithm, which is turbo decoder. Finally, we show that the iterative decoder
suboptimal, yet performs remarkably well. A coherent ex- does not always descend this cost function, and thus we give
planation of the favorable convergence properties of the al conditions under which it does.

gorithm, however, remains elusive, and deducing regions

of convergence or even fixed points have stumped even the

best efforts. A wealth of literature has sprouted with cteve We begin the paper by introducing our notation as we
explanations, although these explanations are often base@rovide a brief review of the operation of the turbo decoder.
on asymptotic approximations. EXIT char®§ fnd density ~ Next, we introduce the cost function and calculate its gra-
evolution [3], for example, have been generally lauded, but dient, and note the connection between a gradient descent
these methods of analysis appeal to approximations whichalgorithm on this cost and the iterative decoder. A suffi-
are only valid for very large block lengths. Connections cient condition is given for the turbo decoder to descers thi
with belief propagation4], and the sum product algorithm  cost function, and an appeal to a simulation shows that this
[5], while providing intuitive underpinnings for the algo- condition is generally not globally satisfied. Howeversit i
shown next that whenever the turbo decoder converges bit-

*John Walsh and C. Richard Johnson, Jr. were supported irbpart

Applied Signal Technology, Texas Instruments, and NSF GrasgF-  Wise probabilities of zero or one, it must at least locally be
0310023 and INT-0233127. Contajchw56@cornell.edu for any in- a gradient descent on this cost function. Given this connec-
quiries regarding this paper. tion between convergence and descent, we state conditions

TP. A. Regalia was supported in part by the Network of Excelen ;
in Wireless Communications (NEWCOM), E. C. Contract no. 507325 for global descent on this cost. We conclude the paper by

while at the Groupe des Ecoles desi@ommunications, INT, 91011 Evry ~ Mentioning possible extensions and reinterpretationbef t
France. results.



_ for some vectot\, which may be identified as the log mar-
constituent . . . . .
Encoder ginal ratios of the distribution:

A = log[Pr(& =1)/Pr(& = 0)]

Let N; be the number of parity check bits generated
from the first component code, including any punctured bits,
and letN, be the number of parity check bits generated by
the second component code, also including any punctured
bits. Suppose that the vector of bitwise log likelihood ra-
tios (LLRs) at the output of the channel (including zeros at
the locations of the punctured bits) akg € RV +Mi+Nz,
Reorder these into a new vector

Interleaver

XNN

constituent
Encoder

Fig. 1. A parallel concatenated turbo code. The MUX se-

lects both the systematic and parity check bits from one of
the component codes and just the parity check bits of the
other. If puncturing is used, some of the parity check bits
are never transmitted.
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4 so that all of the LLRs associated with the systematic bits
Decoder 1 Decoder 2 are at the beginning of the vecta, 5, followed by all of

the LLRs associated with the parity check bits of the first
codel, o, followed by all of the LLRs associated with the
parity check bits of the second code ;. Now, consider

Fig. 2. The turbo decoder. the codebook we are using. In particular, if we were to
consider every possible value of the systematic bits, en-
coding each possibility and reordering it into the (system-
atic,parity check 1, parity check 2) order described above,
In this section, we introduce our notation, which is heavily @nd then stack these reordered codewords on top of each

influenced by the information geometric analysis of turbo ©ther, we would get a binary matrix of all the codewords,
decoding [, 8, 9, 10]. We also give a brief review of a C € {0,1}* *(V+Ni#82) This matrix would have the
description of the operation of the turbo decoder. For sim- form

plicity, we will consider the (parallel concatenated) tirb C = [B|Co|C4]

coder structure as shown in Fig. Let N bez\t]he number of  2)_reordered codeword if the systematic block that was en-
systematic bits in a block, and [Bt be the2™ x N matrix  coded was the binary representation of the intégdgach

(A5, Ar0)™| observations Art observations

2. THE TURBO DECODER

whoseith row is binary representation of the integer of the component decoders could use some of the observed
LetB; denote the-th row of B. If p(B;) is a probability  channel LLRs and its own codebook to generate a word-
mass function over the outcomgB; }7_;*, we will find it wise likelihood function. A component decoder may then
convenient to work with its logarithmic coordinate3 [7, be regarded as bitwise marginalizing its likelihood fuouti
10] weighted with the pseudo prior wordwise pmf obtained by
6(B;) = logp(B;) — log p(By) multiplying the marginal bitwise prior probabilities tht

was given as an input. The likelihood function that the first

which, when listed in a vectd for i from0to 2V — 1, are . )
decoder uses, for instance, fasoordinatesT, 8, 10]

called thef coordinates. This amounts to expressiiB; )
as A
p(B;) = exp(6(B;) — 1) Oco0r = [B|Co] { Ao }
in whichy = log (>, exp[#(B;)]) is a normalization con- ) o _

stant to ensure that outcome&B;) sum to one. One may  While, the likelihood function the second decoder uses has
show B], [7] that a probability mass functiop(B;) is a ¢ coordinates

product density (i.e., coincides with the product of its bit Oc,or = C1Ar
wise marginal functions) if and only if i coordinates be- | et the extrinsic information from the first component de-
come coder be denoted b, and let the extrinsic information
0(By) from the second decoder be denotedXyy. During the
0 — 9(]_31> — B\ turbo decoder iterations, the extrinsic information issated

: by marginalizing the word-wise densities whaseoordi-
O(Bon_1) nates ardAy + 6¢,or aNdBAr + 6., or, respectively and



then subtracting off intrinsic information. If we denotehy

the map which takes a pmf’s theta coordinates to its bitwise

LLRs, then the turbo decoder may be described as iterating Vardis = 2
AU = (Bxg“) + eco@,) — AW 1)
)\gjkﬂ) - (BAgf?-‘rl) T 0c1@r) _ )‘gwrl) )

Here, the second decoder’s extrinsic information valuas fr
a previous iteration are used as pseudo-priors for the &rst d

coder. The pseudo prior LLRs are then subtracted from the
pseudo posterior LLRs, and the result, called the extrinsic
information, is fed as pseudo priors into the second dec¢oder
etc. The turbo decoder is said to have "converged” when the

pseudo posteriors from the two decoders agree.

3. A COST FUNCTION
Consider the cost function
Jls()‘Ua )‘T) = ||7T (BAU + 000®r) - (B)‘T + QC1®r) ||§

In particular, since\;; and A are inherently linked in the

decoding algorithm, we are going to add the constraint that

Ay be the extrinsic information produced by the second de-
coder wher\r is used as a pseudo prior. Usirig this then
gives the form of the cost

[ (B(m(BAr + 0c,0r) — AT) + Ochor)
=7 (BA7 + 0c,0r) Hg

Jls

To take the gradient of the cost, it will be useful to use the
following form of 7 [8]

() log (BT exp(@)) —log ((1 — B)" exp(8))

This then gives

Va,m(BAy + Ocyor) =

Diag[BT exp(BAy + Ocyor)] !

B” Diaglexp(BAy + 0¢,0r)|B
—Diag[(1 — B)T exp(BAy + Ocyor)]
(1 — B)TDiaglexp(BAy + 0¢,or)|B

= QBAU—',-BCO@,

where we introduced the notation

[QBay +00,0.)id = PrBag+6c,e. [& =118 = 1]

—PrBay+6.,0: [§5 = 1€ = 0]

where herePrBAUJFgCO@r means the probability with re-
spect to the pmf whose theta coordinatesBwe; + 0¢, oy
Defining similarly

[QBAT-&-BCl@r]i,j = PrB>\T+09c1@r [ﬁj =1]& = 1]
—PrBar+6., 00 [§5 = 1€ = 0]

We can now infer that
(QBAUWCO@F(QBAﬁecl@r -0

_QBATJchl@r)
(r(B(m(BAT + 0c,0r) — Ar) + Ocyor)
_W(BAT + 061®r))

Defining the matrix

= (QB/\mch@r(QB/\ﬁecl@r -I)- QBAT+ec1@r)
then a gradient descent dn, would take the form

ALY AW 2,

[T(B(m(BAT + 0c,0r) — A7) + Ocor)
—m(BAr + 0c,or)] 3)

In the next section, we connect this form with the operation
of the iterative decoder.

4. GRADIENT DESCENT AND ITERATIVE
DECODING

To see the connection between the iterative decdgear(d
(2), and the gradient descerf){ begin by eliminating\y/
between {) and @) to get

A = 7 (B (7(BAY + 0c,00) = AL ) + 00,00 )

7 (BAP + 0,0 ) + AP (@)
So we see if we have
—2uA =1

then @) and ()/(2) are the same. In other words, in this
case the turbo decoder is exactly a steepest gradient de-
scent on the least squares céstthat we have proposed. In
fact, this occurs when one of the two codes admits a word-
wise likelihood function which can be written as a product
of its marginals. In this case, eith@gpx, 10,0, = Tor
QBrr 16,0 = L and this, in turn, forceA = —I, which

givesy = % Thus, we have the following theorem.

Thm. 1: When one of the two component codes ad-
mits a likelihood function which can be written as the
product of the bitwise marginals of its systematic bits,
the turbo decoder is exactly a gradient descent on J;;
with step size p = 1.

In fact, existing stability resultsg], show that in this
case the turbo decoder converges in one iteration, thus the
minimum of the cost is found in one step.



Building on this result, we can see thht is a natural Cost Function Negative Definite Region
Lyapunov function for the system, in that the system con- o
verges to bitwise probabilities of zero or one only if it at
least locally descends. This specific case for the fixed
point encompasses a majority of the cases of the actual use
of turbo decoder, seeing as having all zero or one bitwise g
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probabilities is a common occurrence when the decoder is Al % 05
operating properly. ol g o
Cor. 1: If the iterative decoder converges to bitwise Nt T B
marginal probabilities all in the set {0, 1} then it must S 102
descend J;, at least within the vicinity of the conver- 05 05 04
gent point. Pl 0o po 02 04 06 08

bitwise probability pO

To see this, simply note that if all the bitwise marginal

probabilities are one or zero, so that Fig. 3. J;s alongside a plot showing which regions in which
H is negative definite for a block size of 2 bits, a simple
Prexy +6c,0. & = 1] € {0,1}Vi € {0,..., N — 1} parity check code, and a particular noise realization. The x

and y axes in this plot are the bitwise marginal probabditie
that the corresponding bit is equal to one. Here, the large
interior is whereH is negative definite.

then only one binary word, calljt, has any probability, and
thus the wordwise pmfis a Kronecker delta function.

1 &€=y
Pr =
BAv+0cqor (€] { 0 ow. Ax still points downhill. Here we used the fact thaff*
is negative definite, theH is negative definite.
A natural question to ask now is whether or not we can

always expecH to be negative definite everywhere. The

This, in turn, can be written as the product of indicator func
tions for the proper values for each of the bits.

N_1 unfortunate answer is no. Fid shows the proposed cost
Preay 1600, [€] = H 51E — v functiop along s_ide a plot diyiding the probapilities_ agsoc
i—0 ated with two bits undeAr into the regions in whiciH

) ) ) ) is negative definite and in whicH is not negative definite
whereJ is the Kronecker delta function. This then gives o 4 particular noise realization. Similarly, the plot iigF

A = —1, since the second order marginals are just the prod- 4 shows the three bit case for a particular noise realization.
uct of the first order marginals, and the turbo decoder is thus yere it is "under” the drawn surface thHtis negative def-
at least within the vicinity of this fixed point, a steepest-gr  iite. One observation is that the set in whidhis negative
dient descent on this cost functian. definite does not appear to be convex.
More generally, it is possible to sacrifice steepest gradi-  gijj|, the arguments above show that if the noise realiza-
ent descent for descent. If tion and code structure allow & to be everywhere nega-
T tive definite, the iterative decoder globally descefdsWe
H = A+A (5) . ) Lo -
summarize this conclusion in the final theorem of the paper.
can be shown to be negative definite, then the gradient will
still point downhill, and {) and @) combined will move
in a direction that is downhill with respect to the cdsf.
To see this, lek denote a gradient vector, pointing in the
steepest ascent direction, so that

Thm. 2: If
H = Qpxy+60,0. (Wrr+6,0. =D — Aearto., o

T
+ QBAUJch(,or(QB)\TJchl@r - I) - QB}\TJchl @r)
x = A@B@EBAr 4+ 0c,0r) — A7) + Ocpor) =A+A"T

—m (BA7r + 0c,0r)) is negative definite VA € RY, then the turbo decoder

Then —x points in the steepest descent direction. Observedescends Ji,.

now that In the case thdH were negative definite for aN, then

Tyy—1
x Hx <0 the iterative decoder would move in a direction of decreas-
if (5) holds andA is negative definite, so that the subspace ing J;; at every step. This does not imply, however, that
angle between-x andHx is less than 90 degrees. Hence the turbo decoder converges, for cyclic behavior can also be



explained in this framework, corresponding to the step size [2] S. ten Brink, “Convergence behavior of iteratively
= % being too large. This suggests that the connection to decoded parallel concatenated codesEEE Trans.
Jis under these conditions could analyze both limiting fixed Commun., vol. 49, pp. 1727-1737, Oct. 2001.

point stable and cyclic behavior. At the very least, under th )
conditions in Thm. 2, J,. provides an intuitive "property  [3] H. El Gamal and A. R. Hammons, Jr., “Analyzing

restoral” framework to the behavior of the iterative decode the turbo decoder using the gaussian approximation,”
IEEE Trans. Inform. Theory, vol. 47, pp. 671-686,
Feb. 2001.
5. CONCLUSIONS
[4] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng,

In this paper, we introduced a least squares cost function ~ “Turbo decoding as an instance of pearls belief prop-
that the turbo decoder was then shown to descend. In par-  agation algorithm.,”IEEE J. Select. Areas Commun,,
ticular, when one of the two codes used a likelihood func- vol. 16, pp. 140-152, Feb. 1998.

tion which was capable of being written as the product of
its bitwise marginals the turbo decoder admits an exact in-
terpretation as a gradient descentlon More generally, if
the turbo decoder converges to a vector of bitwise marginal
probabilities in{0, 1}V, then it must at least locally descend

Jis- Finally, we gave conditions under which the turbo de- [6] M. Moher and T. A. Gulliver, “Cross-entropy and in-

[5] F. R. Kshischang, B. J. Frey, and H.-A. Loeliger, “Fac-
tor graphs and the sum-product algorithm EEE
Trans. Inform. Theory, vol. 47, pp. 498-519, Feb.
2001.

coder may be regarded as descendingA salient, but also terative decoding.,1EEE Trans. Inform. Theory, vol.
difficult, possible extension of the work would involve con- 44, pp. 3097-3104, Nov. 1998.

necting the negative definitenessKfto properties of the

code likelihood functions. [71 S. Ikeda, T. Tanaka, and S. Amari, “Informa-

tion geometry of turbo and low-density parity-check
codes,”|EEE Trans. Inform. Theory, vol. 50, pp. 1097
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Fig. 4. Here we plot the edge of the region whdikeis
negative definite for a particular noise realizationand &3 b
block with a single parity check code. Here, it is "under”
the surface thaH is negative definite.



