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Abstract — We explore the shortening of multiple

channels arising from either over-sampling or from us-

ing multiple antennas between a single transmitter and

receiver. Using terminology we develop, we give new

necessary and sufficient conditions for perfect channel

shortening (PCS). In an example, the perfect chan-

nel shortener’s robustness against wide-band noise,

narrow-band interferers, and received signal SNR mis-

measurement is compared to that of an imperfect chan-

nel shortener. The work concludes with a list of possi-

ble extensions of the results and future work.

I. Introduction

In this paper we discuss multi-channel shortening. Specifically,
we are interested in a multi-channel model which can arise from
either using multiple antennas or by over-sampling between one
transmitter and one receiver. We give conditions under which
perfect channel shortening is possible. We focus on the maxi-
mum shortening SNR (MSSNR) solution of [1], which is equiv-
alent to the minimum mean squared error (MMSE) solution
of [2] when the source sequence is white and in the absence
of noise. Neither of these papers explicitly considers the over-
sampled case, although [1] formulates the MSSNR problem for
simultaneously shortening multiple channels in a MISO setting.
No conditions for a perfect solution were given.

Fractionally-spaced channel shortening was considered in [4],
[5]. Therein, the authors first assumed that the MMSE tar-
get impulse response (TIR) was set to a known vector. Then
sufficient conditions were derived for perfectly achieving this
known impulse response. These conditions are essentially the
same as the conditions for perfect equalization. If the chan-

nels
{

h(p), 1 ≤ p ≤ P
}

have at most ν common roots and these

roots are included in the TIR, then there exists a non-trivial
exact solution to the channel shortening problem (with a min-
imum length constraint on the TEQs). A proof and further
results will be given in [6] and [7].

Miyajima and Ding have also considered fractionally-spaced
channel shortening in [8], [9]. They state that if a given channel
shortener satisfies a particular set of conditions, then it perfectly
shortens the channel. However, they do not give sufficient con-
ditions for the existence of a perfect channel shortener in terms
of requirements on the length or zeros of the channel and short-
ener.

1This work was supported in part by NSF Grant CCR-
0310023, Applied Signal Technology, Texas Instruments,
and the Olin Fellowship from Cornell University. Email
addresses for Walsh, Klein, Xenias, Pagnotta, Martin,
and Johnson are {jmw56,agk5,nsx2,jap43}@cornell.edu and
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Figure 1: The system model.

Schemes for MIMO channel shortening have been proposed
in [1], [10] – [15]. However, these papers primarily focus on
proposing designs and quantifying their performance.

In this paper, we build a set of terminology for channel short-
ening, recast and prove sufficient conditions similar to those in
[3, 4, 6, 7], and develop and prove novel necessary conditions
for various types of perfect channel shortening. In Section II we
introduce the model for the system and the notation we will use.
Section III develops the definitions of various types of perfect
channel shortening and gives examples of channels that moti-
vate the definitions we have chosen. Section IV then takes the
new terminology and uses it to provide necessary and sufficient
conditions for the different types of perfect channel shortening.
In many cases, the set of perfect channel shorteners will be a
large space of possible choices. Section V helps choose which
perfect channel shortener to use by investigating each perfect
channel shortener’s robustness to interference. We also con-
sider the possibility of relaxing the perfect channel shortening
requirement in order to obtain a higher SINR (similar to [1]).
Section VI concludes the work by giving an example of two dif-
ferent channel shortening designs, both considering the effect of
a narrowband interferer and noise. We see that both the re-
laxed and perfect designs have very similar performances, and
we compare their ability to notch out the narrowband interferer
as it varies in frequency.

II. System Model and Notation

We wish to study the system shown in Fig. 1. This model
can arise in practice either by sampling a single bandlimited
continuous time channel at P times the baud rate, or by using
P receive antennas. sk is a series of transmitted data sym-
bols. The P received signals, r

(i)
k , i ∈ {1, . . . , P}, are cre-

ated by passing the original source sequence through P dif-
ferent noisy linear time invariant channels. The ith chan-
nel has an impulse response h

(i)
k of length Lh + 1 (that is,



h
(i)
k = 0 ∀k ∈ {−∞, . . . ,−1} ∪ {Lh + 1, . . . ,∞}) and noise se-

quence n
(i)
k . For any number of reasons, we may wish to shorten

the overall effective impulse response between sk and yk to have
non-zero taps only within a window of length ν + 1 [1],[11]. To
do this, we use a bank of linear filters called channel shorteners,
the ith channel shortener having an impulse response w

(i)
k and

length Lw + 1. Denote the pth sub-channel’s z-transform as

h(p)(z) =

Lh
∑

i=0

h
(p)
i z−i

and the pth sub-channel’s channel shortener’s z-transform as
w(p)(z) in the same manner.

w(p)(z) =

Lw
∑

i=0

w
(p)
i z−i

We assume that the channel length Lh has been chosen such
that at least one of the sub-channels does not have zero as its
first or last element. This avoids common sub-channels roots at
zero or infinity. Define the pth channel’s convolution matrix of
size (Lh + Lw + 1) × (Lw + 1)

Hp =









h
(p)
0 · · · h

(p)
Lh

. . .
. . .

h
(p)
0 · · · h

(p)
Lh









T

and define the pth channel’s shortener to be wp =
(

w
(p)
0 , w

(p)
1 , . . . , w

(p)
Lw

)T

. By concatenating the channel convolu-

tion matrices to form H = (H1|H2| · · · |HP ), and concatenating

the channel shorteners to form w =
(

wT
1 |w

T
2 | . . . |w

T
P

)T
, we can

write the vector overall combined impulse response between sk

and yk as

c = Hw

Denote Hwall(∆, ν) to be the matrix remaining after removing
the ∆th to the ∆ + νth rows from H, and denote Hwin(∆, ν)
to be the ∆th to the ∆ + νth rows of H. These matrices will
be useful in our definition of channel shortening terminology.

III. Terminology

One can speak of shortening channels to different lengths, the
ability to shortening them at many or a few delays, and the
ability to obtain many or only a few impulse responses within
the window. In order to discuss these different topics in a precise
manner, we now introduce some mathematical terminology to
name each of these different types of channel shortening.

Definition III.1 (ν-PCS) w is a perfect channel shortener of
window length ν+1 (ν-PCS) and delay ∆ ∈ {0, 1, . . . , Lh+Lw−
ν} for a channel h if Hw 6= 0 and Hwall(∆, ν)w = 0.

Definition III.2 (Strong ν-PCS Property) A channel h
has the strong ν-PCS property if for every delay ∆ ∈
{0, 1, . . . , Lh + Lw − ν} there exists a w which is a ν-PCS.

Definition III.3 (Weak ν-PCS Property) A channel h
has the weak ν-PCS property if there exists at least one delay
∆ ∈ {0, 1, . . . , Lh + Lw − ν} for which there is a ν-PCS.

Definition III.4 (M-flexible ν-PCS Property) A channel
h has the M-flexible ν-PCS Property if there exist M linearly
independent vectors c1, c2, · · · , cM each in R

Lh+Lw+1 and M
linearly independent vectors w1,w2, · · · ,wM each in R

Lw+1,
such that every ν-PCS, w, has a shortened channel, Hw, that
is a linear combination of c1, c2, · · · , cM , and every linear com-
bination of wi’s is a ν-PCS.

Furthermore, we say a channel has the inflexible ν-PCS prop-
erty or the flexible ν-PCS property if it is M-flexible with
M equal to 1 or ν + 1 respectively.

In order to highlight the importance of the terminology, we
give two examples of low order channels that differentiate be-
tween the properties. In both examples P = 2.

Example 1 The two sub-channels h(1)(z) = z−2 + 2z−1 + 3
and h(2)(z) = 4z−2 + 5z−1 + 6 have the strong flexible ν-PCS
for both ν = 0 and ν = 1 for Lw = 2. As we shall see later in
Section IV, this is because h(1)(z) and h(2)(z) share no common
roots.

Example 2 The two sub-channels h(1)(z) = z−6(z − 1)(z −
2)(z−3)(z−4)(z−5)(z−6) and h(2)(z) = z−2(z−1)(z−7) share
a common root at z = 1. They do not have any 0-PCS properties
for any Lw. They have the strong inflexible 1-PCS property for
Lw = 4 for reasons we will see in Section IV. They only have
the weak inflexible 2-PCS property for Lw = 2 because they are
shortenable for ∆ = 0 but are not shortenable for ∆ = 5.

IV. Conditions

Now that we have defined and clarified our terminology, we
are ready to provide novel necessary conditions and sufficient
conditions for strong M-flexible ν-PCS. We begin with some
novel necessary conditions.

Theorem IV.1 (Necessary Conditions) Let the sub-
channels h(p)(z) share µ roots1. Then necessary conditions for
h to have the Strong and M-flexible ν-PCS property are

• M ≤ ν − µ + 1

• ν ≥ µ

• PLw + P ≥ Lh + Lw − 2ν + 2M + µ − 1

Proof: First of all, note that common sub-channel roots must
be included in the shortened channel. This is because

h(p)(z0) = 0 ∀p ⇒
P

∑

p=1

h(p)(z0)w
(p)(z0) = 0 ∀w(p)(z)

This implies that M ≤ ν −µ+1, because in a window of length
ν + 1 we can have at most ν + 1 degrees of freedom. Factor out
the µ common roots from each of the P sub-channels, h(p)(z) to
form ĥ(p)(z). Thus, we now have a problem where the shortened
channel can be written as

c(z) = ĉ(z)µ(z)

where µ(z) includes only the common sub-channel roots, and
we must design

ĉ(z) =
P

∑

p=1

ĥ(p)(z)w(p)(z) (1)

1These common sub-channel roots are neither at zero or infinity,
otherwise we would have zero coefficients at the beginning or end
of every channel, which would violate the minimality of the channel
representation we choose.



The second condition comes from this equation. Since we need
to shorten the channel, we can not have ν < µ.

Note that we must choose ĉ(z) to be length M , and due to
the need to get all of the different delays, this implies we need at
least Lh+Lw−2ν+2M+µ−1 different linearly independent c’s.
To see this, note that there are Lh + Lw +1− ν different values
of ∆, each of which corresponding to a different window within
which the channel must be shortened. The minimal length we
could possibly shorten the channel to and still have M -flexibility
is M + µ. Even if we could perfectly shorten the channel to
the minimal length possible, we would still need Lh + Lw +
1 − ν − (ν + 1 − (M + µ)) = Lh + Lw − 2ν + M + µ different
locations of this smaller M+µ length window to satisfy ν-PCS at
Lh+Lw+1−ν different values of ∆. Since we needed M different
linearly independent c’s for the first window, and we already
included one of them as the first M + µ window positioning,
we need a minimum of Lh + Lw − 2ν + M + µ + (M − 1) =
Lh + Lw − 2ν + 2M + µ − 1 different linearly independent c’s.
To do this, the rank of the matrix Ĥ, formed as H was formed
by replacing h

(p)
n with ĥ

(p)
n , must satisfy

rank(Ĥ) ≥ Lh + Lw − 2ν + 2M + µ − 1 (2)

The rank of Ĥ is less than or equal to the minimum of its two
dimensions

rank(Ĥ) ≤ min (Lh − µ + Lw + 1, PLw + P ) (3)

Combining (2) and (3) we have

min (Lh − µ + Lw + 1, PLw + P ) ≥ Lh +Lw − 2ν +2M +µ− 1

which implies

PLw + P ≥ Lh + Lw − 2ν + 2M + µ − 1

which is the third necessary condition.

Theorem IV.2 (Sufficient Conditions) As before, let the
sub-channels h(p)(z) share µ (non-zero) roots. Sufficient con-
ditions for h to have the Strong and M-flexible ν-PCS property
are

• M = ν − µ + 1

• ν ≥ µ

• PLw + P ≥ Lh + Lw + 1 − µ

Proof: Assume that the three conditions hold. Factor out the
µ common sub-channel roots from each of the h(p)(z) to form
ĥ(p)(z) for all p ∈ {1, . . . , P}. The common sub-channel roots
will be included in the shortened channel. Now our shortened
channel is of the form (1) where none of the sub-channels ĥ(p)(z)
have any common zeros and the order of the sub-channels
L̂h = Lh − µ satisfies PLw + P ≥ L̂h + Lw + 1. With (1),
these two conditions satisfy the requirements for Strong Perfect
Equalization [16], which, due to linearity, implies that we can
form any ĉ(z) we choose up to length Lh − µ + Lw + 1. Thus,
our combined response is any channel of the form

c(z) = ĉ(z)µ(z)

Where µ(z) is the product of common sub-channel zeros of the
original channel and ĉ(z) is an arbitrary filter. In order to per-
fectly shorten the channel to length ν + 1 we choose ĉ(z) of
length L̂h = ν − µ + 1. This implies that M = ν − µ + 1.

Here are some remarks about these two sets of conditions

Remark 1 The necessary conditions and sufficient conditions
we have provided collapse into the conditions for strong perfect
equalization when ν = 0 and µ = 0.

Remark 2 When we choose M to be its maximum possible
value, the necessary conditions are the same as the sufficient
conditions. Thus, given that M = ν − µ + 1, the sufficient
conditions given are actually both necessary and sufficient.

Remark 3 (The Space of ν-PCSs) Note that for a channel
that has the M-flexible ν-PCS property, the space, N , of all
ν-PCSs is not a vector space. We can express it2 as N =
null(Hwall) ∩ null(H)c, and our definition of the M-flexible ν-
PCS property allows us to write it in a new way:

N = a1w1 + · · · + aMwM + β1v1 + · · · + βKvK (4)

Where:

• w1, . . . ,wM are the linearly independent vectors referred
to in the definition of the M-flexible ν-PCS property.

• The ais are real numbers (ai ∈ R ∀i ∈ {1, . . . , M}), and
at least one of the ais must be non-zero (∃j 3 aj 6= 0).

• {v1, . . . ,vK} form a basis for null(H).

• The βis are real numbers: βi ∈ R ∀i ∈ {1, . . . , K}.

Note that the new sufficient conditions are different from those
in [4] and [6] because the restrictions we give on the channel
shortener’s length are looser (Lw may be smaller).

V. Robustness to Interference

In the previous sections we have considered the interference free
model in which ni

k = 0 ∀k, i. The M-flexible ν-PCS conditions
we gave allow us to choose almost any3 point within a M +K di-
mensional space (i.e. any point in N from (4)) to be our channel
shortener and still have perfect channel shortening. But which
of these possible shortened channels should we choose? One
possible answer to this problem is to allow the channel model
to include noise and other interferences, and then choose the
perfect channel shortener that is most robust to the interfer-
ence. A natural robustness criterion is the average signal to
interference and noise ratio

SINR =
E[|s̃|2]

E[|η̃|2] + E[|ψ̃|2]

where s̃, η̃, and ψ̃ are the independent and uncorrelated signal,
noise, and other interference components of the output of the
channel shortener, y, respectively. To be specific, consider a
model for the interference in the ith channel

n
(i)
k = η

(i)
k + ψ

(i)
k

Then, the wideband noise component of y is the response of the
channel shortener to the wideband noise

η̃k =
P

∑

i=1

Lw
∑

l=0

η
(i)
k−lw

(i)
l

and the other interference component of y is the response of the
channel shortener to the other interference

ψ̃k =
P

∑

i=1

Lw
∑

l=0

ψ
(i)
k−lw

(i)
l

2Ac, where A is a set, denotes the compliment of A.
3ai = 0 ∀i ∈ {1, . . . , M} is not allowed.



Thus,

E[|η̃k|
2] = E

[

P
∑

i=1

Lw
∑

l=0

η̄
(i)
k−lw̄

(i)
l

P
∑

j=1

Lw
∑

δ=0

η
(j)
k−δw

(j)
δ

]

(5)

Where η̄
(i)
k−l and w̄

(i)
l denote the complex conjugate of η

(i)
k−l and

w
(i)
l respectively. Remembering the way that we built w, we

can note that the (i− 1)(Lh +1)+ lth entry in it is w
(i)
l . So (5)

can be rewritten as a quadratic form in w.

E[|η̃k|
2] = wHRηw

where the (i, j)th element of Rη is

Rη[i, j] = η̄
(bi/(Lw+1)c)
k−i+bi/(Lw+1)cη

(bj/(Lw+1)c)
k−j+bj/(Lw+1)c

A parallel development for ψ̃ gives

E[|ψ̃k|
2] = wHRψw

where the (i, j)th element of Rψ is

Rψ[i, j] = ψ̄
(bi/(Lw+1)c)
k−i+bi/(Lw+1)cψ

(bj/(Lw+1)c)
k−j+bj/(Lw+1)c

We wish to choose the perfect channel shortener which max-
imizes the SINR.

wopt = arg max
w∈N

wT HT
winHwinwT

wT Riw + wT Rnw
(6)

Forming the matrix A = (w1,w2, . . . ,wM ,v1, . . . ,vK), we can
write our set of perfect channel shorteners as Ab, for some
vector b ∈ R

M+K , where the only restriction is that at least
one of the first M elements of b must be non-zero. This allows
us to rewrite the optimization problem, (6), as

wopt = Abopt

where

bopt = arg min
b

bT AT HT
winHwinAb

bT (AT RηA + AT RψA)b
(7)

This is the generalized Raleigh quotient problem, whose solution
involves the generalized eigenvector problem [17]

AT HT
winHwinAbi = λi(A

T RiA + AT RnA)bi

where we seek the eigenvector bi associated with the maximum
eigenvalue, λmax. Note that we have taken the cavalier attitude
that we will ignore the restriction on b while performing the
maximization. We will merely check that the maximum, bopt,
of the generalized eigenvalue problem is nonzero in one of its
first M components. If it is not, we would have to resort to
constrained optimization methods.

In some situations we may wish to relax the requirement that
the channel be perfectly shortened in favor of a better SINR. In
this case, in the spirit of the MSSNR design [1], we include in
the SINR the out-of-window energy from the shortened channel,
and optimize the ratio

SINR =
wT HT

winHwinw

wT (HT
wallHwall + Ri + Rn)w

(8)

which, as before, leads to the generalized eigenvector problem

HT
winHwinvi = λi

(

HT
wallHwall + Ri + Rn

)

vi

and we choose w = vi, where λi is the maximum eigenvalue.
Note that w need not be in N here.
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Figure 2: Comparative performance of the two schemes as
the frequency of the narrow-band interferer is varied when
h(1)(z) = z2 + 2z + 3 and h(2)(z) = 7z2 + 2z + 1, σ2 = 1,
and g =

√
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VI. Robustness to Interference: An Example

We now consider a simple example including two types of inter-
ference: wide-band noise and a narrow-band interferer. In the
case of the wide-band noise, Rn = σ2I, where I is the identity
matrix with all zero elements except for ones along the along the
main diagonal [17]. When there is also a narrow-band interferer,
one would expect that the channel shortener can stay a perfect
channel shortener, but incorporate a notch into its response in
order to block out the interferer. We consider a system in which
the multi-channel model arises due to over-sampling the received
signal by P = 2. A narrow-band interferer of the form g cos(Ωt)
in the original continuous time channel gives the multi-channel
interferers ψ

(i)
k = g cos (ω(i − 1 + kP )) where ω = ΩTs

P
and Ts is

the transmitted symbol period. This yields the average matrix
Rψ whose elements are

Rψ[i, j] =
g2

2
cos (ω (2(i − j) − bi/(Lw + 1)c + bj/(Lw + 1)c))

As suspected, the simulations showed that the channel short-
ener’s response attempted to notch out the narrow-band inter-
ferer for both schemes. Figures 2 and 3 compare the depth of
this notch (the channel shorteners were normalized to have unit
L2 norm) for the schemes (7) and (8).

Another interesting aspect of the two designs is their robust-
ness to inaccuracies in the measurement of the wide-band noise
variance σ2. We created Fig. 4 by removing the narrow-band
interferer from the model, fixing the wide-band noise at 10 dB
SNR and varying the mis-measured SNR from 5 dB to 15 dB.
It appears that, while the ν-PCS is more robust against inaccu-
rate SNR measurements than the imperfect channel shortener,
both designs do not degrade in performance heavily with this
impairment.

VII. Conclusion

In this work we provided novel terminology and novel necessary
conditions and recast sufficient conditions for perfect channel
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shortening arising in a communications system exploiting mul-
tiple receive antennas or over-sampling. Any number of possible
extensions to this work exist. Over time, quite a few schemes
for channel shortening have been proposed, and one could check
whether these schemes converge to PCSs under ideal noiseless
conditions. Also, it would be interesting to investigate whether
or not standard databases of channels, such as the CSA-loops
for DMT systems satisfy the necessary and sufficient conditions
for perfect channel shortening. Specifically, if these fractionally
spaced channel models have sub-channels with nearly common
roots, then over-sampling is not likely to provide the receiver
a significant improvement in its ability to shorten the chan-
nel. Furthermore one could investigate the robustness of per-

fect channel shorteners to interference resulting from cross-talk
or investigate a truly MIMO channel model.
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