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Abstract

The turbo decoder was not originally introduced as a solution to an optimization problem. This
has made explaining just why the turbo decoder performs as well as it does very difficult. Many
authors have attempted to explain both the performance and convergence of the decoder, with
varied success. In this document we show that the turbo decoder admits an exact interpretation
as an iterative method (nonlinear block Gauss Seidel iteration) attempting to find a solution to a
particular intuitively pleasing constrained optimization problem. In particular the turbo decoder is
trying to find the maximum likelihood solution under the false assumption that the input to the
encoders were chosen independently of one another, subject to a constraint on the probability that
the messages so chosen happened to be the same. We provide an exact analytical objective function,
along with an exact analytical form of the constraint, and then show that the turbo decoder is an
iterative method originally suggested by Gauss, which is trying to solve the optimization problem
by solving a system of equations which are the necessary conditions of Lagrange with a Lagrange
multiplier of −1.

1 Introduction

Along with being one of the most prominent communications inventions of the past decade, the intro-
duction of turbo codes in [1] began a new era in communications systems which brought them closer
than ever to theoretical performance limits. The creation of turbo codes introduced a new method of
decoding these codes which brought the decoding of complex codes within the reach of computationally
practical algorithms. The iterative decoding algorithm, while being suboptimal, performs well enough
to bring turbo codes very close to theoretically attainable limits.

An accurate justification for why the decoding strategy performs as well as it does is still lacking.
While it has been proven that turbo codes have good distance properties, which would be relevant for
maximum likelihood decoding, a proper connection of the suboptimal turbo decoder with maximum
likelihood decoding has been lacking. This is exacerbated by the fact that the turbo decoder, unlike
most of the designs in modern communications systems engineering, was not originally introduced as a
solution to an optimization problem. This has made explaining just why the turbo decoder performs
as well as it does very difficult. Significant progress has been made with EXIT style analysis [2] and
density evolution [3], but these techniques ultimately appeal to results which become valid only when
the block length grows rather large. Other attempts, such as connections to factor graphs [4] and belief
propagation [5], have been largely unsuccessful at showing convergence due to loops in the turbo coding
graph. The information geometric attempts [6], [7], [8], [9], and [10], in turn have been inhibited by an
inability to efficiently describe extrinsic information extraction as an information projection.

None of these convergence frameworks, so far, have identified the optimization problem that the
decoder is attempting to solve. The analogy of belief propagation to statistical physics in [11, 12, 13, 14]
does recognize that belief propagation is related to an approximation in statistical physics which is a
constrained optimization, but the development there is based on ideas from statistical physics which are
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not essential for the analysis of the turbo decoder. Furthermore, the significance of the approximation
with respect to the turbo decoder, and its intuitive nature is less than transparent. In this paper we
will show that the turbo decoder admits an exact interpretation as a well known iterative method [15]
attempting to find a solution to a particular intuitively pleasing constrained optimization problem.

2 Preliminaries and Notation

Before we get to answering some key questions about the turbo decoder, we will need to discuss some
preliminary topics. In the following development, we will find it useful to consider families of probability
measures on the possible binary words of length N . This will lead us in Section 2.1 to consider the
geometric structure of this family of probability measures by finding parameterizations of it that will
be useful in the sequel. Next, in section 2.2 we will consider a formulation of wordwise maximum
likelihood decoding which is rather atypical, but bears important resemblance to the turbo decoder. For
the inexperienced or novice reader, we shall find it useful to review the operation of the turbo encoder
and decoder in Section 2.3. This should also allow the reader a greater comfort with the information
geometric notation that we will use in the remainder of the development.

2.1 Information Geometry

Let Bi ∈ {0, 1}N for i ∈ {0, . . . , 2N − 1} denote the binary representation of the integer i. Then, by
forming the matrix

B = (B0,B1, · · · ,B2N−1)
T
∈ {0, 1}2N×N

we can create a matrix whose rows collectively are all the possible binary words of length N . Given a
random binary word of length N , call it ξ, we will be interested in different probability mass functions
(PMFs) on the outcomes {ξ = Bi}. Since there are a finite number of such outcomes, we can completely
characterize such a measure q, by simply listing the probabilities {q(Bi) = Pr[ξ = Bi]}. Furthermore,
because q is a PMF, we must have q(Bi) ≥ 0 and

∑

i

q(Bi) = 1

We are then content, that, to parameterize the set F of all PMFs on the outcomes {ξ = Bi}, it is
sufficient to consider the set Fη of vectors of the form

η = (q(B0), q(B1), . . . , q(B2N−1))
T

whose entries are nonnegative and sum to one. We shall also find it convenient later to work with the
log coordinates for PMFs in F . Given a PMF q ∈ F , its log coordinates are the vector θ whose ith
element is given by

θi = log(q(Bi)) − log(q(B0))

Given, then, a vector θ, we see that we can uniquely determine its corresponding wordwise PMF q, by
using the list of probabilities in the vector η, which can be written in terms of θ as

η = exp(θ − ψ(θ)), ψ(θ) := log(‖ exp(θ)‖1) (1)

where ‖ · ‖1 is the 1-norm (sum of the absolute values of the components of a vector argument). In fact,
one may show that ψ(θ) is actually the convex conjugate [16] and dual potential under the Legendre
transformation [17] to the negative of the Shannon entropy, so that

ψ(θ) + H(η) ≥ 〈θ,η〉

with equality iff θ and η are coordinates for the same PMF, where H is the negative of the Shannon
entropy

H(η) = 〈η, log(η)〉

It is often to convenient to work with the log coordinates of PMFs, since if the random binary words
ξ → χ → ζ satistify Pr[ζ = Bi] = Pr[χ = Bi]Pr[ξ = Bi] for all i, we have that

θζ = θξ + θχ (2)



We will find it useful to parameterize the subset P ⊂ F which contains those probability measures
Pr on {Bi} that factor into the product of their bitwise marginals, so that

Pr(x) =
∏

i

Pr(xi)

One can show [7] that this set may be parameterized by the vectors λ ∈ R
N of bitwise log probability

ratios which have elements of the form

λi = log
Pr(xi = 1)

1 − Pr(xi = 1)

The θ coordinates of a factorizable measure Pr ∈ P then take the form

θ = Bλ (3)

One can combine the facts (2) and (3) to note that we may represent the log coordinates of a wordwise
density which results by weighting a likelihood function whose log coordinates are θ with a factorizable
density with bitwise log probability ratios λ as Bλ+θ. A fact that we will use later is that the gradient
of ψ(Bλ + θ) with respect to λ is in fact the vector whose ith element is the a posteriori probability
that the ith bit is one

∇λψ(Bλ + θ) = ∇λ log(‖ exp(Bλ + θ)‖1) = BT exp(Bλ + θ)

‖ exp(Bλ + θ)‖1
= BT η

Bλ+θ

= p
Bλ+θ (4)

where we have used the notation ηθ to represent the η coordinates of the measure with log coordinates
θ, and pθ to represent the vector whose ith element is the a posteriori probability that the ith bit is one
according to the measure with log coordinates θ.

We will exploit this fact (4) later when we are discussing the operation of the turbo decoder. First,
we will speak of maximum likelihood decoding for a generic encoder.

2.2 Maximum Likelihood Decoding

In a typical decoding situation, a binary message ξ is encoded and transmitted over a channel to create
the received data r. Given r we would like to reconstruct the original message ξ. There are two senses
of “optimal” when it comes to decoding ξ in the situation where we have no prior probabilities for the
outcomes {ξ = Bi}. In one situation, we wish to minimize the probability of selecting the wrong sequence
ξ so as to minimize the block error rate. In another situation we wish to minimize the probability of
selecting the wrong bit ξi so as to minimize the bit error rate. We call the decisions which yield the
former the maximum likelihood sequence detection, and the decisions which yield the later the maximum
likelihood bitwise detection. The maximum likelihood sequence detection is then

ξ̂MLSD = arg max
ξ

p(r|ξ)

and the maximum likelihood bitwise detection is

ξ̂i,MLBD = arg max
ξi

∑

x|xi=ξi

p(r|x)

where p(r|ξ) is the likelihood function which results from concatenating the encoder with the channel.
One can set up maximum likelihood parameter estimation problems which yield these detectors as

their solutions. In particular, consider a parameter estimation problem where we are trying to determine
the factorizable prior density on ξ which yields the maximum a posteriori probability of having received
r. This problem then takes the form

qML = arg max
q∈P

∑

i

p(r|ξ = Bi)q(Bi) (5)

We know from section 2.1 that to parameterize the set P, it is sufficient to use a vector of log probability
ratios λ, thus we can set this problem as selecting

λ̂ML = arg max
λ∈RN

p(r|λ)

= arg max
λ∈RN

∑

i

p(r|ξ = Bi)Pr(Bi|λ)
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Figure 1: Parallel Concatenation of two convolutional codes with interleavers.

In particular, since we know that for any λ we must have

∑

i

Pr(Bi|λ) = 1

Then we see that the Pr that maximizes (5) takes the form

Pr(Bi|λ̂ML) =

{

1 Bi = ξ̂MLSD

0 otherwise

since putting any probability mass on any other word would not yield as high a likelihood. This then
implies that λ̂ML are the infinite log probability ratios associated with the word ξ̂MLSD. In this manner
we have seen that the maximum likelihood sequence detector may be viewed as the answer to a maximum
likelihood estimation problem.

One can also set up a set of maximum likelihood parameter estimation problems whose answers are
the maximum likelihood bitwise detections. In particular, consider the set of estimation problems

λ̂i,ML = arg max
λ∈R

∑

ξ

p(r|ξ)Pr[ξi|λ]

= arg max
λ∈R

Pr[ξi = 1|λ]





∑

ξ|ξi=1

p(r|ξ)



+ Pr[ξi = 0|λ]





∑

ξ|ξi=0

p(r|ξ)





From the latter form it is evident that

Pr[ξi = 1|λ̂i,ML] =

{

1
∑

ξ|ξi=1 p(r|ξ) >
∑

ξ|ξi=0 p(r|ξ)

0 otherwise

which shows that λ̂i,ML is the (infinite) log probability ratio corresponding to the maximum likelihood
bitwise detection.

Now that we have learned about optimal detection techniques, it is time to discuss the turbo encoder
and decoder, which is is suboptimal, yet has been proven via simulation to have near optimal performance
at a reasonable complexity.

2.3 The Turbo Encoder

Consider the turbo encoder depicted in Figure 1. A block of N bits ξ is interleaved to get χ̂ = Π(ξ).
(We will denote the deinterleaved Π−1(χ̂) by χ for convenience in notation.) Then, ξ and χ̂ are encoded
with two, possibly different systematic convolutional encoders. We then pass the systematic bits, parity
check bits from the first encoder, and parity check bits from the second encoder, over a noisy memoryless
channel to get the channel outputs rs, r0, and r1, respectively.

The optimal decoder, in the sense of minimizing block error probability, at the receiver would choose
ξ̂ to be the message which maximized the likelihood function

ξ̂ = arg max
ξ

p(rs, r0, r1|ξ)

= arg max
ξ

p(rs, r0|ξ)p(r1|χ̂ = Π(ξ))

where the second factorization is admitted by the memoryless nature of the channel. As discussed in
Section 2.2, this is equivalent to choosing the prior factorizable density for ξ that maximizes the a
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Figure 2: The Parallel Concatenated Turbo Decoder.

posteriori likelihood function subject to the constraint that χ = ξ. To see this select log probability
ratios λ to parameterize the prior density for ξ, and write the a posteriori likelihood function

ptrue(rs, r0, r1|λ) =
∑

i

p(rs, r0|ξ = Bi)p(r1|χ̂ = Π(Bi))Pr(ξ = Bi|λ)

This is maximized when

Pr(ξ = Bi|λ) =

{

1 i = arg maxj p(rs, r0|ξ = Bj)p(r1|χ̂ = Π(Bj))
0 otherwise

so that λ corresponds to the (infinite) log probability ratios corresponding to the maximum likelihood
sequence detector.

Unfortunately, such a procedure is not computationally feasible at the receiver. To cope with this
problem, the turbo decoder makes use of an exchange in information between computationally efficient
decoders for each of the component codes as depicted in Figure 2. Denoting by

[θ0]i = log(p(rs, r0|ξ = Bi)) − log(p(rs, r0|ξ = B0))

[θ1]i = log(p(r1|χ = Bi)) − log(p(r1|χ = B0))

and denoting λU and λT as the vectors of information exchanged between the two decoders, one may
write the turbo decoder succinctly as iterating

λ
(k)
T = π(Bλ

(k)
U + θ0) − λ

(k)
U

λ
(k+1)
U = π(Bλ

(k)
T + θ1) − λ

(k)
T

where π takes a log pmf to its bitwise log probability ratios, and thus may be written as

π(θ) = log
(

BT exp(θ − ψ(θ))
)

− log
(

(1 − B)T exp(θ − ψ(θ))
)

where we denoted by 1 the 2N ×N matrix whose entries are all one. If we denote by pθ the vector of
bitwise marginal probabilities of the bits being one according to the wordwise log pmf θ, we could also
write the turbo decoder as

p
B(λ

(k)
U

+λ
(k)
T

)
= p

Bλ
(k)
U

+θ0

p
B(λ

(k+1)
U

+λ
(k)
T

)
= p

Bλ
(k)
T

+θ1

Since the extrinsic information vectors λ
(k)
T are first chosen so that they match the a posteriori proba-

bilities from the first decoder when they are added to its prior information λ
(k)
U , and similarly for λ

(k+1)
U

with respect to the second decoder and prior information λ
(k)
T .

3 The Turbo Decoder as an Iterative Solution to a Constrained

Optimization Problem

Here we will somewhat demystify the turbo decoder by showing both the sense in which its stationary
points are optimal, as well as by identifying the iterative method which is being used to find these
optimal points. We must first consider a system which, although it is not exactly equal to that in which
the turbo decoder operates, is the system which the turbo decoder assumes in its sense of optimality. We
will then provide the optimization interpretation of the turbo decoder, followed with some commentary
and conclusions.
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3.1 A Convenient Independence Assumption

In describing the operation of the turbo decoder, it will be advantageous to describe a system like
that in which the turbo decoder operates, but in which the messages ξ and χ are chosen completely
independently of one another as depicted in Figure 3. Under the false assumption that the messages
input to the encoders were chosen independently of one another according to factorizable pmfs with
bitwise log probability ratios λU and λT , the likelihood function for the received data would be

p(rs, r0, r1|λU ,λT ) =

(

∑

i

p(rs, r0|ξ = Bi)Pr(ξ = Bi|λU )

)





∑

j

p(r1|χ = Bj)Pr(χ = Bj |λT )





=
‖ exp(BλU + θ0)‖1‖ exp(BλT + θ1)‖1

‖ exp(BλU )‖1‖ exp(BλT )‖1

Thus, recalling the definition of ψ from (1), the log likelihood function is

log(p(rs, r0, r1|λU ,λT )) = −ψ(BλU ) − ψ(BλT ) + ψ(BλU + θ0) + ψ(BλT + θ1)

To control this false assumption of independently choosing ξ and χ, we will be interested in choosing
λU and λT so that the two densities so chosen have a large probability of selecting the same word. This
is because we know a priori that ξ and χ are the same, and thus, although we are relaxing the constraint
that they be exactly the same in doing the decoding, we want to enforce that they be similar. Thus, at
the decoder, we will be interested in the constraint set

C = {(λU ,λT )|Pr(ξ = χ|λU ,λT ) = c}

which is the set such that the probability of choosing the same message for ξ and χ, given that we
chose them independently according to the factorizable densities whose bitwise marginals are λU and
λT , respectively. We will now use the notation

Pr(ξ = Bi|λU ) =
exp(BiλU )

‖ exp(BλU )‖1

Pr(χ = Bi|λT ) =
exp(BiλT )

‖ exp(BλT )‖1

in order to rewrite

Pr(ξ = χ|λU ,λT ) =
∑

i

Pr(ξ = Bi|λU )Pr(χ = Bi|λT )

=
‖ exp(B(λU + λT ))‖1

‖ exp(BλU )‖1‖ exp(BλT )‖1

so that

log(Pr(ξ = χ|λU ,λT )) = log(‖ exp(B(λU + λT ))‖1) − log(‖ exp(BλU )‖1) − log(‖ exp(BλT )‖1)

= ψ(B(λU + λT )) − ψ(BλU ) − ψ(BλT )

and so that we can write the constraint set as

C = {(λU ,λT )|ψ(B(λU + λT )) − ψ(BλU ) − ψ(BλT ) = c}



3.2 An Exact Characterization of the Turbo Decoder

In the next theorem we show that the turbo decoder is an iterative attempt to find the maximum
likelihood estimate for bitwise log probability ratios λU and λT under the false assumption that ξ

and χ where chosen independently of one another according to the bitwise factorizable pmfs with log
probability ratios λU and λT , respectively. Furthermore, this optimization is performed subject to the
constraint that the probability of selecting the same message when selecting ξ and χ in this manner is
held constant.

Theorem 1 (What is turbo decoding?): The turbo decoder is exactly a nonlinear block Gauss Seidel

iteration bent on finding the solution to the constrained optimization problem

(λ∗
U ,λ

∗
T ) = arg max

(λU ,λT )∈C

log(p(rs, r0, r1|λU ,λT ))

In particular, the turbo decoder stationary points are in a one to one correspondence with the critical points

of the Lagrangian of this optimization problem with a Lagrange multiplier of −1. The turbo decoder is then

a nonlinear block Gauss Seidel iteration on the gradient of this Lagrangian.

Form the Lagrangian

L(λU ,λT ) = log(p(rs, r0, r1|λU ,λT )) + µ (log (Pr [ξ = χ|λU ,λT ]) − log(c))

= −ψ(BλU ) − ψ(BλT ) + ψ(BλU + θ0) + ψ(BλT + θ1)

+µ (−ψ(BλU ) − ψ(BλT ) + ψ(B(λU + λT )))

Take its gradient

∇λU
L = −p

BλU
+ p

BλU+θ0
+ µ

(

−p
BλU

+ p
B(λU+λT )

)

∇λT
L = −p

BλT
+ p

BλT +θ1
+ µ

(

−p
BλT

+ p
B(λU+λT )

)

Selecting a Lagrange multiplier of µ = −1, we have

∇λU
L = p

BλU+θ0
− p

B(λU+λT )

∇λT
L = p

BλT +θ1
− p

B(λU+λT )

If we break this system of equations into two parts

F0(λU ,λT ) = ∇λU
L = p

BλU+θ0
− p

B(λU+λT )

F1(λU ,λT ) = ∇λT
L = p

BλT +θ1
− p

B(λU+λT )

Then we can see that the turbo decoder solves F0 for λU given a fixed λT = λ
(k)
T to get λ

(k)
U , and then

solves F1 for λT given a fixed λU = λ
(k)
U to get λ

(k+1)
T , that is

λ
(k)
U = λU such that F0(λU ,λ

(k)
T ) = 0

λ
(k+1)
T = λT such that F1(λ

(k)
U ,λT ) = 0

This is exactly the form of a nonlinear block Gauss Seidel iteration. Furthermore, the system of equations
it is trying to solve are the necessary conditions for finding a solution of provided constrained optimization
problem, which are

∇λU
L = 0

∇λT
L = 0

subject to a Lagrange multiplier of µ = −1. �

Given the importance of selecting the Lagrange multiplier µ = −1, from here on, we will always select
µ = −1 when we refer to the Lagrangian. Because the condition that the gradient of the Lagrangian
is equal to zero is necessary, but not always sufficient, for a point to be the global optima, we must
characterize the type of critical points which are possible. In particular, we wish to know whether
or not the critical points of the Lagrangian are at least local maxima of the constrained optimization
problem. Generally speaking one can converge to either maxima or minima, although if one replaces the
Lagrangian with the expectation of the Lagrangian over the received data one can guarantee that there
is only one extrema which is a global maximum.



Figure 4: L for two different sample values of θ0 and θ1 for N = 2 bits and simple parity check codes.
Here, the line indicates C , and x marks the spot where the Turbo Decoder converges to given an
initialization at (1

2 ,
1
2 ). The p0 and p1 axes are the bitwise marginal probabilities associated with λU ,

and we are always selecting λT = π(BλU + θ0) − λU . In one instance we have converged to a local
maxima, and in another to a local minima.

Theorem 2 (Critical Point Characterization): The expected Lagrangian has only one critical point which

is a maxima of the expected constrained optimization problem. Here, the expectation is taken over the

received information rs, r0, r1 given λU ,λT .

To see this, consider the value of the Lagrangian within the constraint space

L = −ψ(B(λU + λT )) + ψ(BλU + θ0) + ψ(BλT + θ1)

= −ψ(BλU ) − ψ(BλT ) + C + ψ(BλU + θ0) + ψ(BλT + θ1)

were in the latter equation we substituted in the constraint. Now, note from this that L thus is the sum
of two log likelihood functions within the constraint space

L = (−ψ(BλU ) + ψ(BλU + θ0)) + (−ψ(BλT ) + ψ(BλT + θ1))

= log(p(rs, r0|λU )) + log(p(r1|λT ))

This then implies that the second derivative of the Lagrangian within the constraint set has a mean
which is the negative of the Fisher information matrix, call it I, since the Fisher information matrix is
defined as

I = −

(
∫

∇2
λU ,λU

{log(p(rs, r0|λU ))}p(rs, r0|λU )drsdr0 0

0
∫

∇2
λT ,λT

{log(p(r1|λT ))}p(r1|λT )dr1

)

where we have used ∇2{·} here to denote the operator which takes a function to its Hessian matrix
of second order partial derivatives. The well known fact, then, that the Fisher information matrix is
positive semi-definite, then shows that the expectation of the Hessian matrix of the Lagrangian L is
negative semi-definite. This implies then that, the function E[L] is concave, where E denotes expectation
with respect to p(rs, r0|λU )p(r1,λT ), and thus has a unique global maxima. Roughly speaking, this
means that L is concave, and thus has a unique global maximum, on average.�

Two important distinctions are made in the previous theorem. First of all, while the expected value
of the Lagrangian is concave within the constraint space, and thus has a unique global maxima and no
local maxima, we are not guaranteed that for a particular sample rs, r0, r1 there is only one solution to
∇L = 0. In fact, Figure 4 shows that, even for N = 2, it is possible, depending on rs, r0, r1 to be either
a maxima or minima of this convergent point. Another important distinction is that while the expected
value of the Lagrangian is a concave within the constraint space, it is not necessarily concave outside of
the constraint space. In fact, one can show that outside of the constraint space

∇2
λU ,λU

L = PBλU+θ0
− p

BλU+θ0
pT

BλU+θ0
−
(

PB(λU+λT ) − p
B(λU+λT )p

T
B(λU+λT )

)

∇2
λU ,λT

L = −
(

PB(λU+λT ) − p
B(λU+λT )p

T
B(λU+λT )

)

∇2
λT ,λT

L = PBλU+θ0
− p

BλU+θ0
pT

BλU+θ0
−
(

PB(λU+λT ) − p
B(λU+λT )p

T
B(λU+λT )

)



where Pθ is the matrix whose i, jth entry is the probability that both the ith and jth bits are one,
according to the wordwise measure whose log coordinates are θ. From this we can see that at a Turbo
decoder stationary point, the diagonal elements of ∇2L are all zero. Thus, the trace of the Hessian
matrix is zero, and, provided the Hessian is not identically zero, the stationary points are saddle points
of the Lagrangian when one does not restrict oneself to the constraint space.

3.3 Commentary

We provide some brief itemized comments on the results in the previous section.

• To the authors’ best knowledge, this is the first work which explains the exact nature of the
maximum likelihood optimality of the turbo decoder stationary points which does not assume
infinite block length or the absence of loops. Furthermore, this is the only work, aside from
[15], which recognizes that the turbo decoder is actually a Gauss Seidel iteration on the system
of equations which describes its stationary points. We now know, as well, that this system of
equations is actually the Lagrangian of an intuitive optimization problem.

• As mentioned in the introduction, other authors [11, 12, 13, 14] have noted the connection of the
Bethe approximation of statistical physics with belief propagation, of which turbo decoding may
be considered a particular instance. By noting this connection, they were able to realize that belief
propagation is related to a sort of constrained optimization problem. For instances where there are
loops in the graph, however, it is not clear why minimizing this approximation to the variational
free energy still yields statistics which give good decisions. In contrast, our objective function and
constraints have intuitive meaning regardless of whether or not there are loops in the graph. Our
separate formulation here, has, among other things, enabled us to determine the next item, for
instance.

• Many researchers believe that the turbo decoder approximates the maximum likelihood bitwise
solutions (see, e.g. [14] or other literature about loopy belief propagation), mainly because the
elegant theory for belief propagation considers the special case of tree factorizability of likelihood
information in terms of the graph, and this is precisely the case in which the turbo decoder does
calculate the maximum likelihood bitwise solutions. Here, we have in fact shown that the turbo
decoder is closer to a maximum likelihood blockwise decoder than a bitwise decoder, with the
constraints biasing a blockwise detector to a bitwise detector in the tree case.

• The constrained optimization interpretation of the turbo decoder which we have just discussed also
holds for the decoder in its serial form, but since little changes for the two cases, we have omitted
the exact results here for the sake of conciseness. See, for instance, [18], to note the serial decoder
has the same mathematical form as the parallel decoder, which then implies that one may apply
the analysis used here. The results may also be easily extended to belief propagation on factor
graphs of functions of binary vectors.

• One can use the realization that the turbo decoder is the nonlinear block Gauss Seidel iteration
to borrow convergence conditions from the numerical analysis literature and interpret what they
mean for the turbo decoder. In this manner, one can provide a set of sufficient conditions for
the turbo decoder in the generic case [15]. Given that other convergence theorems have generally
required asymptotically large block lengths, or a lack of loops in the graphical representation of
the code, these new results should provide some insights into the intermediate block length cases.

4 Conclusions

The turbo decoder was a suboptimal heuristic method which was proposed through simulation. Although
researchers have been able to characterize its convergence behavior and performance in the asymptotically
large block length and factorizable likelihood information cases, up until now it has not been determined
in what sense the convergent points of the turbo decoder are optimal, why it converges there when it
does, and when the turbo decoder converges. We have provided an exact and novel characterization of
the turbo decoder stationary points as critical points of the log likelihood function for the received data
under a false independence assumption for the messages provided to the two component encoders, subject
to the constraint that the probability that the messages so chosen are the same is fixed. Furthermore,
we have shown that the turbo decoder is actually a nonlinear block Gauss Seidel iteration on the



system of necessary equations for this constrained optimization problem specified by Lagrange with a
Lagrange multiplier of −1. This characterization then, provides beginnings of answers for all of the issues
previously mentioned. We have thus determined the manner in which the turbo decoder stationary points
are optimal, which is something which could only be argued for via simulation or for asymptotic block
lengths previously. Furthermore, by identifying the iterative method that was being used to find the
solution to the necessary conditions, we were able to determine sufficient conditions for the convergence
of the turbo decoder [15].
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