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Abstract
While its performance in the Gaussian, infinite block length, and loopless factor graph cases are well understood,
the breakthrough applications of the belief propagation algorithm to the decoding of turbo and LDPC codes involve
finite block lengths, finite alphabets, and factor graphs with loops. It has been shown in these instances that the
stationary points of the belief propagation decoder are the critical points of the Bethe approximation to the free
energy. However, this connection does not clearly explain why the stationary points of belief propagation yield
good performance, since the approximation is not in general exact when there are loops in the graph. We introduce
an alternate constrained maximum likelihood optimization problem here which analytically connects the stationary
points of belief propagation with the maximum likelihood sequence detector.

1 Introduction
The introduction in [1] of turbo coding and the re-
vival of LDPC coding from [2] have brought practical
communications system closer than ever to theoretical
limits. The key elements to the success of these tech-
niques, along with codes with good distance properties,
were soft decoding algorithms which decoded these
codes within reasonable computation complexity and
with empirically determined good error performance. It
has since been shown that both of these soft decoding
algorithms can be considered as special cases of the
more abstract belief propagation algorithm on particular
factor graphs1 [3].

In the case that the factor graph does not have any
loops, it is easy to show (see e.g. [3]) that the belief
propagation algorithm converges in a finite number of
iterations to beliefs which give the maximum likelihood
symbol detections. When the graph has loops, however,
the algorithm does not always converge, and further-
more when it does converge its beliefs do not give the
maximum likelihood symbolwise detections. The most
famous applications of the algorithm, including both the
turbo decoder and the soft algorithm for the decoding
of low density parity check codes involve graphs with

Manuscript submitted to the Fourth International Symposium on
Turbo Codes and Related Topics on October 17, 2005. J. M. Walsh
and C. R. Johnson, Jr. were supported in part by Applied Signal
Technology and NSF grants CCF-0310023 and INT-0233127. P. A.
Regalia was supported in part by the Network of Excellence in
Wireless Communications (NEWCOM), E. C. Contract no. 507325
while at the Groupe des Ecoles des Télécommunications, INT, 91011
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1Because we are considering the factor graph framework where
the function to factor is a likelihood function, belief propagation as
it appears in this paper is a synonym for the sum product algorithm.

loops. In these instances, the innovators empirically
argued for the algorithm’s good performance, and there
have been only a few theoretical results (see e.g. [4],
[5], [6]) which explain the good performance of the
algorithm in the loopy, finite alphabet, and finite block
length cases. These previously existing results connect
the stationary points of belief propagation with critical
points of the Bethe approximation to the variational
free energy as we will review in Section 3.1. The Bethe
approximation is exact when there are no loops in the
graph, which explains the good performance of the
algorithms in those situations. On the other hand, when
there are loops in the graph and the approximation
is not exact, it is no longer clear why minimizing
this approximation yields detections which can give
empirically low probability of error. For this reason, we
introduced in [7], [8] for turbo decoding and in [9] for
belief propagation in binary variable node factor graphs,
an intuitive maximum likelihood constrained optimiza-
tion problem which yields the maximum likelihood
sequence detection for one value of the constraining
parameter and the belief propagation stationary points
for another value of the constraining parameter. The
closeness between the belief propagation decoder and
the maximum likelihood sequence detector is then em-
bodied by the value of this constraining parameter. In
this paper, after reviewing the details of belief propaga-
tion in 2, we will develop in Section 3.2 this maximum
likelihood constrained optimization interpretation for
any finite alphabets and use it in Section 4 to explicitly
solve for some of the belief propagation stationary
points in some special cases. In these special cases it
will be particularly easy to see how these stationary
points yield maximum likelihood sequence detections.



2 Statistical Inference via Belief
Propagation in Factor Graphs

In statistical inference problems, we start with a statis-
tical model p(r|x) for some observations, a vector of
random variables r which have not yet been observed,
that is parameterized by a vector of parameters x. For
each value of the vector of parameters, x, the statistical
model gives us a corresponding probability density for
r. We then observe a particular r, and we are interested
in guessing with x̂ the particular vector of parameters
x which gave rise to r. In the case that x has elements
drawn from finite sets, which is the case that we will
consider in the following development, this statistical
inference problem is called detection. In the case that
we do not have a prior probability density for x, there
are two natural detectors, depending on whether wants
to minimize the probabilities of symbol error Pr[x̂i 6=
xi] or the probability of sequence error Pr[x̂ 6= x]. The
detector which minimizes the probabilities of symbol
error is called the maximum likelihood symbol detector
x̂MLYD and takes the form

x̂MLYD,i = arg max
xi

∑
x\xi

p(r|x) (1)

while the detector which minimizes the probability
of symbol error is called the maximum likelihood
sequence detector x̂MLSD and takes the form

x̂MLSD = arg max
x

p(r|x) (2)

In many situations, calculating these detectors is a com-
putationally prohibitive task, since unless one knows
more about the structure of the model p(r|x) the
number of combinations which one must consider for
x grows exponentially with the block length for fixed
alphabets of possibilities for xi.

Belief propagation is an algorithm that tries to exploit
structure in the model p(r|x) in order to perform detec-
tion in a computationally efficient manner. In particular,
belief propagation may be applied when the likelihood
function p(r|x) factors multiplicatively in x

p(r|x) =
1
Z

M∏
a=1

fa(xa) (3)

This factorization can be associated with a bipartite
graph, called a factor graph, with two types of nodes:
factor nodes and variable nodes. The N variable nodes
V = {x1, . . . , xn} correspond to different elements
of the vector of parameters. These variable nodes are
connected with M factor nodes associated with the
functions {fa|a ∈ {1, . . . ,M}}. An edge between
variable node i and factor node a indicates that the
factor function fa depends on the variable xi, while
the absence of such an edge implies that fa is not a
function of xi. The set of variable nodes connected
to factor node a is denoted by N (a) and the set

of factor nodes connected to variable node i is de-
noted by N (i). We will use the (somewhat sloppy,
but previously used) notation xa = (xi1 , . . . , xi|N(a)|)
where (i1, . . . , i|N (a)|) = N (a). The belief propagation
algorithm specifies a set of message passing rules for
communication along edges between the nodes in the
factor graph. The factor nodes pass messages ma→i(xi)
to the variable nodes according to the rules

ma→i(xi) ∝
∑
x\xi

fa(x)
∏

j∈N (a)\i

nj→a(xj) (4)

and the variable nodes pass messages ni→a(xi) to the
factor nodes according to the rules

ni→a(xi) ∝
∏

c∈N (i)\a

mc→i(xi) (5)

These messages are calculated according to some
scheduling routine which depends on the implementa-
tion, but one common way is to calculate the messages
at each of the factor nodes in parallel, followed by
calculating the messages at each of the variable nodes in
parallel, and then repeat. These messages then specify
beliefs

bel(xi) =
∏

a∈N (i)

ma→i(xi) (6)

at each of the variable nodes which are used, usually
after some finite iterations, in order to guess a detection
x̂BP according to

x̂BP,i = arg max
xi

bel(xi) (7)

As mentioned in the introduction, when there are loops
in the graph, these iterations do not always result
in beliefs which converge, and furthermore it is not
well understood why they have been often empirically
observed to yield decisions with low probability of
sequence error. We attempt to understand why the
stationary points of the algorithm can yield good perfor-
mance in the next section by reviewing and introducing
optimization problems whose critical points yield the
belief propagation stationary points.

3 Optimization Frameworks for Be-
lief Propagation

In subsection 3.1, we review the result from [4], [5], [6]
that the stationary points of belief propagation may be
identified with critical points of the Bethe approxima-
tion to the variational free energy. In subsection 3.2, we
introduce an alternate constrained optimization problem
which is more tangibly related to maximum likelihood
detection than minimizing the Bethe approximation to
the free energy. It is this alternate optimization problem
which will allow us to argue in Section 4 that the
stationary points of belief propagation give maximum
likelihood sequence detections in some special cases, as
well as make it clearer why finding the critical point of



the Bethe approximation to the variational free energy
gives decisions which can yield a low probability of
symbol error.

3.1 Free Energy Minimization
With the likelihood function (3), we will associate the
energy

E(x) := −
M∑

a=0

ln(fa(xa)) (8)

The variational free energy associated with this system
relative to a trial distribution b is defined as

F(b) := U(b)− H(b) (9)

where we have introduced two quantities, the varia-
tional average energy

U(b) :=
∑
x

b(x)E(x) (10)

and the variational entropy

H(b) := −
∑
x

b(x) ln(b(x)) (11)

From these, we can see that

F(b) = D(b||p)− ln(Z) (12)

where the first term is the Kullback Leibler distance
and the last term is labelled the Helmholtz free energy.
This motivates minimizing the variational free energy
when trying to match the trial distribution to the true
distribution, because the Kullback Leibler distance is
globally uniquely minimized over the space of all
possible trial distributions when the two distributions
b and p are exactly equal.

3.1.1 Belief Propagation as Bethe Free Energy Min-
imization

Although they do not minimize the free energy in
general, it was shown in [4], [5], [6] that the stationary
points of belief propagation are critical points of the
Bethe approximation to the free energy. For complete-
ness, and in order to clearly contrast the free energy
approximation development with the alternate optimiza-
tion framework in subsection, we repeat that result in
an abbreviated manner here. The Bethe approximation
to the free energy involves an approximate variational
average energy as

UBethe(b) =
∑

a

∑
xa

ba(xa)Ea(xa) (13)

and an approximate variational entropy as

HBethe(b) = −
∑

i

(1− |N (i)|)
∑
xi

bi(xi) ln(bi(xi))

−
∑

a

∑
xa

ba(xa) ln(ba(xa))

yielding a variational free energy of

FBethe(b) = UBethe(b)− HBethe(b) (14)

Here we show that the stationary points are critical
points of the Bethe Free Energy subject to the con-
straints that ∑

xi

bi(xi) = 1 (15)

for every variable node i and∑
xa

ba(xa) = 1 (16)

for every factor node a and∑
xa\xi

ba(xa) = bi(xi) (17)

for every factor node a and neighboring variable node
i. Furthermore, since b is a probability density, we need
ba(xa) ≥ 0 for all xa.

We perform the constrained optimization by forming
the Lagrangian

L = FBethe +
∑

a

αa

(∑
xa

ba(xa)− 1

)

+
∑

i

βi

(∑
xi

bi(xi)− 1

)

+
∑

a

∑
i∈N (a)

γi,a(xi)

∑
xa\xi

ba(xa)− bi(xi)


+
∑

a

µaba(xa)

We now take the gradient with respect to the beliefs
ba(xa) and bi(xi)

∂L

∂ba(xa)
= Ea(xa)− ln(ba(xa))− 1 + αa +∑

i∈N (a)

γi,a(xi) + µa

and

∂L

∂bi(xi)
= (|N (i)| − 1) ln(bi(xi)) + (|N (i)| − 1)

+βi +
∑

a∈N (i)

γi,a(xi)

Setting these equal to zero and solving for ba(xa) and
bi(xi) gives

ba(xa) = fa(xa) exp

αa +
∑

i∈N (a)

γi,a(xi) + µa − 1


(18)

and

bi(xi) = exp

(
βi +

∑
a∈N (i) γi,a(xi)

1− |N (i)|
− 1

)
(19)

Absorbing the lagrange multipliers αa into the sum to
one constraint and using proportionality notation, we



have

ba(xa) ∝ fa(xa) exp

 ∑
a∈N (i)

γi,a(xi)

 (20)

bi(xi) ∝ exp

(
βi +

∑
i∈N (a) γi,a(xi)

1− |N (i)|

)
(21)

Now, if we chose γi,a(xi) to be the log of the message
passed under belief propagation from variable node i
to factor node a, which is

γi,a(xi) = ln(ni→a(xi)) = ln

 ∏
c∈N (i)\a

mc→i(xi)


(22)

we get

ba(xa) ∝ fa(xa)
∏

i∈N (a)

ni→a(xi) (23)

and

bi(xi) ∝ exp

∑a∈N (i) ln
(∏

c∈N (i)\a mc→i(xi)
)

1− |N (i)|


(24)

which simplifies to

bi(xi) ∝
∏

i∈N (a)

ma→i(xi) (25)

which shows that choosing the Lagrange multipliers
in this manner gives the stationary points of belief
propagation. In other words, if we are at a stationary
point of belief propagation, than the gradient of the
Lagrangian is equal to zero. The reverse (that if the
gradient of the Lagrangian is equal to zero, then we
are at a stationary point of belief propagation), may be
shown by using (22) to obtain

ln(ma→i(xi)) =
2− |N (i)|
|N (i)| − 1

γi,a(xi)

+
1

|N (i)| − 1

∑
c∈N (i)\a

γi,c(xi)

which together with (20) and (21), the conditions
under which the Lagrangian is equal to zero, implies a
stationary point of belief propagation.

3.2 Constrained Maximum Likelihood De-
tection

In this section, we show how minimizing the Bethe
Free Energy is equivalent to a constrained maximum
likelihood estimation problem. We begin by noting
that the likelihood function p(r|x) from which we are
interested in doing inference may be rewritten by in-
troducing for each a ∈ {1, . . . ,M} the new parameters
ya = (ya,1, . . . , ya,N ) and za = (za,1, . . . , za,N ) as

p(r|x) =
1
Z

M∑
c,b=1

∑
yb

∑
zc

M∏
a=1

f̃a(za)δ[za − ya]δ[x− ya]

(26)

where we have used the Kronecker delta function

δ[x] =
{

1 x = 0
0 otherwise (27)

and we have introduced the functions

f̃a(x) := fa(xa) (28)

In (26), the product
∏M

a=1 δ[za − ya] is forcing only
those terms in the sum which have za = ya to remain,
and the product

∏M
a=1 δ[x − ya] is forcing only those

terms in the sum which have z = ya to remain. We may
consider

∏M
a=1 δ[za−ya] to be prior joint distributions

for (z1, . . . , zM ,y1, . . . ,yM ). Maximizing this form
with respect to x is still difficult, since nothing about
the function has changed. Now, suppose we soften the
requirement that za = ya∀a by instead stipulating a
priori that

(za, . . . , zM ,y1, . . . ,yM ) ∼
M∏

a=1

N∏
i=1

qa,i(za,i)ba,i(ya,i)

(29)
or, in other words, that the bits in
(za, . . . , zM ,y1, . . . ,yM ) are all chosen independently
via some probability mass function which satisfies the
requirement

ln
(

Pr
q,b

[za = ya∀a ∈ {1, . . . ,M}]
)

= ln

(∑
z=y

q(z)b(y)

)
= ln(c)

where we have used and will use the abbreviated
notations

q(z)b(y) :=
M∏

a=1

N∏
i=1

qa,i(za,i)ba,i(ya,i),

qa(za)ba(ya) :=
N∏

i=1

qa,i(za,i)ba,i(ya,i)

The motivation here is that if c is close to one, then
M∏

a=1

N∏
i=1

qa,i(za,i)ba,i(ya,i) ≈
M∏

a=1

δ(za − ya) (30)

and thus
p̂(r|x, q, b) ≈ p(r|x) (31)

which will then give that marginalizing p̂(r|x) gives
marginals close to p(r|x).

As was the case with our development for minimiz-
ing the Bethe approximation to the free energy, we
will be interested in an optimization problem where the
parameters we are picking are actually a probability
mass function. In particular, we will choose q and b
in such a way as to maximize the log-likelihood of
receiving r. In this situation, the likelihood function
for q and b is

p̂(r|q, b) =
∑
x,y,z

q(z)b(z)
M∏

a=1

f̃a(za)δ[x− ya] (32)



We will perform the maximization within the set
of q and b satisfying the constraint (30) in hopes of
controlling the error introduced by making the false
independence assumption for y and z. Of course,
because q and b need to be probability measures, we
need to enforce

qa,i(za,i) ≥ 0, ba,i(ya,i) ≥ 0 (33)

and ∑
za,i

qa,i(za,i) = 1,
∑
ya,i

ba,i(ya,i) = 1 (34)

Summarizing the optimization problem, suppose we
choose q and b to be critical points of the Lagrangian
for the optimization problem

(q∗, b∗) := arg max
(q,b)∈C

ln(p̂(r|q, b)) (35)

where

C =


(q, b)

∣∣∣∣∣∣∣∣∣∣∣

ln
(∑

y=z q(z)b(y)
)

= c,

qa,i(za,i) ≥ 0,
ba,i(ya,i) ≥ 0,∑

za,i
qa,i(za,i) = 1,∑

ya,i
ba,i(ya,i) = 1


(36)

To find the critical points of this constrained optimiza-
tion, we begin by forming the Lagrangian

L = ln(p̂(r|q, b))

+λ

(
ln

(∑
y=z

q(z)b(y)

)
− ln(c)

)

+
∑
a,i

β1,a,i

∑
za,i

q(za,i)− 1


+
∑
a,i

β2,a,i

∑
ya,i

b(ya,i)− 1


+
∑
a,i

γ1(za,i)q(za,i) +
∑
a,i

γ2(ya,i)b(ya,i)

Calculating the relevant partial derivatives yields

∂L

∂qc,j(zc,j)
=

(∑
x,y,z

q(y)b(z)
M∏

a=1

f̃a(za)δ[x− ya]

)−1

∑
x,y

∑
z\zc,j

f̃c(xc)bc,j(yc,j)δ[x− yc]

N∏
i=1
i 6=j

qc,i(zc,i)bc,i(yc,i)
M∏

a=1
a6=c

f̃a(za)δ[x− ya]qa(ya)ba(za)

+λ

(∑
y=z

q(z)b(y)

)−1 ∑
y\yc,j=z\zc,j

bc,j(yc,j)

N∏
i=1
i 6=j

qc,i(zc,i)bc,i(yc,i)
M∏

a=1
a6=c

qa(za)ba(ya)

+β1,a,i + γ1,a,i(za,i)
(37)

and

∂L

∂bc,j(yc,j)
=

(∑
x,y,z

q(y)b(z)
M∏

a=1

f̃a(za)δ[x− ya]

)−1

∑
x,z

∑
y\yc,j

f̃c(xc)qc,j(zc,j)δ[x− yc]

N∏
i=1
i 6=j

qc,i(zc,i)bc,i(yc,i)
M∏

a=1
a6=c

f̃a(za)δ[x− ya]qa(ya)ba(za)

+λ

(∑
y=z

q(z)b(y)

)−1 ∑
y\yc,j=z\zc,j

qc,j(zc,j)

N∏
i=1
i 6=j

qc,i(zc,i)bc,i(yc,i)
M∏

a=1
a6=c

qa(za)ba(ya)

+β2,a,i + γ2,a,i(za,i)
(38)

Multiplying these two equations by qc,j(zc,j) and
bc,j(yc,j) respectively, then summing over the remain-
ing variables yields the equations

1 + λ + Wiγ1,a,i = 1 + λ + Wiγ2,a,i = 0 (39)

where Wi is the number of possible values for the
variable xi. This then gives a necessary relationship
among the Lagrange multipliers for a stationary point.

γ2,a,i = γ1,a,i =
1 + λ

Wi
(40)

Given the sensitivity interpretation of Lagrange multi-
pliers, and that it is equally important to us to have
a large value of ln(p̂) under the false independence
assumption as it is to have a large value of ln(Prq,b[z =
y]), it is intuitively reasonable to pick a Lagrange
multiplier of −1 for λ. Doing so then gives γs equal to
zero, which after substitution into (37) and (38) yields
the equations for the stationary points of the belief
propagation algorithm after identifying q and b with
the messages being passed being sent from the variable
nodes to the factor nodes and vice versa, respectively.

We have thus shown that the stationary points of be-
lief propagation are critical points of this optimization
problem after picking the Lagrange multiplier λ = −1.

4 Belief Propagation Stationary
Points in Graphs with Loops

In this section, we use the alternate optimization prob-
lem which yields the same critical points as the Bethe
Free Energy to study properties of particular stationary
points of belief propagation. In particular, we will
attempt to classify the global maxima of the alternate
optimization problem, since it is intuitively reasonable
(given the log likelihood objective function) that the
global maxima of the alternate optimization problem
are the ones that are contributing to the good error
performance of belief propagation.



Begin by splitting the objective function up into two
sets, one for which y = z and one for which y 6= z.

p̂(r|q, b) =
∑
x,y

∑
z=y

b(z)q(y)
M∏

a=1

f̃a(za)δ[x− ya]

+
∑
x,y

∑
z 6=y

b(z)q(y)
M∏

a=1

f̃a(za)δ[x− ya]

Our constraints on q and b then, are embodied by
the fact that when we are choosing the distribution
q(z)b(y) we must put c probability mass on the terms
with y = z and 1 − c probability mass on the terms
with y 6= z. Our goal, within these constraints, is to
maximize the objective function. Now, suppose we did
not restrict ourselves to have q(z)b(y) be a product
density, but rather could have an arbitrary density as
long as it satisfied the other constraints. It is clear, then,
within the set of (y, z) such that y = z we would
put all of our c-probability mass on the word(s) which
yielded the highest likelihood, and similarly within the
set of (y, z) such that y 6= z we would put all of our
1−c probability mass on the word(s) which yielded the
highest likelihood. Stating this mathematically, define
the set

D =
{

(y, z)
∣∣∣∣ y = z,∀ y0 = z0

p(r|y, z) ≥ p(r|y0, z0)

}
(41)

Because we know, in fact, that when we transmitted
the signal we chose ya = za = x∀a, the elements
in D are the maximum likelihood sequence detections
xMLSD = arg maxx p(r|x).

Similarly, for the terms such that y 6= z define the
set

B =
{

(y, z)
∣∣∣∣ y 6= z, ∀ y0, z0 s.t. y0 6= z0

p(r|y, z) ≥ p(r|y0, z0)

}
(42)

Now, consider the set of densities of the form

H =


c
∑
s∈D

αsδ[(y, z)− s]

+(1− c)
∑
s∈B

βsδ[(y, z)− s]

 (43)

where

αs ≥ 0∀s ∈ D, βs ≥ 0∀s ∈ B,
∑
s∈D

αs = 1,
∑
s∈B

βs = 1

(44)
We know that these densities maximize p(r|q, b)

within the set of (q, b) that are not necessarily product
densities, but do satisfy the other conditions from C.
Because the space of product densities is a subset of
the space of all densities, call it F , then, we know
that if F

⋂
H 6= ∅, then any density within F

⋂
H

is a global maximum of the constrained optimization
problem (35). This then suggests, since the critical
points of the Bethe Free Energy are the critical points
of the optimization problem (35) after choosing the La-
grange multiplier λ = −1, that under the circumstances
that F

⋂
H is non empty for the value of c given

by the belief propagation algorithm stationary point,
the stationary point which yields a low probability of
sequence decision error is of the form of a density in
F
⋂
H.

This suggests then, that in these special cases where
F
⋂
H 6= ∅, we can study the critical points of the

Bethe Free Energy and the stationary points of belief
propagation by considering the intersection of an affine
set in the probability space (the set H of wordwise
pmfs which globally maximize the alternate constrained
optimization problem) with an affine set in the log
probability space (the set F of product densities).

Furthermore, for the regime of received information r
that give F

⋂
H 6= ∅ and a unique maximum likelihood

sequence detection, if c > .5 then decisions on the
stationary point of belief propagation (and the critical
point of the Bethe Free Energy) in F

⋂
H yield the

maximum likelihood sequence detection. For binary
alphabets this happens, for instance, if there is an
element in D and B which differ in only one bit
position.

5 Conclusions and Future Work
By providing a constrained optimization problem
whose critical points are the stationary points of belief
propagation and whose objective function was more
closely related to the sequencewide likelihood function
than the Bethe free energy, we were able to relate belief
propagation with maximum likelihood detection. As a
possible extension of the work, it would be interesting
to attempt to associate the set B with errors from a LP
decoder perhaps furthering the connection between LP
and BP decoding.
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