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ABSTRACT

In this paper we show that the iterative decoding algorithm
can be viewed as descending a nonlinear least squares cost
function. When at least one component code has a likeli-
hood function that can be written as the product of its bit-
wise marginals, the iterative decoding algorithm is exactly
a steepest descent on this cost function. Furthermore, when
the iterative decoder converges to infinite log likelihood ra-
tios, we show that its trajectories must locally descend the
cost function. Conditions are then given under which the
iterative decoder may be thought of as globally descending
this cost function. This suggests, together with its positive
definiteness, that the proposed cost function makes a suit-
able Lyapunov function.

1. INTRODUCTION

The introduction of turbo codes in [1] brought the perfor-
mance of error control codes closer than ever to theoret-
ically attainable limits. A key element of the success of
turbo codes is the iterative decoding algorithm, which is
suboptimal, yet performs remarkably well. A coherent ex-
planation of the favorable convergence properties of the al-
gorithm, however, remains elusive, and deducing regions
of convergence or even fixed points have stumped even the
best efforts. A wealth of literature has sprouted with clever
explanations, although these explanations are often based
on asymptotic approximations. EXIT charts [2] and density
evolution [3], for example, have been generally lauded, but
these methods of analysis appeal to approximations which
are only valid for very large block lengths. Connections
with belief propagation [4], and the sum product algorithm
[5], while providing intuitive underpinnings for the algo-
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rithm, fall short of explaining convergence due to the ex-
istence of loops in the turbo decoder graph. Information
geometry [6, 7, 8, 9, 10] provides for an elegant descrip-
tion of the decoding algorithm, but here too arguments for
convergence have been inhibited by the inability to describe
intrinsic information extraction as an information projection
on an invariant set. Due to this time variant nature of the in-
trinsic information extraction, attempts at connections with
projection algorithms in information spaces [11], such as
the EM algorithm, have also encountered shortcomings.

In this paper, we argue for a simplistic interpretation of
the iterative decoding algorithm as descent on a particular
cost function. In the case where the iterative decoder has
already been proven to converge [8], the iterative decoder
is exactly a steepest descent on this cost function. Further-
more, when the turbo decoder converges to infinite log like-
lihood ratios and thus bitwise probabilities of zero or one,
it must locally descend this cost function. This motivates
the use of this cost function as a Lyapunov function for the
turbo decoder. Finally, we show that the iterative decoder
does not always descend this cost function, and thus we give
conditions under which it does.

We begin the paper by introducing our notation as we
provide a brief review of the operation of the turbo decoder.
Next, we introduce the cost function and calculate its gra-
dient, and note the connection between a gradient descent
algorithm on this cost and the iterative decoder. A suffi-
cient condition is given for the turbo decoder to descend this
cost function, and an appeal to a simulation shows that this
condition is generally not globally satisfied. However, it is
shown next that whenever the turbo decoder converges bit-
wise probabilities of zero or one, it must at least locally be
a gradient descent on this cost function. Given this connec-
tion between convergence and descent, we state conditions
for global descent on this cost. We conclude the paper by
mentioning possible extensions and reinterpretations of the
results.
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Fig. 1. A parallel concatenated turbo code. The MUX se-
lects both the systematic and parity check bits from one of
the component codes and just the parity check bits of the
other. If puncturing is used, some of the parity check bits
are never transmitted.
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Fig. 2. The turbo decoder.

2. THE TURBO DECODER

In this section, we introduce our notation, which is heavily
influenced by the information geometric analysis of turbo
decoding [7, 8, 9, 10]. We also give a brief review of a
description of the operation of the turbo decoder. For sim-
plicity, we will consider the (parallel concatenated) turbo
code structure as shown in Fig.1 [1] and the iterative de-
coder structure as shown in Fig.2. LetN be the number of
systematic bits in a block, and letB be the2N ×N matrix
whoseith row is binary representation of the integeri.

LetBi denote thei-th row ofB. If p(Bi) is a probability

mass function over the outcomes{Bi}
2N

−1
i=0 , we will find it

convenient to work with its logarithmic coordinates [8, 7,
10]

θ(Bi) = log p(Bi) − log p(B0)

which, when listed in a vectorθ for i from 0 to 2N − 1, are
called theθ coordinates. This amounts to expressingp(Bi)
as

p(Bi) = exp(θ(Bi) − ψ)

in whichψ = log (
∑

i exp[θ(Bi)]) is a normalization con-
stant to ensure that outcomesp(Bi) sum to one. One may
show [8], [7] that a probability mass functionp(Bi) is a
product density (i.e., coincides with the product of its bit-
wise marginal functions) if and only if itsθ coordinates be-
come

θ =











θ(B0)
θ(B1)

...
θ(B2N−1)











= Bλ

for some vectorλ, which may be identified as the log mar-
ginal ratios of the distribution:

λi = log[Pr(ξi = 1)/Pr(ξi = 0)]

Let N1 be the number of parity check bits generated
from the first component code, including any punctured bits,
and letN2 be the number of parity check bits generated by
the second component code, also including any punctured
bits. Suppose that the vector of bitwise log likelihood ra-
tios (LLRs) at the output of the channel (including zeros at
the locations of the punctured bits) areλr ∈ R

N+N1+N2 .
Reorder these into a new vector

λ′

r = (λr,s,λr,0,λr,1)

so that all of the LLRs associated with the systematic bits
are at the beginning of the vectorλr,s, followed by all of
the LLRs associated with the parity check bits of the first
codeλr,0, followed by all of the LLRs associated with the
parity check bits of the second codeλr,1. Now, consider
the codebook we are using. In particular, if we were to
consider every possible value of the systematic bits, en-
coding each possibility and reordering it into the (system-
atic,parity check 1, parity check 2) order described above,
and then stack these reordered codewords on top of each
other, we would get a binary matrix of all the codewords,
C ∈ {0, 1}2N

×(N+N1+N2). This matrix would have the
form

C = [B|C0|C1]

where now thei row is the (systematic, parity 1, parity
2)-reordered codeword if the systematic block that was en-
coded was the binary representation of the integeri. Each
of the component decoders could use some of the observed
channel LLRs and its own codebook to generate a word-
wise likelihood function. A component decoder may then
be regarded as bitwise marginalizing its likelihood function
weighted with the pseudo prior wordwise pmf obtained by
multiplying the marginal bitwise prior probabilities thatit
was given as an input. The likelihood function that the first
decoder uses, for instance, hasθ coordinates [7, 8, 10]

θc0⊙r = [B|C0]

[

λr,s

λr,0

]

while, the likelihood function the second decoder uses has
θ coordinates

θc1⊙r = C1λr,1

Let the extrinsic information from the first component de-
coder be denoted byλT and let the extrinsic information
from the second decoder be denoted byλU . During the
turbo decoder iterations, the extrinsic information is obtained
by marginalizing the word-wise densities whoseθ coordi-
nates areBλU +θc0⊙r andBλT +θc1⊙r, respectively and



then subtracting off intrinsic information. If we denote byπ
the map which takes a pmf’s theta coordinates to its bitwise
LLRs, then the turbo decoder may be described as iterating

λ
(k+1)
T = π

(

Bλ
(k)
U + θc0⊙r

)

− λ
(k)
U (1)

λ
(k+1)
U = π

(

Bλ
(k+1)
T + θc1⊙r

)

− λ
(k+1)
T (2)

Here, the second decoder’s extrinsic information values from
a previous iteration are used as pseudo-priors for the first de-
coder. The pseudo prior LLRs are then subtracted from the
pseudo posterior LLRs, and the result, called the extrinsic
information, is fed as pseudo priors into the second decoder,
etc. The turbo decoder is said to have ”converged” when the
pseudo posteriors from the two decoders agree.

3. A COST FUNCTION

Consider the cost function

Jls(λU ,λT ) = ‖π (BλU + θc0⊙r)−π (BλT + θc1⊙r) ‖
2
2

In particular, sinceλU andλT are inherently linked in the
decoding algorithm, we are going to add the constraint that
λU be the extrinsic information produced by the second de-
coder whenλT is used as a pseudo prior. Using (1) this then
gives the form of the cost

Jls = ‖π (B(π(BλT + θc1⊙r) − λT ) + θc0⊙r)

−π (BλT + θc1⊙r) ‖
2
2

To take the gradient of the cost, it will be useful to use the
following form of π [8]

π(θ) = log
(

BT exp(θ)
)

− log
(

(1 − B)T exp(θ)
)

This then gives

∇λU
π(BλU + θc0⊙r) =

Diag[BT exp(BλU + θc0⊙r)]
−1

BT Diag[exp(BλU + θc0⊙r)]B
−Diag[(1 − B)T exp(BλU + θc0⊙r)]

−1

(1 − B)T Diag[exp(BλU + θc0⊙r)]B
= Q

BλU+θc0⊙r

where we introduced the notation

[Q
BλU+θc0⊙r

]i,j = PrBλU+θc0⊙r
[ξj = 1|ξi = 1]

−PrBλU+θc0⊙r
[ξj = 1|ξi = 0]

where herePrBλU+θc0⊙r
means the probability with re-

spect to the pmf whose theta coordinates areBλU +θc0⊙r.
Defining similarly

[Q
BλT +θc1⊙r

]i,j = PrBλT +θc1⊙r
[ξj = 1|ξi = 1]

−PrBλT +θc1⊙r
[ξj = 1|ξi = 0]

We can now infer that

∇λT
Jls = 2

(

Q
BλU+θc0⊙r

(Q
BλT +θc1⊙r

− I)

−Q
BλT +θc1⊙r

)

(π(B(π(BλT + θc1⊙r) − λT ) + θc0⊙r)

−π(BλT + θc1⊙r))

Defining the matrix

Λ =
(

Q
BλU+θc0⊙r

(Q
BλT +θc1⊙r

− I) − Q
BλT +θc1⊙r

)

then a gradient descent onJls would take the form

λ
(k+1)
T = λ

(k)
T − 2µΛ

[π(B(π(BλT + θc1⊙r) − λT ) + θc0⊙r)

−π(BλT + θc1⊙r)] (3)

In the next section, we connect this form with the operation
of the iterative decoder.

4. GRADIENT DESCENT AND ITERATIVE
DECODING

To see the connection between the iterative decoder (1) and
(2), and the gradient descent (3), begin by eliminatingλU

between (1) and (2) to get

λ
(k+1)
T = π

(

B
(

π(Bλ
(k)
T + θc1⊙r) − λ

(k)
T

)

+ θc0⊙r

)

−π
(

Bλ
(k)
T + θc1⊙r

)

+ λ
(k)
T (4)

So we see if we have

−2µΛ = I

then (3) and (1)/(2) are the same. In other words, in this
case the turbo decoder is exactly a steepest gradient de-
scent on the least squares costJls that we have proposed. In
fact, this occurs when one of the two codes admits a word-
wise likelihood function which can be written as a product
of its marginals. In this case, eitherQ

BλU+θc0⊙r

= I or
Q

BλT +θc1⊙r

= I, and this, in turn, forcesΛ = −I, which

givesµ = 1
2 . Thus, we have the following theorem.

Thm. 1: When one of the two component codes ad-
mits a likelihood function which can be written as the
product of the bitwise marginals of its systematic bits,
the turbo decoder is exactly a gradient descent on Jls

with step size µ = 1
2 .

In fact, existing stability results [8], show that in this
case the turbo decoder converges in one iteration, thus the
minimum of the cost is found in one step.



Building on this result, we can see thatJls is a natural
Lyapunov function for the system, in that the system con-
verges to bitwise probabilities of zero or one only if it at
least locally descendsJls. This specific case for the fixed
point encompasses a majority of the cases of the actual use
of turbo decoder, seeing as having all zero or one bitwise
probabilities is a common occurrence when the decoder is
operating properly.

Cor. 1: If the iterative decoder converges to bitwise
marginal probabilities all in the set {0, 1} then it must
descend Jls at least within the vicinity of the conver-
gent point.

To see this, simply note that if all the bitwise marginal
probabilities are one or zero, so that

PrBλU+θc0⊙r
[ξi = 1] ∈ {0, 1}∀i ∈ {0, . . . , N − 1}

then only one binary word, call ity, has any probability, and
thus the wordwise pmf is a Kronecker delta function.

PrBλU+θc0⊙r
[ξ] =

{

1 ξ = y

0 o.w.

This, in turn, can be written as the product of indicator func-
tions for the proper values for each of the bits.

PrBλU+θc0⊙r
[ξ] =

N−1
∏

i=0

δ [ξi − yi]

whereδ is the Kronecker delta function. This then gives
Λ = −I, since the second order marginals are just the prod-
uct of the first order marginals, and the turbo decoder is thus,
at least within the vicinity of this fixed point, a steepest gra-
dient descent on this cost function.�

More generally, it is possible to sacrifice steepest gradi-
ent descent for descent. If

H = Λ + ΛT (5)

can be shown to be negative definite, then the gradient will
still point downhill, and (1) and (2) combined will move
in a direction that is downhill with respect to the costJls.
To see this, letx denote a gradient vector, pointing in the
steepest ascent direction, so that

x = Λ (π(B(π(BλT + θc1⊙r) − λT ) + θc0⊙r)

−π (BλT + θc1⊙r))

Then−x points in the steepest descent direction. Observe
now that

xT H−1x < 0

if (5) holds andΛ is negative definite, so that the subspace
angle between−x andHx is less than 90 degrees. Hence

Fig. 3. Jls alongside a plot showing which regions in which
H is negative definite for a block size of 2 bits, a simple
parity check code, and a particular noise realization. The x
and y axes in this plot are the bitwise marginal probabilities
that the corresponding bit is equal to one. Here, the large
interior is whereH is negative definite.

Λx still points downhill. Here we used the fact that ifH−1

is negative definite, thenH is negative definite.
A natural question to ask now is whether or not we can

always expectH to be negative definite everywhere. The
unfortunate answer is no. Fig.3 shows the proposed cost
function along side a plot dividing the probabilities associ-
ated with two bits underλT into the regions in whichH
is negative definite and in whichH is not negative definite
for a particular noise realization. Similarly, the plot in Fig.
4 shows the three bit case for a particular noise realization.
Here, it is ”under” the drawn surface thatH is negative def-
inite. One observation is that the set in whichH is negative
definite does not appear to be convex.

Still, the arguments above show that if the noise realiza-
tion and code structure allow forH to be everywhere nega-
tive definite, the iterative decoder globally descendsJls. We
summarize this conclusion in the final theorem of the paper.

Thm. 2: If

H = Q
BλU+θc0⊙r

(Q
BλT +θc1⊙r

− I) − Q
BλT +θc1⊙r

+
(

Q
BλU+θc0⊙r

(Q
BλT +θc1⊙r

− I) − Q
BλT +θc1⊙r

)T

= Λ + ΛT

is negative definite ∀λT ∈ R
N , then the turbo decoder

descends Jls.

In the case thatH were negative definite for allλT , then
the iterative decoder would move in a direction of decreas-
ing Jls at every step. This does not imply, however, that
the turbo decoder converges, for cyclic behavior can also be



explained in this framework, corresponding to the step size
µ = 1

2 being too large. This suggests that the connection to
Jls under these conditions could analyze both limiting fixed
point stable and cyclic behavior. At the very least, under the
conditions in Thm. 2, Jls provides an intuitive ”property
restoral” framework to the behavior of the iterative decoder.

5. CONCLUSIONS

In this paper, we introduced a least squares cost function
that the turbo decoder was then shown to descend. In par-
ticular, when one of the two codes used a likelihood func-
tion which was capable of being written as the product of
its bitwise marginals the turbo decoder admits an exact in-
terpretation as a gradient descent onJls. More generally, if
the turbo decoder converges to a vector of bitwise marginal
probabilities in{0, 1}N , then it must at least locally descend
Jls. Finally, we gave conditions under which the turbo de-
coder may be regarded as descendingJls. A salient, but also
difficult, possible extension of the work would involve con-
necting the negative definiteness ofH to properties of the
code likelihood functions.
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