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ABSTRACT

This work attempts to characterize and provide design guidelines for adaptive sys-

tems composed of two adaptive elements. To begin, we introduce the notion of an

adaptive element, which is the smallest scale upon which systems have adaptivity.

Then we provide a concise review of many of the subjects deemed important to

single adaptive elements from a deterministic dynamical systems view. Theorems

are provided characterizing the deterministic dynamic behavior of single adap-

tive algorithms, and their robustness to disturbances and time variation. We also

provide a review of deterministic single time scale averaging theory.

After we have characterized the behavior of a single adaptive element, we are

ready to begin to study the possibility of connecting more than one adaptive de-

vice together. It is this possibility that inspires us to imagine different ways of

and reasons for using distributed adaptation in these structures. We then select

one of the possible binary (i.e., two element) structures for connecting adaptive

elements, the series feedfoward binary adaptive compound (SFFBAC), and char-

acterize its behavior. We motivate this discussion with quotes from the digital

receiver literature, which indicate that the interaction of adaptive components is

a recognized problem about which very little theoretical work has been done. All

along, we are considering adaptive systems from an engineering mindset. Within

these lines, we observe that distributed adaptive systems often arise as a relic of

our method of design. We name the design technique that connects individually

designed adaptive elements together to solve a bigger problem the ”Divide and

Conquer” strategy. Our goal then becomes to provide sufficient conditions under



which we can use ”Divide and Conquer” to design working series feed-forward

binary adaptive compounds.

To give conditions for Divide and Conquer design, we begin with a qualitative

mindset, describing the sorts of requirements that may be encountered when ap-

plying a more rigorous theorem. Then, in Chapter 4 we develop the beginning of a

rigorous behavior theory for series feed-forward binary adaptive compounds. This

theory directly supports the qualitative design conditions we provide. Since we

are not only interested in studying adaptive receivers which behave well, we also

develop a misbehavior theorem, which predicts one of the ways a SFFBAC may

misbehave. We conclude this theory by applying it to practical examples from

digital receivers employing more than one adaptive element. To do so, we must

remove the assumption that all other adaptive elements are behaving in an ideal

manner from the models for the behavior of the adaptive receiver components.

Thus, Appendix A contains models and derivations for the behavior of adaptive

receiver components under non-ideal situations. After our example applications

of the theory to adaptive receivers, we end the thesis by mentioning other possi-

ble applications of the theory, as well as many possible extensions to the theory,

including the use of other mathematical tools.
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Chapter 1

Introduction
Adaptive systems are ubiquitous in our world. They occur in economics, in popu-

lations; in networks and in social organizations. Most biological systems adapt to

their environment, and hence contain adaptive aspects. We are ourselves adaptive

systems: the brain being one of the most complex adaptive systems imaginable.

It is not surprising, then, that we design adaptivity into what we build.

Communications, control, and signal processing are all fields of engineering that

rely heavily on adaptive systems for practical implementations. Usually, these sys-

tems can be viewed as complex interactions between smaller adaptive objects. To

borrow an example from economics, a national economy is certainly a large adap-

tive system, in which smaller players, in the form of businesses and governments,

interact in complex ways. When investigating the economy as a whole, these in-

dividual player’s actions are almost imperceivable in terms of the way they can

affect the large system. Yet, when viewed on their own scale these smaller players,

the businesses and governments, are adaptive systems themselves.

Continuing a 2,500 year old Platonic philosophical trend, we hypothesize that

there is a smallest scale upon which adaptation occurs. In this manner, the econ-

omy can be likened to a block of matter. Just as when looking at a block of

matter, it is difficult to discern the existence or effect of a single atom, it is diffi-

cult to discern the effect, or even the existence, of a single business when studying

the behavior of the entire the economy. Yet, Greek philosophy chose to attack a

characterization of the behavior of matter by first hypothesizing the existence of,

and then characterizing, the smallest scale upon which matter could be described.

1
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Similarly, we wish to attack the problem of understanding complex adaptive sys-

tems by first understanding their behavior on the smallest scale possible. Thus,

we introduce the notion of an adaptive element: the smallest building block (ie

type of atom) in a compound adaptive system. Adaptive elements are the funda-

mental particles of an adaptive system: below the scale of an adaptive element,

the subsystems are no longer adaptive.

In this thesis our scope is limited further in that we are only going to consider

adaptive elements that can be viewed from a signal processing standpoint. These

adaptive signal processing elements take an input signal and produce an output in

a manner which changes depending on characteristics of the inputs and previous

outputs. Furthermore, we will limit our discussion to adaptive signal processing

elements that operate in the discrete domain. That is, they take in samples at

discrete time instants, and process them to create more samples at discrete time

instants.

Digital adaptive signal processing elements have existed for decades now, and a

wide base of knowledge has been collected about both individual algorithms, as well

as general algorithm classes. Rather than collect or imagine that we could treat the

entirety of this literature with any type of adequacy here, we choose to introduce

some fundamental mathematical principles upon which an adaptive element can be

built, and many adaptive elements are built. We will draw many of our examples

of adaptive elements from communications systems: a technical area in which

adaptive widgets have proven their applicability and efficiency in a wide range of

products and applications. But 40 years of research on single adaptive algorithms,

numerous Bible-sized textbooks, and a gigantic body of journal literature have

all probably begun to give single adaptive algorithms somewhat of an adequate
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treatment, so we do not presume we will say anything new about that subject

here. Everything this thesis presents about single adaptive elements should be

easy to find in any number of more extensive textbooks on the subject (e.g. [1],

[2], or [3]). The material is included here to motivate the heart of our discussion,

which centers around the possibility of interconnecting two adaptive elements. This

is our first step towards characterizing the behavior of larger adaptive systems.

Clearly, there are phenomena that will occur in complex adaptive systems which

will not be present in a small adaptive compound made of two elements. Never-

theless, we hope to begin to learn about the larger system by attacking a small

system containing only a few adaptive elements first, just as it is common prac-

tice to learn inorganic chemistry with small molecules before attempting to study

gigantic organic compounds. Furthermore, as we will see in Chapter 4, even after

constraining our study to the behavior of adaptive compounds formed from only

two adaptive elements, a.k.a. Binary Adaptive Compounds (BACs), the possi-

bilities of interconnecting the adaptive elements are numerous. Thus this thesis

attempts to discuss only one, and perhaps the simplest, type of Binary Adaptive

Signal Processing Compound: a compound in which the two adaptive elements are

connected in series, each adapting only on their own output and input, and the

output of the first being fed into the input of the second.

Even within this very narrow context our coverage is probably not compre-

hensive, since in this early (masters) work, we seek theorems with only sufficient,

but perhaps not necessary, conditions. Nevertheless, we attempt to provide some

significant insights into the way such series feed-forward binary adaptive signal

processing compounds behave. Specifically, we provide:

• A theorem which gives sufficient conditions on the two adaptive elements in



4

the compound to guarantee convergence to fixed desired parameter settings.

• Theorems which account for non-idealities in the two adaptive elements,

including time variation, disturbances, and un-averaged behavior, yet still

guarantee convergence to parameter settings near the desired trajectories.

• A collection of sufficient conditions, the Divide and Conquer Conditions,

which will guarantee proper operation of a series feed-forward binary adaptive

compound when it is designed within a particular framework.

• A misbehavior theorem, which emphasizes the importance of choosing proper

step sizes to track time-varying desired trajectories, and shows the lack of

convergence that is possible when they are not chosen correctly.

We will see that these results have some applications in communications systems,

where it is common practice to interconnect several adaptive elements in a heuristic

manner. Our hope is that our theorems and discussion will be able to illuminate

this one type of interconnection in an adaptive communications receiver and pro-

vide insightful implications for design and adjustment. Along these lines, we end

the thesis using our theorems to analyze several examples of algorithm pairs found

in digital receivers. To do so, we must determine the true behavior of different

receiver components when their inputs are non-ideal. We call the functions which

determine this behavior ”sensitivity functions” and have developed them for a va-

riety of adaptive receiver components in Apendix A. With these new models, we

use our averaging theory to analyze an interconnected timing recovery algorithm

and equalization algorithm. We also apply our theory to two adaptive receivers

containing a gain control and different carrier recovery units to show how the the-

orems we have developed can help us decide between two adaptive algorithms. We
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conclude the thesis by mentioning some other possible applications of the theory

we have developed, and by noting a number of possible directions in which to

extend the theory, including the possible use of other mathematical tools.



Chapter 2

What is an adaptive element? An

Adaptive Element Characterization.
Adaptive elements are the fundamental building blocks of adaptive systems. We

consider them to be the smallest scale upon which a part of an adaptive system

can be viewed as performing adaptation. In context of signal processing, adaptive

signal processing elements1 take an input signal and produce an output in a manner

which changes depending on characteristics of the inputs and previous outputs. Of

course, this general definition does not provide us with a unique description of an

adaptive element, since an interconnection of two adaptive elements satisfying

this definition will create another system that satisfies this definition. We do not

address this problem of non-uniqueness here, other than to mention it, and to note

that we will divide the composite adaptive system up into adaptive elements along

conventional lines (i.e., an equalizer and a timing recovery unit are two separate

adaptive elements in a digital receiver).

2.1 Composition: The Subatomic Particles

From the discussion in the previous chapter, we can discern two tasks which an

adaptive element must perform:

1. Process the input to create the output and adapt, and

2. Adapt its method of processing the input to create the output based on

1From this point on we will refer to adaptive signal processing elements using
the phrase ”adaptive elements.”

6
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previous inputs and outputs.

Mathematically speaking, this separation into tasks suggests the idea that there

are two subsystems of equations involved with an adaptive element. Continuing

the analogy with chemistry, we call these two subsystems the subelements or sub-

atomic particles. The processing subelement processes the input signal to create

an output signal, and the adaptation subelement determines how it should do so.

Because we wish to be able to describe the adaptive element in a mathematical

manner, we assume that the communication between the adaptive subelement and

the processing subelement occurs in the form of a parameter vector, which we call

the adaptive state. The adaptive state contains all memory the adaptive ele-

ment has of past inputs2 and totally determines the manner in which the adaptive

element processes the current input to create the current output. The right hand

pane of Figure 2.1 emphasizes the separation of the adaptive structure into two

substructures, one that controls the adaptation by changing the adaptive states,

and one that creates the input from the output based on the adaptive state. The

left pane shows a diagram that is equivalent, yet more compact, which we will use

from this point on.

2.1.1 Adaptatation Sub-element

The adaptation sub-element is what differentiates an adaptive signal processing

element from a simple filter. It controls the evolution of the adaptive state based

upon the inputs its observes. Because the adaptive state contains all the memory

2Thus, for an adaptive IIR filter, what we are calling the ”adaptive state” is the
concatenation of both the parameters as well as the current state from the state
space description of the filter. Any separating of these two vectors (e.g. for mixed
time scale analysis) will be explicitly dealt with when necessary.
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xk
ak+1 = f(ak, xk)

yk = g(ak, xk)

yk

xk yk

ak

ak+1 = f(ak, xk)

yk = g(ak, xk)

Figure 2.1: Two equivalent representations of an adaptive element.

the adaptive device has of the past, the new adaptive state is totally determined

by the current adaptive state and the current input. Thus, the evolution of the

adaptive state vector can be described with the difference equation:

ak+1 = f(ak, xk)

Where, as in Figure 2.1, ak ∈ R
n is the adaptive state at positive integer time

instant k and xk ∈ R
P is the input vector at time k. In the right pane of Figure

2.1, the adaptation subelement lies within the lower of the two boxes.

2.1.2 Processing Sub-element

Given a particular adaptive state, the processing sub-element processes the input

to create the output. This mapping it totally determined once a particular adaptive

state is specified. Thus, this subsystem of equations can be written as

yk = g(ak, xk)

where xk ∈ R
p is the input, ak ∈ R

n is the adaptive state, and yk ∈ R
Q is the

output of the adaptive signal processing element at time k. In the right pane of

Figure 2.1, the processing element lies within the higher of the two boxes.
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2.2 Designing Adaptive Elements and Characterizing their

Behavior

Now that we have determined what an adaptive element is, we move on to discuss

different ways of designing adaptive elements and characterizing their behavior.

Before we can do so, we must make an important stipulation on the modelling of

the signals involved with the adaptive element. Specifically, we are interested in

signals which are specified within a deterministic3 framework. This being said, we

still allow uncertainty into our models by adding a disturbing signal which we do

not directly specify other than to say it is bounded. Furthermore, our discussion

of averaging can be coupled with notions of probabilistic expectation, so as to

include many of the more important concepts that a stochastic analysis can bring.

This allows a certain amount of marriage between the deterministic and stochastic

theories, while still keeping some of the nicer aspects of a truly deterministic theory,

such as the ability to bound errors concretely before limits are taken.

Once we have specified that we are interested in studying adaptive elements

within a deterministic framework, there are a number of different theoretical fields

which offer us insights into the way adaptive devices behave. Specifically, stabil-

ity theory allows us to characterize the behavior of (possibly nonlinear) adaptive

devices near an equilibrium. This is coupled with a common philosophy encoun-

tered when one designs adaptive elements. Typically, designers wish to perform

some action on a signal which depends on the particular signal being encountered

(hence the choice of an adaptive device). They come up with a function that gives

a ”good” output, given a particular input. Then, they choose a parameterized in-

3That is, non-random and non-stochastic.
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put output relationship, which, when given the correct parameters for a particular

input, produces the desired output. This parameterized relationship is then chosen

to be the processing sub-element, and the job of the adaptation sub-element is to

infer the ”good” parameters from the current input. A local characterization of

the adaptive element’s behavior can then be performed by studying the dynamics

of the adaptive subsystem near the ”good” parameters for the class of inputs of

interest. Specifically, it is desirable that, given a particular input, an adaptive sub-

system initialized with an adaptive state near the ”good” parameters will remain

close to the ”good” setting. The language of stability theory allows us to more

precisely describe such behavior. Below are some definitions from the stability

theory of difference equations that we will use in the ensuing discussion. Note that

standard stability theory includes many more types of stability, but we list only

those that we will study in the ensuing discussion. Definitions 1 through 4 can

be found in almost any book on difference equations (e.g. [4] or [5]) or nonlinear

systems (e.g. [6], [7], and [8] for continuous time versions). Although we use the

notation k0 for the notion of an initial time here, from now on, we will consider

only systems which have the convention of starting at time 1, that is, with k0 = 1.

Note that definition 5 is a particular type of uniform ultimate boundedness, and is

our own combined notion of stability and boundedness that we will have occasion

to use in this thesis.

Definition 1 (Stationary Point). A stationary point of a map f(k, ·, xk) : R
n →

R
n is a point a∗ ∈ R

n, possibly dependent on k and xk, such that a∗ = f(k, a∗, xk).

Definition 2 (Exponential Stability). Given an input, xk, a stationary point

a∗ of a map f in a difference equation ak+1 = f(k, ak, xk) is said to be exponentially

stable if there exists δ > 0, M > 0, and η ∈ (0, 1) such that ‖ak(k0, a1) − a∗‖ ≤
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M‖a1 − a∗‖ηn, whenever ‖a1 − a∗‖ < δ.

Definition 3 (Global Exponential Stability). Given an input, xk, a stationary

point a∗ of a map f in a difference equation ak+1 = f(k, ak, xk) is said to be globally

exponentially stable if it is exponentially stable with δ = ∞.

Definition 4 (Uniform Ultimate Boundedness). A solution, ak(k0, a1) to the

difference equation ak+1 = f(k, ak, xk) is said to be uniformly ultimately bounded

if there exists δ > 0 and M > 0 such that limk→∞ ‖ak(k0, a1)− a∗‖ < M whenever

‖a1 − a∗‖ < δ and M is independent of k0.

Definition 5 (Exponential Stability to within a Ball). A solution, ak(k0, a1),

is exponentially stable to within a ball of size M with rate α, if there exists δ,M and

α ∈ (0, 1) such that ‖ak(k0, a1)−a∗‖ ≤ αk−1‖a1−a∗‖+M whenever ‖a1−a∗‖ ≤ δ.

Note that, from now on, we will use the short hand ak to refer to a particular

solution to the system of equations, and drop the notation ak(k0, a1), which em-

phasized the explicit dependence of the trajectory on its initial location a1, and

the starting time k0. We will also use the convention throughout that the initial

starting time k0 = 1.

2.2.1 Stability of Fixed Stationary Points

Now that we have familiarized ourselves with some of the important terms, let

us begin characterizing some typical behavior of adaptive elements. In particular,

we expect that when an adaptive element is excited with an input in the class of

inputs of interest that is free from any disturbances, that it will eventually go to

the correct desired state, preferably exponentially fast. Given a particular input

our first theorem provides sufficient conditions upon the adaptive state equation
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and state initialization to guarantee exponential stability to the desired parameter

settings.

Theorem 1 (Exponentially Stable Adaptive Elements). Consider the adap-

tive state equation of an adaptive element

ak+1 = f(ak, xk)

Suppose the transition function has a stationary point a∗, such that

a∗ = f(a∗, xk) ∀k (2.1)

Furthermore, suppose that f is locally contractive uniformly in xk within an open

ball Ba∗ at a∗

Ba∗ = {a|‖a − a∗‖ < r}

‖f(ξ, xk) − a∗‖ < α‖ξ − a∗‖ ∀ξ ∈ Ba∗ ∀k (2.2)

Then, if the contraction constant α is less than 1, the adaptive element is locally

exponentially stable to a∗ with rate α within a ball Ba∗

α < 1 ⇒ L.E.S. to a∗

¦ Start with the state equation

ak+1 − a∗ = f(ak, xk) − a∗

Using (2.1) we have

ak+1 − a∗ = f(ak, xk) − f(a∗, xk)

Taking the norm of both sides and using (2.2) we have

‖ak+1 − a∗‖ ≤ α‖ak − a∗‖
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Running the recursive formula gives

‖ak+1 − a∗‖ ≤ αk‖a1 − a∗‖ ∀a1 ∈ Ba∗

which is a definition of exponential stability. ¦

Commentary and Examples

A subtle point that the mathematics do not highlight is the possible dependence

of α on the input. Thus, one of the things one must check when applying such

a theorem to an adaptive element is that α < 1 for all of the possible inputs of

interest. To explain the meaning of the theorem, here are a couple of mathematical

examples of adaptive state equations after specifying a particular input that are

exponentially stable to the desired parameter settings.

Example 2.1 (An Exponentially Stable Adaptive Element). Here we have

an exponentially stable adaptive element with adaptive state equation

ak+1 = ak − µ2ak + µa3
k

from which we see that a∗ = 0 is a stationary point. Let’s consider the ball,

Ba∗ = {a|‖a − a∗‖ < 1}. Within this ball our contraction constant will be

α = maxa∈[−1,1]
|a−µ2a−µa3|

|a|

= maxa∈[−1,1]
|a||1−µ2−µa2|

|a|

= maxa∈[−1,1] |1 − µ2 − µa2|

= 1 − µ2

which will be < 1 ∀|µ| < 1. Thus, the theorem predicts that our algorithm will

be exponentially stable within Ba∗ for all |µ| < 1. Figure 2.2 suggests that this

is indeed the case. In the top left corner of this figure, we see the adaptive state



14

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Adaptive Update Equation

adaptive state: a

f(
a)

−1 −0.5 0 0.5 1
0.6

0.7

0.8

0.9

1
Determination of Contraction Constants

adaptive state: a

|f(
a)

|/|
a|

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Local Contractivity

adaptive state: a

B
ou

nd
s

|f(a)|
(1−µ2)|a|

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Time

Accuracy of Bound on Parameter Error

|a
k
|

Bound=(1−µ2)k |a
0
|

Figure 2.2: A sample application of theorem 1, indicating exponential stability of

locally contractive adaptive state update equations.

function, and in the top right corner we see the graph that helps determine the

contraction constant for the particular region, [−1, 1], that we are interested in.

The bottom left pane shows the accuracy of our contraction bound, and we observe

that as the error in the state gets larger our bound becomes less tight. One can

discern from the bottom right hand graph that the algorithm converges faster than

our worst case bound predicts.

It is tempting to replace the contraction criterion, (2.2), with a stipulation
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that the adaptive state update equation is Lipschitz continuous4 with Lipschitz

constant less that one. Specifically, this requirement takes the mathematical form

‖f(a1) − f(a2)‖ ≤ α‖a1 − a2‖ α < 1 ∀a1, a2 ∈ Ba∗ (2.3)

While this does guarantee exponential stability to the desired point, it is too re-

strictive. The two examples below show that the less restrictive (2.2) is sufficient

to guarantee exponential stability: one does not need to require (2.3).

Example 2.2 (Discontinuous Exponential Stability). In this example, we

consider an adaptive state equation which is discontinuous in the adaptive state,

but still satisfies the contraction criterion that guarantees exponential stability in

Theorem 1. Specifically, the adaptive state function is

f(a) =







a
10

|a| < .2

9a
10

|a| ≥ .2
(2.4)

While another possible adaptive state function that emphasizes the lack of necessity

of (2.3) is

f(a) =







a
10

|a| < .2

100 (xk − .2sign(xk)) + .02sign(xk) .2 < |a| < .21

(xk − .201sign(xk)) /10 + .12sign(xk) |a| ≥ .21

(2.5)

Both of these adaptive subelement’s behaviors are plotted in Figure 2.3. The update

function in the top left pane is (2.4) and is discontinuous, and the lower left update

function is (2.5) and has a Lipschitz constant that is greater than 1. Yet, both

systems are asymptotically stable, as seen by the example trajectories shown in the

right column of Figure 2.3. This gives us an indication of the generality of our

assumptions compared to other possible assumptions, while it turns out that they

are still only sufficient conditions.

4See Appendix C for a definition of Lipschitz continuity.
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It is also fairly important to note that our theorem only provide sufficient

conditions for exponential stability to the desired parameters. Even though our

conditions are more general than they could be, they are still not general enough

to be necessary.

2.2.2 Robustness of Exponential Stability to Perturbations

One very important property of exponential stability is the robustness to distur-

bances it induces. Namely, when either our input or our adaptive state equation

has modelling error in it which is uniformly bounded, the adaptive element is still

stable to a ball around its desired performance settings whose size is linearly re-

lated to the bound on the disturbance. Theorem 2 emphasizes and proves this

property of exponential stability under the conditions we provided in Theorem 1.

Theorem 2 (Robustness of Exponential Stability to Disturbances). Con-

sider a disturbed (noisy) adaptive state equation of an adaptive element

ak+1 = f(ak, xk) + nk

Such that the undisturbed transition function is contractive and thus locally expo-

nentially stable to a point a∗ within an open ball Ba∗ with a rate α

Ba∗ = {a|‖a − a∗‖ < r}

a∗ = f(a∗, xk) ∀k (2.6)

ξk+1 = f(ξk, xk) and ξ1 ∈ Ba∗ ⇒ ‖ξk+1 − a∗‖ ≤ αk‖ξ1 − a∗‖ (2.7)

Then, if the disturbance and initial error are uniformly bounded, such that

‖nk‖ < c, ‖a1 − a∗‖ +
c

1 − α
< r (2.8)
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the perturbed system remains within Ba∗, and the adaptive element will be expo-

nentially stable to a smaller ball surrounding a∗ with radius c
1−α

.

‖ak+1 − a∗‖ ≤ αk‖a1 − a∗‖ +
c

1 − α

¦ We start with the state update equation

ak+1 = f(ak, xk) + nk

Subtracting a∗ from both sides yields

ak+1 − a∗ = f(ak, xk) − a∗ + nk

Taking norms of both sides, and using the triangle inequality yields

‖ak+1 − a∗‖ ≤ ‖f(ak, xk) − a∗‖ + ‖nk‖

Using the fact that a∗ is a fixed point (2.6), and using the contractivity, (2.7) gives

‖ak+1 − a∗‖ ≤ α‖ak − a∗‖ + ‖nk‖

Running the recursion yields

‖ak+1 − a∗‖ ≤ αk‖a1 − a∗‖ +
k−1∑

i=0

αi‖nk−i‖

Using the boundedness of the disturbance (2.8), we have

‖ak+1 − a∗‖ ≤ αk‖a1 − a∗‖ + c
k−1∑

i=0

αi

Then, using the sum of an infinite geometric series gives

‖ak+1 − a∗‖ ≤ αk‖a1 − a∗‖ +
c

1 − α

The last concern as to accuracy is that the perturbation never took us out of the

ball, Ba∗ , in which the undisturbed system was exponentially stable, (2.7).

‖a1 − a∗‖ +
c

1 − α
< r
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which (though overly conservatively) yields the last condition, (2.8), in the theo-

rem. ¦

Example 2.3 (Including Disturbances). In this example, we consider the same

system within the same ball as in Example 2.1. However, the adaptive state equa-

tion has a disturbance in it such that it is now

ak+1 = ak − µ2ak + µa3
k + .01 cos(

2πk

40
)

We see that the maximum disturbance at any step is c = .01, which indicates that

the trajectory should converge to a ball of size .01
1−α

= .01
µ2 . Figure 2.4 suggests

that this is indeed the case. The bottom graph compares the actual norm of the

trajectory with our bound. We see that the bound is very conservative, because we

haven’t dealt with the fact that the disturbance may be zero on average, as it is in

this case as shown in the top figure. The bound assumes a worst case disturbance

and a minimum contraction (given the assumptions) at every step, which explains

why it is much larger in the bottom graph that the actual trajectory.

2.2.3 Time Varying and Perturbed Adaptive Systems

We now extend our treatment to adaptive elements for which the optimal pro-

cessing settings change over time. This situation typically occurs when the input

signal has some sort of non-stationary property which affects what our optimal

processing is. We see that, as long as the optimal adaptive state moves slowly

enough, we can track the time variation to a specified accuracy. Furthermore, we

can control the size of the ball around the optimal locations in which we lie by

changing the decay rate of the original exponentially stable system. Theorem 3

concretely bounds the tracking error.
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Theorem 3 (Time Variation and Disturbances). Consider a disturbed (noisy)

time-varying adaptive state equation of an adaptive element

ak+1 = f(k, ak, xk) + nk (2.9)

such that the undisturbed system has a time-varying stationary point at a∗
k

a∗
k = f(k, a∗

k, xk) ∀k (2.10)

and that the undisturbed adaptive state update equation is contractive towards a∗
k

in a tube, Ba∗
k
, surrounding the equilibrium trajectory a∗

k uniformly in time.

Ba∗
k

= {ξk|‖ξk − a∗
k‖ < r}

‖f(k, ξk, xk) − a∗
k‖ < α‖ξk − a∗

k‖ α < 1 ∀ξk ∈ Ba∗
k

∀k (2.11)

Furthermore, suppose that the time variation is bounded uniformly

‖a∗
k+1 − a∗

k‖ < γ ∀k

and that the disturbance is uniformly bounded

‖nk‖ < c ∀k

Then, if the time variation is slow enough and the disturbance is small enough

such that

‖a1 − a∗
1‖ +

γ + c

1 − α
< r

Then, the disturbed time varying system is exponentially stable to a tube of radius

(1 − a)−1(γ + c) surrounding the equilibrium trajectory with rate α

‖ak+1 − a∗
k+1‖ < αk‖a1 − a∗

1‖ +
γ + c

1 − α
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¦ We begin by adding a clever form of zero to (2.9)

ak+1 − a∗
k+1 = f(k, ak, xk) − a∗

k + nk + a∗
k − a∗

k+1

Using the triangle inequality, and the fact that a∗
k is a stationary point, (2.10), we

have

‖ak+1 − a∗
k+1‖ ≤ ‖f(k, ak, xk) − f(k, a∗

k, xk)‖ + ‖nk‖ + ‖a∗
k − a∗

k+1‖

Now, using the Lipschitz continuity, (2.11), we have

‖ak+1 − a∗
k+1‖ ≤ α‖ak − a∗

k‖ + ‖nk‖ + ‖a∗
k − a∗

k+1‖

Running the recursion gives5

‖ak+1 − a∗
k+1‖ ≤ αk‖a1 − a∗

1‖ +
k−1∑

i=0

αk−i
(
‖nk‖ + ‖a∗

k − a∗
k+1‖

)
(2.12)

Using the boundedness of the time variation and disturbances and the sum of an

infinite geometric series yields

‖ak+1 − a∗
k+1‖ ≤ αk‖a1 − a∗

1‖ +
γ + c

1 − α

which gives us the bound that the theorem states. We should also be certain that

the trajectory never left the ball that the contraction condition was valid in

αk‖a1 − a∗
1‖ +

k−1∑

i=0

αk−i (c + γ) < r ∀k

Using the sum of a finite geometric series yields

αk‖a1 − a∗
1‖ +

1 − αk

1 − α
(c + γ) < r ∀k

which we can absolutely guarantee (and then some) if

‖a1 − a∗
1‖ +

c + γ

1 − α
< r

which is the bound, (3), required by the theorem. ¦

5This is a good bound if you know the exact form of the disturbance and the
exact a∗

k.
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Example 2.4 (Time Variation and Disturbances). Consider the following

adaptive state equation

ak+1 = ak − µ (ak − a∗
k) + .03 cos(

2πk

10
)

which has both a time varying desired point, a∗
k, and a disturbance. We determine

that the disturbance free equation

ak+1 = ak − µ (ak − a∗
k)

has a contractivity constant

α = max
‖ak − µ (ak − a∗

k) − a∗
k‖

‖ak − a∗
k‖

= 1 − µ

For ‖µ‖ < 1 we have a contraction within any sized ball. Notice also that the

linearity of the update allows this same contraction no matter how large or small

our tube of interest, Ba∗
k
, is. Thus, the region of attraction includes the whole space.

For a particular a∗
k, for example

a∗
k = cos(

2πk

100
)

We can bound the rate of time variation and use Theorem 3 to bound the convergent

error. A plot showing the application of the bound in the theorem to this example

with µ = .25 is provided in Figure 2.5. The top graph indicates the evolution of

the actual trajectory, ak in comparison to the desired trajectory a∗
k, and shows the

accuracy of the bound. The lower graph is a plot of the error, ‖ak − a∗
k‖, and the

bound provided by the theorem. Notice that the bound is once again not particularly

tight, because our assumptions restrict us to a worst case analysis in terms of the

disturbance and time variation.
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2.2.4 Deterministic Averaging Theory

Using the previous theorems, we often assumed that an exact and accurate param-

eter change was available at every step of adaptation. Oftentimes, we are not so

fortunate as to have such an accurate signal at every step. Usually, we can make

up for this by having a signal which accurately indicates the correct adaptive state

update on average over time. Many adaptive elements are derived with such an

averaging mindset. In these elements, the adaptive state function does not give

an update in exactly the correct direction, rather, an update that is in the correct

direction only on average. Specifically, these algorithms usually have the form

âk+1 = âk + µf̂(k, âk, xk) (2.13)

where µ is some small parameter, µ ¿ 1, which controls the averaging. Since, for

a particular input, we commonly are speaking about stability to a certain desired

trajectory, a∗
k, we form the error system

ãk+1 = ãk + µf(k, ãk, xk) + a∗
k − a∗

k+1 (2.14)

where ãk = âk − a∗
k, f(k, ãk, xk) = f̂(k, a∗

k + ãk, xk), and µ is a small parameter

upon whose size the averaging depends. We performed this change of variables

because we want to study the boundedness of the error ãk between our desired

trajectory a∗
k and our actual trajectory âk. Deterministic averaging theory relates

with (2.14) the following averaged system

āk+1 = āk + µfav(āk) + a∗
k − a∗

k+1 (2.15)

whose averaged update function is defined as

fav(ξ) = lim
N→∞

1

N

N∑

i=1

f(i, ξ, xi)
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whose existence is one of our assumptions. Theorem 4 deals with the accuracy of

the averaged approximation over a finite time period, {1, ..., T
µ
}. While Theorem 5

will deal with the accuracy of the approximation over an infinite amount of time.

Theorem 4 (Finite Time Deterministic Averaging: [3],[9],[10]). Consider

the adaptive element with adaptive state equation given by (2.13), error system

given by (2.14), and averaged system given by (2.15). Assume that the desired

trajectory changes slowly enough that

‖a∗
k+1 − a∗

k‖ < c ∀k ∈ {1, ..., T/µ}

We assume that µ is small enough such that the adaptive state error, ‖ãk‖ = ‖âk−

a∗
k‖, is less than h during this time period. Given that ξk ∈ B0(h) = {ξk|‖ξk‖ < h},

we also assume that the adaptive state equation’s update is bounded

‖f(k, ξ, xk)‖ ≤ Bf ∀ξ ∈ B0(h) ∀k

Naturally, we will also need to characterize in some manner the adaptive state

equation’s deviation from its average. Since we are more likely to be able to char-

acterize this behavior in a temporally averaged fashion, we introduce the following

function

p(k, ξ) =
k∑

i=1

(f(i, ξ, xi) − fav(ξ))

and assume that it has the following properties

‖p(k, ξ1) − p(k, ξ2)‖ ≤ Lp‖ξ1 − ξ2‖ ∀ξ1, ξ2,∈ B0(h)

‖p(k, a∗
k)‖ ≤ Bp (2.16)

Furthermore, we assume that the averaged system is locally Lipschitz continuous

‖fav(ξ1) − fav(ξ2)‖ ≤ λf‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ B0(h)
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and that the averaged system is uniformly contractive to the desired trajectory

‖ā + fav(ā)‖ < α‖ā‖ ∀ā ∈ B0(h)

Also assume that the time variation and the initial error are small enough such

that

‖ā1‖ +
c

1 − α
+ eλf T (‖ā1 − ã1‖ + µ(Bp + Lph + LpBfT )) < h

If all of these assumptions are true, then we have

‖ãk − āk‖ ≤ eλf T (‖ã1 − ā1‖ + µ(Bp + Lph + LpBfT )) ∀k ∈ {1, ..., T/µ}

¦ Defining the averaging error, ∆k = ãk − āk, we can begin by subtracting

(2.14) and (2.15) to get

∆k+1 = ∆k + µ (f(k, ãk, xk) − fav(āk))

Running this recursion back in time gives

∆k+1 = ∆1 + µ

k∑

i=1

(f(i, ãi, xi) − fav(āi))

Adding a clever form of zero gives

∆k = ∆1 + µ
k∑

i=1

(f(i, ãi, xi) − fav(ãi) + fav(ãi) − fav(āi)) (2.17)

Now, recalling our assumptions, we notice that we can write for k ≥ 2

p(k, ξ) − p(k − 1, ξ) =
k∑

i=1

(f(i, ξ, xi) − fav(ξ)) −
k−1∑

i=1

(f(i, ξ, xi) − fav(ξ))

which will be true for any ξ. Subtracting the two sums shows that for k ≥ 2

p(k, ãk) − p(k − 1, ãk) = f(k, ãk, xk) − fav(ãk)

from which we can build the elements of (2.17)

∆k+1 = ∆1 + µ
∑k

i=2 (p(i, ãi) − p(i − 1, ãi) + fav(ãi) − fav(āi)) + µp(1, ã1)

+µ (fav(ã1) − fav(ā1))
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Rewriting the sums

∆k+1 = ∆1 + µ

k∑

i=2

p(i, ãi)− µ

k∑

i=2

p(i− 1, ãi) + µ

k∑

i=1

(fav(ãi) − fav(āi)) + µp(1, ã1)

and a change of indices of summation yields

∆k+1 = ∆1 + µ
∑k

i=2 p(i, ãi) − µ
∑k−1

i=1 p(i, ãi+1) + µ
∑k

i=1 (fav(ãi) − fav(āi))

+µp(1, ã1) − µp(1, ã2)

Recombining the sums

∆k+1 = ∆1 + µ
∑k−1

i=2 (p(i, ãi) − p(i, ãi+1)) + µp(k, ãk)

+µ
∑k

i=1 (fav(ãi) − fav(āi)) + µp(1, ã1) − µp(1, ã2)

and using the triangle inequality and the Lipschitz continuity of the averaged

system yields

‖∆k+1‖ ≤ ‖∆1‖ + µ
k−1∑

i=1

‖p(i, ãi+1) − p(i, ãi)‖ +
k∑

i=1

λf‖ãi − āi‖ + µ‖p(k, ãk)‖

Our assumption about the Lipschitz continuity of the total perturbation and its

boundedness at zero error allows us to bound the last term in the sum with

‖p(k, ãk)‖ ≤ ‖p(k, 0)‖ + ‖p(k, ãk) − p(k, 0)‖ ≤ Bp + Lph

Substituting in the new bound gives

‖∆k+1‖ ≤ ‖∆1‖ + µ
k−1∑

i=1

(Lp‖ãi+1 − ãi‖ + λf‖ãi − āi‖) + µ(Bp + Lph)

Using (2.14), we have

‖∆k+1‖ ≤ ‖∆1‖+µ

k−1∑

i=1

(
Lp‖µf(i, ãi, xi) + a∗

k − a∗
k+1‖ + λf‖ãi − āi‖

)
+µ(Bp+Lph)

and our assumptions about the boundedness of f and the time variation give

‖∆k+1‖ ≤ ‖∆1‖ + µ
k−1∑

i=1

(µLpBf + λf‖∆i‖ + c) + µ(Bp + Lph)
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Rearranging

‖∆k+1‖ ≤ ‖∆1‖ + µ2LpBfk + µck + µλf

k−1∑

i=1

‖∆i‖ + µ(Bp + Lph)

and using the fact that we are dealing with a fixed amount of time, we have:

‖∆k+1‖ ≤ ‖∆1‖ + µ(Bp + Lph + LpBfT ) + cT + µλf

k−1∑

i=1

‖∆i‖ ∀k ∈ {1, ..., T/µ}

Applying the discrete Bellman Gronwell identity6, we have

‖∆k+1‖ ≤ (1 + µλf )
k (‖∆1‖ + µ(Bp + Lph + LpBfT ) + cT )

Recalling the Taylor series for the exponential, and that exk ≥ (1+x)k ∀x ≥ 0, we

can write

‖∆k+1‖ ≤ eµλf k (‖∆1‖ + µ(Bp + Lph + LpBfT ) + cT )

Once again dealing with the fact that we are considering a finite amount of time

we come to our final bound

‖∆k+1‖ ≤ eλf T (‖∆1‖ + µ(Bp + Lph + LpBfT ) + cT ) ∀k ∈ {1, ..., T/µ}

This indicates that if we start the averaged system and the unaveraged system at

the same location, and if we require the time variation to be slow enough such that

c = O(µ), we can adjust the maximum deviation of the unaveraged system from

the averaged system using linear changes in µ. The last step in our argument is to

verify that we never left the balls in which our assumptions were valid. Using the

triangle inequality, we see that

‖ãk‖ ≤ ‖āk‖ + ‖∆k‖

6See appendix C.
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and, since we had continuity of the averaged system

‖āk+1‖ ≤ α‖āk‖ + ‖a∗
k+1 − a∗

k‖

Running the recursion yields

‖āk+1‖ ≤ αk‖ā0‖ +
k−1∑

i=0

αk−i‖a∗
i+1 − a∗

i ‖

And the sum of an infinite geometric series yields

‖āk+1‖ ≤ αk‖ā0‖ +
c

1 − α

Thus, if

‖ā0‖ +
c

1 − α
+ eλf T (‖∆0‖ + µ(Bp + Lph + LpBfT ) + cT ) < h

we never leave the ball within which we assumed we stayed. ¦

We now consider an example application of the finite time deterministic averag-

ing theorem that highlights the correctness and tightness of the bound. Notice that

since we have included the information that our disturbance is not only bounded,

but also has average zero, our bounds become tighter. On a quantitative level, this

is not a feature of the theorem which matters much, since many of the constants

needed to obtain such a bound will not be easily calculated in practice.7 Rather,

this theorem is better for its qualitative bounding information; namely, that as

long as the time variation and the contraction constants are O(µ), you can make

the averaging error over a finite time window arbitrarily small by shrinking the step

size, µ, to an appropriate level. The requirement that α and c be O(µ), is a subtle

7Usually, we only know properties of the adaptive state functions, such as dif-
ferentiability, which guarantee the existence of a Lipschitz constant. Even if we
know the exact analytical form of the adaptive state function, finding Lipschitz
constants analytically is typically fairly difficult.
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nuance of the theorem, since our notation does not emphasize their dependence on

µ.

Example 2.5 (Finite Time Averaging). Consider the following adaptive state

equation

ãk = ãk − µ (ãk − .2)3 cos

(
2πk

10

)2

+ µ cos

(
2πk

10

)

we see that we have an unaveraged update function

f(k, ãk) = − (ãk − .2)3 cos

(
2πk

10

)2

+ cos

(
2πk

10

)

which has a corresponding averaged function

fav(ãk) =
−1

2
(ãk − .2)3

Consider the region of interest to be [−.2, .6], within this region, the averaged system

has a Lipschitz constant

λf = max
a∈[−.2,.6]

∥
∥
∥
∥

∂fav

∂a

∥
∥
∥
∥

= max
a∈[−.2,.6]

∥
∥
∥
∥
−

3

2
(a − .2)2

∥
∥
∥
∥

= .24

Furthermore, the total perturbation

p(k, a) =
k∑

i=1

[f(i, a) − fav(a)]

has a Lipschitz constant

Lp = maxk∈N ,a∈[−.2,.6]

∥
∥
∥
∑k

i=0
∂f(i,a)

∂a
− ∂fav

∂a

∥
∥
∥

≤ maxk∈N ,a∈[−.2,.6]
3
2
(a − .2)2

∥
∥
∥
∑k

i=1 cos(4πi
10

)
∥
∥
∥ +

∥
∥
∥
∑k

i=1 cos(2πi
10

)
∥
∥
∥ = 0.3142

and is bounded such that

p(k, a∗
k) ≤ max

k

∥
∥
∥
∥
∥

k∑

i=1

cos(
2πi

10
)

∥
∥
∥
∥
∥

= 2.1180 = Bp
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Figure 2.6: A sample application of the finite time averaging theorem.

Furthermore, we see that in our region of interest, the unaveraged function is

bounded by

Bf = max
k,a∈[−.2,.6]

∥
∥
∥
∥
− (ãk − .2)3 cos(

2πk

10
) + cos(

2πk

10
)

∥
∥
∥
∥

< 1.640

We apply these numerical results in Figure 2.6 to indicate that the bound offered

by Theorem 4 does indeed hold. For this figure, µ = .0001.

Theorem 5 (Hovering Theorem: [10], [3]). We now wish to extend our results

from the previous section in order to bound the difference between the averaged and

un-averaged systems over an infinitely long time window. To extend our results,
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though, we need to place a few more restrictions on the system. First of all, we

require that the averaged system, (2.15), be Lipschitz continuous with a constant α

less than one. Thus,

‖ξ1 + µfav(ξ1) − ξ2 − µfav(ξ2)‖ ≤ α‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ B0(ha)

We also require that the fixed points of the map move sufficiently slowly, such that

‖a∗
k+1 − a∗

k‖ ≤ c ∀k

which will give us local exponential stability of the averaged algorithm. Further-

more, we define a windowed total perturbation

pnT/µ(k, ξ) =

nT/µ+k
∑

i=nT/µ

[f(i, ξ, xi) − fav(ξ)]

which we assume is uniformly Lipschitz continuous and bounded ∀k ∈ {1, ..., T/µ}

such that

‖pnT/µ(k, ξ1) − pnT/µ(k, ξ2)‖ ≤ λp‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ B0(ha)

Then, if we require

ha ≥ ‖ã1‖ +
c

1 − α
+

2 − αT/µ

1 − αT/µ
(cT + µ(Bp + Lph + LpBfT )) eλf T (2.18)

the difference between the averaged system’s trajectory and the unaveraged system’s

trajectory is bounded by

‖āk − ãk‖ ≤
2 − αT/µ

1 − αT/µ
(cT + µ(Bp + Lph + LpBfT )) eλf T

Thus, the error from the desired trajectory in the unaveraged system is bounded by

‖ãk+1‖ ≤ αk‖ã1‖ +
c

1 − α
+

2 − αT/µ

1 − αT/µ
(cT + µ(Bp + Lph + LpBfT )) eλf T
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¦ First of all, the conditions we placed on the averaged equation made it expo-

nentially stable (see theorem 1), such that

‖āk+1 − a∗
k‖ ≤ αk‖ā0‖ +

c

1 − α
(2.19)

The concept for this proof, taken from [10], is to divide the time axis up into in-

tervals of length T/µ, and let ānT/µ,k, k ∈ {nT/µ, nT/µ + 1, ..., (n + 1)T/µ} be a

solution to the averaged system on the nth interval. Furthermore, let ānT/µ,nT/µ =

anT/µ, so that at the begining of each interval, the interval averaged trajectories

start with unaveraged system’s value. Also, since the averaged system is exponen-

tially stable, we have

‖ānT/µ − ā(n−1)T/µ,nT/µ‖ ≤ α‖ānT/µ−1 − ā(n−1)T/µ,nT/µ−1‖

Stepping back through time we have

‖ānT/µ − ā(n−1)T/µ,nT/µ‖ ≤ αT/µ‖ā(n−1)T/µ − ā(n−1)T/µ,(n−1)T/µ‖

And since we initialized the interval averaged trajectory with the state of the

unaveraged error system, we have

‖ānT/µ − ā(n−1)T/µ,nT/µ‖ ≤ αT/µ‖ā(n−1)T/µ − ã(n−1)T/µ‖

Using the fact above and the triangle inequality gives

‖ānT/µ − ãnT/µ‖ ≤ ‖ānT/µ − ā(n−1)T/µ,nT/µ‖ + ‖ā(n−1)T/µ,nT/µ − ãnT‖

We recognize the term on the end as what we bounded with our theorem 4 (notice

we have changed our requirements on the total perturbation ever so slightly so we

can still use the finite time result). Replacing this term yields

‖ānT/µ− ãnT/µ‖ ≤ αT/µ‖ā(n−1)T/µ−a(n−1)T/µ‖+(cT + µ(Bp + Lph + LpBfT )) eλf T
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Running through the recursion in n and using the sum of an infinite geometric

series gives

‖ānT/µ − ãnT/µ‖ ≤
(cT + µ(Bp + Lph + LpBfT )) eλf T

1 − αT/µ
(2.20)

which bounds the error between the desired and actual trajectories at times nT/µ.

Of course, we wish to bound this error at all times. Thus, we are interested

in relating the bound on the error at these time instants to the error at other

time instants. Without loss of generality choose n so that we can consider k ∈

{nT/µ, nT/µ + 1, · · · , (n + 1)T/µ}.

‖āk − ãk‖ ≤ ‖āk − ānT/µ,k‖ + ‖ānT/µ,k − ãk‖ (2.21)

Now, we note that the second term on the right hand side is bounded by Theorem

4. Thus, our attention turns the the first term on the right hand side. We have

‖āk − ānT/µ,k‖ = ‖āk−1 + µfav(āk−1) −
(
ānT/µ,k−1 + µfav(ānT/µ,k−1)

)
‖

≤ α‖āk−1 − ānT/µ,k−1‖

Reapplying this logic several times yields

‖āk − ānT/µ,k‖ = αk−nT/µ‖ānT/µ − ānT/µ,nT/µ‖

Because α < 1, we see that over the interval k ∈ {nT/µ, nT/µ+1, · · · , (n+1)T/µ}

the largest the term on the right term will be for k = nT/µ. Thus, we have

‖āk − ānT/µ,k‖ ≤
(cT + µ(Bp + Lph + LpBfT )) eλf T

1 − αT/µ

Returning to (2.21), we have

‖āk − ãk‖ ≤
(cT+µ(Bp+Lph+LpBf T ))e

λf T

1−αT/µ

+eλf T (µ(Bp + Lph + LpBfT ) + cT )
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which, after collecting terms, becomes

‖āk − ãk‖ ≤
2 − αT/µ

1 − αT/µ
(cT + µ(Bp + Lph + LpBfT )) eλf T

Using (2.20) and (2.19) via the triangle inequality gives

‖ãk+1‖ ≤ αk‖ã1‖ +
c

1 − α
+

2 − αT/µ

1 − αT/µ
(cT + µ(Bp + Lph + LpBfT )) eλf T (2.22)

which is our desired bound. We must make sure we remained within the region

that our assumptions were valid. For this to be true, we need

ãk ∈ B0(ha) ⇒ ‖ãk‖ < ha

which, using (2.22), can be guaranteed if

ha ≥ ‖ã1‖ +
c

1 − α
+

2 − αT/µ

1 − αT/µ
(cT + µ(Bp + Lph + LpBfT )) eλf T

which is the condition, (2.18), required by the theorem. ¦

As it was important for the finite time averaging theorem, it is also important

to note that there is a hidden possible dependance of α and c on µ, and thus, one

should stipulate conditions on this dependance if one wishes to draw qualitative

conclusions about the implications of this theorem. As we have done in the past,

we now include the following example to highlight the conditions and implications

of the theorem.

Example 2.6 (Infinite Averaging with Time Variation). Consider the sys-

tem

âk+1 = âk − µ

(

âk − .1 cos(
2πk

1000000
)

)

cos(
2πk

10
)2 + µ cos(

2πk

10
)

and its corresponding error system

ãk = ãk − µãk cos(
2πk

10
)2 + µ cos(

2πk

10
) + .1 cos(

2πk

1000000
) − .1 cos(

2π(k + 1)

1000000
)
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and averaged system

āk+1 = āk −
µ

2
āk + .1 cos(

2πk

1000000
) − .1 cos(

2π(k + 1)

1000000
)

Define the region of interest to be [−.5, .5]. We can then deduce that λf = 1/2,

and

Lp = max
k

1

2
‖

k∑

i=1

cos(
4πi

10
)‖

Furthermore, we note that Bf = 1.5. Figure 2.7 shows the bound that Theorem 5

provides for this example, optimized over T to make the bound on the averaging for

the chosen µ be as small as possible. We see that the unaveraged system follows the

averaged system closely for this µ, and that both of them track the time-variation.

It is important to note that the time variation is very slow in this example, so that

the µ can be small enough to make the averaging error tiny, and yet still large

enough to track the time variations.

The Hovering theorem is a powerful theorem to use for adaptive elements. It

indicates that, under a few sufficient conditions, we can design adaptive elements

by using state equations which update in the correct direction only on average.

This is, in fact, the way that most adaptive devices are designed, since exact

solutions for the optimal settings for future inputs may be impossible to determine

from a small amount of noisy current data. Instead, we typically find an ”error

signal” which only on average indicates the inaccuracy of our current parameter

settings and use this to adapt our system. It should be noted that this theorem,

like Theorem 8 is rarely applied in a quantitative manner, as we have done in the

example, because in most applications it is easy to prove the Lipschitz constants

exist, but they are difficult to calculate. However, this does not matter too much,

since the major implications of the theorem are qualitative ones. Specifically, the
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Figure 2.7: An example application of the hovering theorem, showing averaging

applied to a time varying system. The unaveraged system hovers closely around

the averaged system, which is tracking the time variation, and we see that the

bounds are accurate, and fairly tight towards the end of this example.
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important meaning of the theorem is that if we design an adaptive element with

a state equation which is contractive only on average to a stationary point of

interest, for a class of inputs such that the contraction constant and time variation

are O(µ), we can make the adaptive element behave close to its averaged behavior

by shrinking the step size.

2.3 Examples of Adaptive Devices Found in Digital Re-

ceivers

One arena in modern engineering that has reaped many of the benefits of simple

adaptive devices lies within the physical layer of digital receivers. We include here

many examples of adaptive devices found in the single carrier regime of digital

receiver types. The inclusion is motivated by our discussion in later chapters about

the interaction between different types of adaptive algorithms found in digital

receivers. This arena seems to be one filled with interesting possible applications

of a theory of interactions between adaptive devices, and, since we are interested in

establishing the basis of such a theory, we will include a wide range of fundamental

algorithms, including those we wish to study here. Because we will be interested

in the interactions between different receiver subsystems, for many of the adaptive

elements we list the averaged adaptive state functions8 which include parameters

from other adaptive elements. Since receiver devices are typically analyzed under

the assumptions that other devices are behaving in an ideal manner, the calculation

of these sensitivity functions has often not been carried out in the past. Hence, we

include our derivations for the sensitivity functions we list in Tables 2.1 through

2.4 in Appendix A.

8We shall call these ”sensitivity functions” from now on.
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To classify the inputs and algorithms of interest to us, we begin by deriving a

model for a received PAM signal subjected to a channel with time-varying mul-

tipath distortion and additive noise. In a typical PAM transmission system, the

signal that the transmitter transmits is

s(t) = Re

{

ej(2πfct t+θt(t))
∑

k

akp(t − kT )

}

(2.23)

The received signal at passband is

u(t) =

Q
∑

i=1

ci(t)s(t − τi(t)) + n(t) (2.24)

After rough analog downconversion we have

r(t) = lpf
{
e−j(2πfcr t+θr(t))u(t)

}
(2.25)

Assuming the lpf passes the signal component and attenuates the noise,

r(t) =
∑

k

ak

Q
∑

i=1

ci(t)e
j(2π(fct−fcr )t+2πfctτi(t)+θt(t−τi(t))−θr(t))p(t − τi − kT ) + ñ(t)

(2.26)

where ñ(t) = lpf
{
n(t)ej2πfcr t+θr(t)

}
. Defining fc = fct − fcr and θ(t) = 2πfctτi(t)+

θt(t − τi(t)) − θr(t) for compactness, we have

r(t) =
∑

k

ak

Q
∑

i=1

ci(t)e
j(2πfct+θ(t))p(t − τi − kT ) + ñ(t) (2.27)

After sampling the signal, we have

rm =
∑

k

ak

Q
∑

i=1

ci(mTs)e
j(2πfcTsm+θ(mTs))p((m − k)T − τi) + ñm (2.28)

which is the digital received signal that the receiver must process in such a way as

to recover the original transmitted symbols, ak.
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2.3.1 Automatic Gain Control

In order to keep the dynamic range of the digital quantization fully used, digital

receivers often use a gain control to keep the power at the input analog to digital

convertor to be roughly a constant. These gain controls can be thought of as adap-

tive devices, and one gradient update we might consider, [11], for their operation

is

gk+1 = gk − µG

(
g2

kx
2
k − d

)
sign[gk] (2.29)

2.3.2 Carrier Recovery

Due to the unknown delay between the transmitter and the receiver, and the phase

difference between their carrier oscillators, receivers often employ some sort of

adaptive carrier synchronization. The phase estimates can be formed in a number

of adaptive ways (see, e.g., [11] or [12]), and some possible error functions for a

recursive adaptive estimator are shown in Table 2.1.

2.3.3 Timing Recovery

The unknown delay between the transmitter and the receiver along with the oscil-

lator inaccuracies also induces a baud timing offset. Digital receivers often use an

adaptive algorithm to recursively estimate and track this timing offset [11], [12].

A wide variety of timing algorithms have been proposed over the years, and a few

of them are listed in Table 2.2.
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Table 2.1: Error Detectors for Carrier Phase Recovery and their Sensitivities

Name Update Sensitivity

PLL [12] Im
{

â∗
kxke

−jθ̂k

}

gkE[|a|2] |hτ̂ ,f [k, k]| sin
(

∠hτ̂ ,f [k, k] − θ̂
)

Low SNR ML BPSK [12] Re
{

xke
−jθ̂k

}

Im
{

xke
−jθ̂k

}

Low SNR ML M-PSK [12] −
∑M/2−1

m=0

[

Re
{

xke
−jθ̂k

}]3 [

Im
{

xke
−jθ̂k

}]

Fourth Power [13] Im

{(

xke
−jθ̂k

)4
}

|E [a4]
∑

n h4
τ̂ ,f [k, n]| sin

(

∠
∑

n h4
τ̂ ,f [k, n] + ∠E [a4] − θ̂k

)
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2.3.4 Equalization

In digital radio systems, (possibly time varying) multipath propagation linearly

distorts the received signal. In order to mitigate the effects of multipath, and

still have low complexity, digital receivers often employ linear equalizers. These

equalizers are one of the most familiar forms of an adaptive signal processing

algorithm. A list of a few adaptive equalization algorithms is shown in Table 2.4.
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Table 2.2: Timing Error Detectors for Bandpass Signals.

Name Update

ML-Based [12] Re
{

â∗
k

(

y′(kT + τ̂k)e
−jθ̂k −

∑k+D
m=k−D âmh′ ((k − m)T )

)}

Zero Crossing [12] Re
{(

â∗
k−1 − â∗

k

)
y(kT − T/2 + τ̂k−1)e

−jθ̂k

}

Early Late [12] Re
{

â∗
ke

−jθ̂k [y(kT + T/2 + τ̂k) − y(kT − T/2 + τ̂k−1)]
}

Muell. & Muell. [14] Re
{

â∗
k−1y(kT + τ̂k)e

−jθ̂k − â∗
ky((k − 1)T + τ̂k−1)e

−jθ̂k

}

M-Nonlin. [12] |y(kT + τ̂k)|
M−2Re {y∗(kT + τ̂k)y

′(kT + τ̂k)}

M-Nonlin. Numer. [11] |y(kT + τ̂k)|
M−1 (|y(kT + τ̂k + δ)| − |y(kT + τ̂k − δ)|)

NDA-Early Late [12] Re {y∗(kT + τ̂k) [y(kT + T/2 + τ̂k) − y(kT − T/2 + τ̂k−1)]}

Gardner [15] Re {[y(kT − T + τ̂k−1) − y(kT + τ̂k)] y
∗(kT − T/2 + τ̂k−1)}

Bandedge [16] bpffc−
1

2T
[y](kT + τ̂k)

∗bpffc+
1

2T
[y](kT + τ̂k)
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Table 2.3: Sensitivities of Timing Error Detectors for Bandpass Signals.

Name Sensitivity

Zero Crossing [12] Re







ĝke
−jθ̂kE [|a|2]

∑P−1
l=0

∑Q
i=1 ci((k − l − 1

2
)T + τ̂k−1)

[
p((1

2
− l)T + τ̂k−1 − τi) − p((−1

2
− l)T + τ̂k−1 − τi)

]
fl,k







Early Late [12] Re







ĝke
−jθ̂kE[|a|2]

(
∑P−1

l=0

∑Q
i=1 ci((k − l + 1

2
)T + τ̂k)p((1

2
− l)T + τ̂k − τi)fl,k

−
∑P−1

l=0

∑Q
i=1 ci((k − l − 1

2
)T + τ̂k−1)p((−1

2
− l)T + τ̂k−1 − τi)fl,k

)







Muell. & Muell. [14] Re







ĝke
−jθ̂kE[|a|2]

∑P−1
l=0

∑Q
i=1 ci((k − l)T + τ̂k)p((1 − l)T + τ̂k − τi)fl,k

−ĝk−1e
−jθ̂k−1E[|a|2]

∑P−1
l=0

∑Q
i=1 ci((k − 1 − l)T + τ̂k−1)p((−1 − l)T + τ̂k−1 − τi)fl,k−1







2-Nonlin. [11] |gk|
2
E[|an|

2]
∑

n Re
{
h∗

τ,f [k, n]dhτ,f [k, n]
}

+ σ2
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Table 2.4: Cost Functions and Update Terms for Various Equalizers.

Name Cost Function Update

LMS [11] E [|dk−δ − rkf |
2]

(

d̂∗
k−δ − rT

k f
)

r∗k

Zero Forcing [17] (dk−δ − rkf)d
∗
k−m−δ

Sato [18]
(
rT

k f − αcsgn(rT
k f)

)
r∗k

CMA [19], [20] E
[
(γ − |rkf |

p)2] |rT
k f |p−2

(
γ − |rT

k f |p
)
rT

k fr∗k

BGR [21]
(
β1(dk − rT

k f) + β2(r
T
k f − αcsgn(rT

k f)
)
r∗k
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Table 2.5: Sensitivities for Various Equalizers.

Name Sensitivity Function

LMS [11]
ĝk−mejθ̂k−mE[|a|2]h∗

τ̂ [k − m, k − δ] −
∑P−1

l=0 ĝk−mĝk−l

ej(θ̂k−m−θ̂k−l)
∑

n E[|a|2]h∗
τ̂ [k − m,n]hτ̂ [k − l, n]fl +

∑P−1
l=0 E[v∗

k−mvk−l]fl

Zero Forcing [17] E[|a|2]
(

δ[m] −
∑N

i=1 h[k − i, k − m − δ]
)

Godard/CMA [19], [20] γ













E[|a|2]
∑

n

∑

i

h∗[k − i, n]

h[k − i, n]fi

+fmE[|vk−m|
2]













−
















∑

n1

∑

n2
(δ[n1 − n2]E[|a|4] + (1 − δ[n1 − n2])(E[|a|2])2)

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
h[k − i1, n1]h

∗[k − i3, n1]h[k − i2, n2]h
∗[k − m,n2]

+2
∑

n1
E[|a|2]

∑

i1

∑

i2
|fi1 |

2fi2E[|v|2]h[k − i2, n1]h
∗[k − m,n1]

+2
∑

n E[|a|2]fk−mE[|vk−m|
2]

∑

i2

∑

i3
fi2f

∗
i3
h[k − i2, n]h[k − i3, n]

+
∑

i |fi|
2fm (δ[i − m]E[|vi|

4] + (1 − δ[i − m])(E[|vi|
2])2)


















Chapter 3

Binary Adaptive Compounds:

Combining and Configuring Two

Adaptive Blocks
In this chapter, we consider the possibility of connecting two adaptive elements

together into a binary adaptive compound (BAC) from an engineering mindset.

We explore possible reasons for doing such a thing, as well as discuss practical

methods which lead to the design of distributed adaptive compounds. Then, we

consider some possible ways to connect two adaptive signal processing elements

together, and select one - a series connection - to focus on for the rest of the thesis.

3.1 Why might we combine two adaptive elements?

Oftentimes in engineering we are faced with problems that require adaptivity,

but can not be solved with only one adaptive element. There are a multitude of

situations which dictate a distributed adaptive structure. Sometimes distributed

adaptation is given to us by nature. As we discussed in the introduction, the

economy and our own brains can be view as distributed adaptive systems. In

the case of the economy, the different adaptive elements are the businesses and

individuals who interact to make the larger economic system. Our brains could

be viewed as adaptive systems, where the separation of the adaptive elements

indicated separation of different parts or functions of the brain.

Returning to an engineering perspective, perhaps the most common factor invit-
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ing distributed adaptation occurs when implementation simplicity or physical con-

straints, such as the physical separation of a transmitter and a receiver, dictate

a distributed structure. In such a situation not all of the transmitter parameters

may be known to the receiver, and the transmitter and receiver sit on opposite

sides of a channel with uncertainty, forcing each side to be possibly engineered

to infer something about the other. Another possible reason for using distributed

adaptation occurs when we have multiple optimizations that we wish to perform

that depend on how well the other optimizations are doing. One way to perform

these optimizations is to come up with a scheme where separate adaptive elements

work together to assure that the different optimizations are achieved. In such sit-

uations, for example power control for cellular telephones, a distributed structure

may perform this optimization more efficiently that a situation with a central au-

thority controlling the optimization. Specific instances of distributed adaptation

occur in digital receivers, in traffic control, and in neural processing, to name a

few. In still other cases, the multiple adaptation is a relic of our method of solu-

tion of the overall design problem. That is, we went about making the design by

dividing the overall problem up into sub-problems, and then designing an adaptive

element for each problem. This is a technique that can be likened to a problem

solving strategy known as ”divide and conquer,” and we wish to characterize it

and express what it means for the engineering of adaptive systems.

3.1.1 The Divide and Conquer Mindset: General Descrip-

tion

Design engineers are often faced with gargantuan tasks. Today’s electronic and

computing devices have become so complex that it is hard to imagine how such
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a complex device was ever even planned, let alone implemented. One technique

that practicing engineers, as well as practical people, use to tackle complex tasks

is the divide and conquer method. A very difficult task is split into a number

of sub-tasks, which may be easier to handle if dealt with independently of the

other sub-tasks. In engineering problems, this often translates into the assump-

tion that all of the other sub-tasks have been solved perfectly when designing the

solution to a particular sub-task. In the context of adaptive systems, we define the

notion of design by divide and conquer to mean the selection of several intercon-

nected adaptive elements performing different tasks, each of which we guarantee

to operate correctly, if all of the other devices upon which they depend are oper-

ating perfectly. Naturally, a cautious engineer wishes to determine whether or not

such a strategy leads to devices that work properly after connecting the adaptive

elements together especially if none are initialized at their perfect operating set-

tings. Evidence that such a study is a worthwhile effort is provided in Appendix

B where we have taken excerpts from the digital receiver literature which discuss

the interaction of adaptive receiver components which have been designed inde-

pendently of one another. We can see from these quotes that, while recognition

of the interaction of the adaptive elements is cited as a problem, there is virtually

no basic general theory which is used to discuss and deal with this interaction.

Each specific interconnection of adaptive elements found in a receiver has its own

associated folklore of design tips and warnings. We will begin to fill this void by

characterizing the behavior of interconnected adaptive elements within a stability

theory context for a particular two element case in this thesis, but, first, we need

to consider the possible ways of interconnecting the adaptive elements designed by

divide and conquer.
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3.2 How might we combine two Adaptive Elements?

There are quite a few ways we can imagine we might hook two adaptive signal pro-

cessing elements together. Restricting our attention to combinations that process

single (or single bundles of) input signals to create a single (or single bundles of)

output signals we can come up with at least four ways to combine two adaptive

elements, which are shown in Figures 3.1, 3.2, 3.3, and 3.4.

One possibility is to process the signal input into the compound first by one

element, then process the output of the first element with the second element, as

shown in Figure 3.1. We refer to this connection as a Series Feed-forward Binary

Adaptive Compound, or SFFBAC. This is perhaps one of the simplest ways of

hooking the two devices together one can imagine, and, other than to note the

possibility and existence of some other structures, we focus entirely upon this

SFFBAC configuration for the rest of the thesis.

Another possibility is to still feed the output of the first element into the input

of the second element, but to also allow the first element to adapt from the second

element’s output. This configuration is referred to as a Series Feed-back Binary

Adaptive Compound, and can be see in Figure 3.2. This configuration can be

commonly found, among elsewhere, in digital QAM communications receivers,

where, for example, the carrier recovery loop can sit inside the adaptive equalizer’s

adjustment loop. While we will not focus on this type of structure in the current

thesis, we hope to include it as part of a future research effort.

Forgoing a serial processing based structure, we could consider structures in

which the input signal is processed separately in parallel by both adaptive elements,

and then their outputs in combined in some sort of meaningful way. One possibility

is then to adapt each of the two adaptive elements only based on their own inputs,
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xk yk zk

yk = ga(ak, xk)

ak+1 = fa(ak, xk)

zk = gb(bk, yk)

bk+1 = fb(bk, yk)

Figure 3.1: Two adaptive devices connected in series feed-forward form.

xk yk zk

yk = ga(ak, xk, zk)

ak+1 = fa(ak, xk, zk)

zk = gb(bk, yk)

bk+1 = fb(bk, yk)

Figure 3.2: Two adaptive devices connected in series feed-back form.

and we refer to such a structure as a Parallel Combining Feed-forward Binary

Adaptive Compound. Other than to mention the possibility of connecting two

adaptive devices in this way, and to provide Figure 3.3, we do not provide any

attention to this possibility in this thesis. Exploring its operation is a possibility

to be mentioned in the Future Work section.

The last way mentioned here of connecting two adaptive elements together to

process one signal that we consider is diagrammed in Figure 3.4. In this situation,

we adapt the two elements independently on the same input signal, but also allow

each of the elements to use the output of the combiner to adapt as well. Because

it feeds-back the output signal, we refer to this structure as a Parallel Combining

Feed-back Binary Adaptive Compound. It too is a possible avenue for further

research.
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replacemen

xk

yk

zk

yk = ga(ak, xk)

ak+1 = fa(ak, xk)

zk = gb(bk, xk)

bk+1 = fb(bk, xk)

wk = h(yk, zk)
wk

Figure 3.3: Two adaptive devices connected in parallel combining feed-forward

form.

xk

yk

zk

yk = ga(ak, xk)

ak+1 = fa(ak, xk, wk)

zk = gb(bk, xk)

bk+1 = fb(bk, xk, wk)

wk = h(yk, zk)
wk

Figure 3.4: Two adaptive devices connected in parallel combining feed-back form.
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3.3 Divide and Conquer: What does it mean for different

binary structures?

Continuing our discussion of binary adaptive compounds from an engineering

mindset, the next logical step after considering the different physical ways to inter-

connect the two adaptive elements, and selecting one for our focus, is to consider

whether or not such a connection will create a device which processes the input

to the binary adaptive compound in the desired way. In this section, we intro-

duce a set of specific guidelines for designing series feedforward binary adaptive

compounds which we will call the divide and conquer conditions. Note that a sig-

nificant further narrowing of our focus has occurred here, since we could consider

at least four ways to connect the two adaptive elements into a BAC, and now

we are only investigating one. With this narrowing of focus, however, comes the

ability to increase our mathematical rigor. In the next chapter we will develop a

rigorous theory that show that the DaC conditions given for SFFBACs can lead

to systems that ”work”, where we continue to specify what it means for a system

to work within the context of dynamical systems and stability and boundedness

to desired state and output trajectories. When we are done, we will have a set of

conditions and a handful of theorems which we can use to guide study and design

of SFFBACs, as well as larger feedforward adaptive systems.

3.3.1 Combined performance of desired points

Recall that when we characterized the behavior of an adaptive element in Chapter

2, we discussed the behavior of adaptive signal processing elements. In that chap-

ter, we stipulated that, given a particular input, we design the adaptive subsystem
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to be locally stable (or uniformly bounded) relative to a point in the adaptive

state space which, when given together with the input to the processing system,

produced a desirable output. Similarly, when we combine two adaptive elements

into a binary adaptive compound, we are interested in them both being locally

stable to (or uniformly bounded relative to) points in their state spaces which

produce an overall desired output. Thus, the very first item to consider when

connecting two adaptive elements together is the overall performance (if such a

measure exists) of the output of the system when the two adaptive elements are at

their ”desired” points. If the desired points do not correspond to a desired overall

output, then either the algorithms must be modified, or different algorithms must

be chosen. Thus, we begin our discussion here by assuming that two adaptive

elements have been chosen that have ”desired” points such that when fixed at the

”desired” points and hooked together in the fashion (i.e. SFFBAC) that we are

investigating, they produce a desired output. Once this is true, given a continu-

ous performance measure for the overall system, the remaining questions involve

stability and boundedness of the combined system to the desired points, and these

are the questions which we will address in the next chapter. First, we collect the

idea just mentioned with other rules for connecting two adaptive elements into a

SFFBAC in a list which offers qualitative conditions to check when designing a

SFFBAC.

3.3.2 What does DaC mean for Series Feedforward Struc-

tures?

We now introduce qualitative sufficient conditions for designing a series feed-

forward binary adaptive compound using two independently designed adaptive
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elements. While these conditions are not always necessary, their sufficiency guar-

antees that, as long as we obey them, our SFFBAC will behave properly. We will

prove this quantitatively and rigorously in the next chapter, but first, we list the

qualitative conditions.

The Divide and Conquer Conditions. Consider two adaptive elements to

be connected together to form a Series Feed-forward binary adaptive compound

(SFFBAC), as shown in Figure 3.1. For the possible inputs of interest, we require

the following conditions.

Condition 1 (Optimal Desired Trajectories). If their adaptive state is locked

onto their desired trajectory, the two adaptive elements produce an overall output

which is desirable.

Condition 2 (Continuous Performance). The system has an overall perfor-

mance measure, whose value will be used to judge how well the entire system is

performing. If such a measure exists, the adaptive compound should be continuous

with respect to the adaptive state parameters of the two elements.

Condition 3 (Contractivity of First Element). The adaptive element to ap-

pear first in the SFFBAC must be (at least on average), locally contractive to the

desired trajectory.

Condition 4 (Contractivity of Second Element). The adaptive element to

appear second in the SFFBAC must be (at least on average), locally contractive to

its desired trajectory when the first element is fixed at its desired trajectory.

Condition 5 (Sufficient Continuity). The second element’s adaptive state equa-

tion is (at least on average) continuous with respect to the first elements adaptive

state coupled through the first elements input-output equation.
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Condition 6 (Small Perturbations). The time variations must be slow enough,

the disturbances small enough, the step sizes (if the elements are of the averaging

form) small enough, and the initializations accurate enough (ie close enough to the

desired points).

We will prove in the next chapter that, if these sufficient conditions are satis-

fied, then the SFFBAC will be locally exponentially stable to a ball of finite size

surrounding the desired points. This local stability implies that, if the performance

is Lipschitz continuous with respect to the two adaptive elements’ states, then we

will be ”close” to the desired performance. That being said, we drop the notion

of an overall system performance from now on, since asking for performance close

to the desired performance (=performance at stationary points), is the same as

asking for adaptive states close to the desired adaptive states for the cases which

the DaC conditions consider. Thus, from this point on in the thesis, it is assumed

that Conditions 2 and 1 are true. The remainder of this thesis is dedicated to first

making the remaining conditions quantitatively rigorous, and then applying them

to an example SFFBAC found in communications systems.



Chapter 4

Designing Series Feedforward DASPs

with DaC
In the previous chapter, we outlined a set of qualitative guidelines for connecting

two adaptive elements together to form a SFFBAC. In this chapter, we set about

making these guidelines mathematically concrete by providing in sections 4.1.1-

4.1.4 the necessary theorems for local exponential stability and boundedness for

our adaptive elements. We include examples after each theorem to indicate their

quantitative accuracy, as well as highlight their qualitative importance.

After we are done showing how to make an SFFBAC behave well, we provide

section 4.2, which gives conditions under which we can expect it to misbehave by

not tracking the desired states. This can be of use when designing a SFFBAC,

because it indicates the possible failure modes of the system.

The material in this chapter will provide the theoretical basis for the material in

Chapter 5, which examines some examples of SFFBACs found in communications

systems, and we show how the theorems can be used to both characterize their

behavior and misbehavior.

4.1 Analytical Behavior Characterization

We now begin our development of an analytical theory of the behavior of SFFBACs.

Each of our theorems will parallel a similar theorem from the single algorithm case,

and we will see that, while the math and conditions become a great deal more te-

dious, the SFFBAC case is much like the single algorithm case for most of the

58
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Table 4.1: Requirements on the accuracy of initialization to guarantee exponential

stability of the SFFBAC. The critical β = βc is defined in (4.1).

α, β km = rb <

α 6= β
ln

(

ln(β)
ln(α)

(

1−
(α−β)‖b1−b∗1‖

χ‖a1−a∗1‖

))

ln(α
β

)
βkm‖b1 − b∗‖ + χ(αkm−βkm )

α−β

α = β < βc 1 βkm‖b1 − b∗‖ + kmβkm‖a1 − a∗‖

α = β ≥ βc
−‖b1−b∗‖
χ‖a1−a∗‖

− 1
ln(β)

βkm‖b1 − b∗‖ + kmβkm‖a1 − a∗‖

theorems. We will highlight the connections between the quantatative assump-

tions provided here and their qualitative counterparts provided by the divide and

conquer conditions. We begin by developing a theorem similar to Theorem 1 for a

non-disturbed and non-time-varying SFFBAC.

4.1.1 Deterministic Analysis Fixed Regime

Theorem 6 (SFFBACs designed with DaC). Consider two adaptive elements

connected in series feedforward form, as depicted in Figure 3.1

ak+1 = fa(ak, xk)

yk = ga(ak, xk)

bk+1 = fb(bk, yk) = fb(bk, ga(ak, xk))

Suppose that the first element has an adaptive state equation that is contractive

towards a∗ in its first argument with constant α < 1 (Condition 3)

a∗ = f(a∗, xk) ∀k

Ba∗ = {ξ|‖ξ − a∗‖ < ra}

‖fa(ξ, xk) − fa(a
∗, xk)‖ < α‖ξ − a∗‖ α < 1 ∀k ∀ξ ∈ Ba∗
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Also suppose that the second device has been designed in such a way that it is

exponentially stable to b∗, by guaranteeing contractivity with constant β < 1 within

a ball Bb∗ as long as the first element is at its stationary point (Condition 4)

b∗ = fb(b
∗, g(a∗, xk)) ∀k

Bb∗ = {ξ|‖ξ − b∗‖ < rb}

‖fb(ξ, g(a∗, xk)) − fb(b
∗, g(a∗, xk))‖ < β‖ξ − b∗‖ β < 1 ∀ξ ∈ Bb∗ ∀k

Also suppose that the second element’s update equation coupled with the first el-

ement’s input output equation is Lipschitz continuous in ak (Condition 5), such

that

‖fb(b, ga(ξ1, xk)) − fb(b, ga(ξ2, xk))‖ < χ‖ξ1 − ξ2‖ ∀b ∈ Bb∗ ∀ξ1, ξ2 ∈ Ba∗

Suppose the initializations are accurate enough (Condition 6), such that they satisfy

‖a1 − a∗‖ < ra

and a second condition which can be found as the entry in Table 4.1 corresponding

to the values of α and β, i.e.

βc = exp

{
−χ‖a1 − a∗‖

χ‖a1 − a∗‖ + ‖b1 − b∗‖

}

(4.1)

If all of these assumptions hold, then the whole system is locally exponentially stable

to a∗ and b∗. For α 6= β the parameter errors are bounded by

‖ak+1 − a∗‖ < αk‖a1 − a∗‖

‖bk+1 − b∗‖ < βk‖b1 − b∗‖ +
χ(αk − βk)

α − β
‖a1 − a∗‖

and for α = β by

‖ak+1 − a∗‖ < αk‖a1 − a∗‖ (4.2)

‖bk+1 − b∗‖ ≤ βk‖b1 − b∗‖ + χkαk‖a1 − a∗‖ = βk‖b1 − b∗‖ + χkβk‖a1 − a∗‖ (4.3)
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¦ We begin with the adaptive state equation

ak+1 − a∗ = fa(ak, xk) − a∗

Using the fact that a∗ is a fixed point, we have

ak+1 − a∗ = fa(ak, xk) − fa(a
∗, xk)

Taking the norm of both sides and using the Lipschitz continuity of the adaptive

state equation, we have

‖ak+1 − a∗‖ ≤ α‖ak − a∗‖

Iterating this yields

‖ak+1 − a∗‖ ≤ αk‖a1 − a∗‖ (4.4)

which is our bound over time for the deviation in the first block from its tuned

signal, a∗.

We now begin analyzing the second block. Adding clever forms of zero to the

adaptive state equation of the second adaptive element yields

bk+1 − b∗ = fb(bk, ga(ak, xk)) − fb(bk, ga(a
∗, xk)) + fb(bk, ga(a

∗, xk)) − b∗

Because b∗ is a fixed point, we have

bk+1−b∗ = fb(bk, ga(ak, xk))−fb(bk, ga(a
∗, xk))+fb(bk, ga(a

∗, xk))−fb(b
∗, ga(a

∗, xk))

Taking norms, using the triangle inequality, and using the Lipschitz continuity of

the adaptive state equation, we have

‖bk+1 − b∗‖ ≤ β‖bk − b∗‖ + χ‖ak − a∗‖

Iterating this inequality yields

‖bk+1 − b∗‖ ≤ βk‖b1 − b∗‖ + χ
k−1∑

i=0

βi‖ak−i − a∗‖
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Using (4.4) we have

‖bk+1 − b∗‖ ≤ βk‖b1 − b∗‖ + χ
k−1∑

i=0

βiαk−i−1‖a1 − a∗‖

‖bk+1 − b∗‖ ≤ βk‖b1 − b∗‖ + χαk−1

k−1∑

i=0

(
β

α

)i

‖a1 − a∗‖ (4.5)

Using the sum of a finite geometric series1, we have, for α 6= β

‖bk+1 − b∗‖ ≤ βk‖b1 − b∗‖ + χαk−1 1 −
(

β
α

)k

1 − β
α

‖a1 − a∗‖

Doing some manipulation yields the bound provided by the theorem.

‖bk+1 − b∗‖ ≤ βk‖b1 − b∗‖ + χ
αk − βk

α − β
‖a1 − a∗‖

For the special case where α = β, (4.5) becomes

‖bk+1 − b∗‖ ≤ βk‖b1 − b∗‖ + χkαk‖a1 − a∗‖ = βk‖b1 − b∗‖ + χkβk‖a1 − a∗‖ (4.6)

To finish the proof, we must verify that our trajectories remained within the ball

in which our solutions held. For the case α 6= β, first rewrite the bound as

‖bk+1 − b∗‖ ≤ eln(β)k‖b1 − b∗1‖ +
χ(eln(α)k − eln(β)k)

α − β
‖a1 − a∗

1‖

We now consider the right hand side as a function u(x). Taking the derivative of

this with respect to k gives

du(k)

dk
= ln(β)eln(β)k‖b1 − b∗1‖ +

χ‖a1 − a∗
1‖

α − β

(
ln(α)eln(α)k − ln(β)eln(β)k

)
(4.7)

Regrouping terms on the right of (4.7) and setting it equal to zero in order to find

the location of the extrema yields

(

‖b1 − b∗1‖ −
χ‖a1 − a∗

1‖

α − β

)

eln(β)kmax +
ln(α)

ln(β)

χ‖a1 − a∗
1‖

α − β
eln(α)kmax = 0

1See appendix C.
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(

‖b1 − b∗1‖ −
χ‖a1 − a∗

1‖

α − β

)

eln(β)kmax = −
ln(α)

ln(β)

χ‖a1 − a∗
1‖

α − β
eln(α)kmax (4.8)

ln(β)

ln(α)

(

1 −
(α − β)‖b1 − b∗1‖

χ‖a1 − a∗
1‖

)

= eln(α
β

)kmax

So the time at which the system reaches is maximum error is

kmax =
ln

(
ln(β)
ln(α)

(

1 −
(α−β)‖b1−b∗1‖

χ‖a1−a∗
1‖

))

ln(α
β
)

To verify that this is indeed a maximum, we need to look at the sign of the second

derivative. Taking the derivative of (4.8), we get

d2u(k)

dk2
= ln(β)2

(

‖b1 − b∗1‖ −
χ‖a1 − a∗

1‖

α − β

)

eln(β)k + ln(α)2χ‖a1 − a∗
1‖

α − β
eln(α)k

We then evaluate this at k = kmax and substitute in (4.8) for the term in parenthesis

on the left.

ln(β)2

(

−
ln(α)

ln(β)

χ‖a1 − a∗
1‖

α − β
eln(α)kmax

)

+ ln(α)2χ‖a1 − a∗
1‖

α − β
eln(α)kmax

Rearranging terms yields a form of the second derivative more convenient for sign

analysis

ln(α)
︸ ︷︷ ︸

<0

ln(α) − ln(β)

α − β
︸ ︷︷ ︸

>0

(
χ‖a1 − a∗

1‖e
ln(α)kmax

)

︸ ︷︷ ︸

>0

< 0

This verifies that the second derivative is negative, and thus that we have a max-

imum at k = kmax. We need this maximum error small enough that we can

guarantee that the two adaptive elements remain within the balls in which our

assumptions are valid. Thus, we require

βkmax‖b1 − b∗1‖ +
χ(αkmax − βkmax)

α − β
‖a1 − a∗

1‖ < rb

and

‖a1 − a∗
1‖ < ra
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whenever α 6= β. These are the two conditions required by the theorem as shown

in Table 4.1.

The final case we must check is the special case that α = β. Defining the right

side of (4.6) to be a function w(k) and taking its derivative and setting it equal to

zero gives

dw(k)

dk
|k=km = ln(β)βkm‖b1 − b∗‖ + χ ln(β)kmβkm‖a1 − a∗‖ + χβkm‖a1 − a∗‖ = 0

− ln(β)βkm‖b1 − b∗‖ − χβkm‖a1 − a∗‖ = χ ln(β)kmβkm‖a1 − a∗‖

km =
− ln(β)‖b1 − b∗‖ − χ‖a1 − a∗‖

χ ln(β)‖a1 − a∗‖

km =
−‖b1 − b∗‖

χ‖a1 − a∗‖
−

1

ln(β)
(4.9)

Because we start at k = 1, we see that we will only encounter this extremum if

−‖b1 − b∗‖

χ‖a1 − a∗‖
−

1

ln(β)
≥ 1

−
1

ln(β)
≥ 1 +

‖b1 − b∗‖

χ‖a1 − a∗‖

ln(β) ≥
−χ‖a1 − a∗‖

χ‖a1 − a∗‖ + ‖b1 − b∗‖

β ≥ exp

{
−χ‖a1 − a∗‖

χ‖a1 − a∗‖ + ‖b1 − b∗‖

}

Thus, if α = β < exp
{

−χ‖a1−a∗‖
χ‖a1−a∗‖+‖b1−b∗‖

}

all we require is that the initial conditions

put us into the correct region to begin with

‖a1 − a∗‖ < ra

‖b1 − b∗‖ + χ‖a1 − a∗‖ < rb

Continuing on with the case when α = β ≥ exp
{

−χ‖a1−a∗‖
χ‖a1−a∗‖+‖b1−b∗‖

}

, we must verify

that km is indeed a local maximum. To do so, we take the second derivative of
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w(k) and check its sign.

d2w(k)
dk2 |k=km = ln(β)2βkm‖b1 − b∗‖ + χ ln(β)2kmβkm‖a1 − a∗‖

+χ ln(β)βkm‖a1 − a∗‖ + χ ln(β)βkm‖a1 − a∗‖ = 0

Substituting in the expression for km from (4.9) gives the equation

d2w(k)
dk2 |k=km = ln(β)2‖b1 − b∗‖ + 2 ln(β)χ‖a1 − a∗‖ − ln(β)2‖b1 − b∗‖

− ln(β)χ‖a1 − a∗‖

= ln(β)χ‖a1 − a∗‖ < 0

where we have ignored the trivial case when the first adaptive element is started

exactly at its equilibrium. Since the second derivative is negative here, km is a

maximum. Thus, if α = β ≥ exp
{

−χ‖a1−a∗‖
χ‖a1−a∗‖+‖b1−b∗‖

}

, requiring

‖a1 − a∗‖ < ra

βkm‖b1 − b∗‖ + χkmβkm‖a1 − a∗‖ < rb

guarantees that we remain within the ball in which our assumptions were valid.¦

This theorem provides us with our basic result that our other results will build

on. Namely, if the first adaptive element in the SFFBACs is contractive to its

desired point, and if the second adaptive element is contractive to its desired point

when the first element is fixed at its desired point, then both elements are locally

exponentially stable to their desired points. The following example illustrates this

theorem.

Example 4.1 (A Series Feedforward Binary Adaptive Compound). Con-

sider two adaptive elements connected together in series feedfoward form, as in

Figure 3.1, with adaptive state equations

ak+1 = ak − µa (ak − 1)
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bk+1 = bk − µb (bk − 3ak + 1)

We wish to verify that the conditions of Theorem 6 hold true for this system. First

of all, we note that a∗ = 1 and b∗ = 2. Then, calculating the contractivity and

Lipschitz constants

α = max
a1∈Ba∗

‖fa(a1, xk) − a∗‖

‖a1 − a∗‖
= max

a1∈Ba∗
(1 − µa) = (1 − µa)

β = max
b1∈Bb∗

‖fb(b1, ga(a
∗, xk)) − b∗‖

‖b1 − b∗‖
= (1 − µb)

χ = max
a1∈Ba∗

‖fb(b, g(a1, xk)) − fb(b, g(a∗, xk))‖

‖a1 − a∗‖
= 3µb

We see that this system (due to its linearity) can be contractive within any ball we

choose and satisfies the conditions of the theorem. Figure 4.1 compares the bound

offered by the theorem and the actual evolution of the trajectory. We see that, for

this simple linear system, the bound offered by the theorem is very tight, because

the solid and dotted curves are indistinguishable.

4.1.2 Deterministic Analysis Time-Varying Regime

Next we extend our analysis to handle time variation and disturbances, but still

assume that we have a contraction at every step. Once again, we highlight the

connections with the qualitative DAC conditions. The theorem we will develop is

similar to Theorem 3.

Theorem 7 (Time Variation and Disturbances in DaC SFFBACs). Con-

sider two adaptive elements connected in series feed-forward form, as in Figure

3.1, and suffering from disturbances (noise) and time variation

ak+1 = fa(k, ak, xk) + na
k
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Figure 4.1: Example of exponential stability of a SFFBAC. Note that the bounds

are very tight in this example, because the updates are linear.
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Table 4.2: Requirements on the accuracy of initialization to guarantee exponen-

tial stability to within a ball of the desired points for the SFFBAC subject to

disturbances and time variation. The critical β is βc = exp
{

−χ‖a1−a∗‖
χ‖a1−a∗‖+‖b1−b∗‖

}

.

α, β km = rb <

α 6= β
ln

(

ln(β)
ln(α)

(

1−
(α−β)‖b1−b∗1‖

χ‖a1−a∗1‖

))

ln(α
β

)

βkm‖b1 − b∗‖ + χ(αkm−βkm )
α−β

+ ca+d1

(1−β)(1−α)
+ cb+d2

(1−β)

α = β < βc 1
βkm‖b1 − b∗‖ + kmβkm‖a1 − a∗‖

+ ca+d1

(1−β)(1−α)
+ cb+d2

(1−β)

α = β ≥ βc
−‖b1−b∗‖
χ‖a1−a∗‖

− 1
ln(β)

βkm‖b1 − b∗‖ + kmβkm‖a1 − a∗‖

+ ca+d1

(1−β)(1−α)
+ cb+d2

(1−β)

yk = ga(ak, xk)

bk = fb(k, bk, yk) + nb
k = fb(k, bk, ga(ak, xk)) + nb

k

with DaC-designed stationary point trajectories a∗
k and b∗k

a∗
k = fa(k, a∗

k, xk) ∀k

b∗k = fb(k, b∗k, ga(a
∗
k, xk)) ∀k

and with the DaC contractivity (3 and 4) conditions.

‖fa(ξ, xk) − fa(a
∗
k, xk)‖ < α‖ξ − a∗

k‖ α < 1 ∀ξ ∈ Ba∗
k

∀k (4.10)

‖fb(ξ, ga(a
∗
k, xk)) − fb(b

∗
k, ga(a

∗
k, xk))‖ < β‖ξ − b∗k‖ β < 1 ∀ξ ∈ Bb∗k

∀k (4.11)

Where we have defined Ba∗
k

= {ξk|‖ξk − a∗
k‖ < ra} and Bb∗k

= {ξk|‖ξk − b∗k‖ < rb}.

Also assume lipschitz continuity in the coupling of first element’s input output

equation and the second elements adaptive state equation (Condition 5)

‖fb(b, ga(ξ1, xk))− fb(b, ga(ξ2, xk))‖ < χ‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ Ba∗
k

∀b ∈ Ba∗
k

(4.12)
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and small enough noise and slow enough time variation (Condition 6).

‖a∗
k+1 − a∗

k‖ < d1 ‖b∗k+1 − b∗k‖ < d2

‖na
k‖ < ca ‖nb

k‖ < cb

Then, if the initializations are accurate enough, the disturbance is small enough,

and the time variation is slow enough (Condition 6), such that

d1 + ca

1 − α
+ ‖a1 − a∗

1‖ < ra

and the initialization error satisfies the bound corresponding to α and β in Table

4.2, then the whole system is exponentially stable to a ball of size d1+ca

1−α
around a∗

k

and a ball of size d2+cb

1−β
+ χ(d1+ca)

(1−α)(1−β)
around b∗k. For the case that β 6= α, the error

is bounded by

‖ak+1 − a∗
k+1‖ ≤ αk‖a1 − a∗

1‖ +
d1 + ca

1 − α

‖bk+1 − b∗k+1‖ ≤ βk‖b1 − b∗1‖ +
χ(αk − βk)

α − β
‖a1 − a∗

1‖ +
d2 + cb

1 − β
+

χ(d1 + ca)

(1 − α)(1 − β)

For the case that β = α, the error is bounded by

‖ak+1 − a∗
k+1‖ ≤ αk‖a1 − a∗

1‖ +
d1 + ca

1 − α

‖bk+1 − b∗k+1‖ ≤ βk‖b1 − b∗1‖ + χkβk‖a1 − a∗
1‖ +

d2 + cb

1 − β
+

χ(d1 + ca)

(1 − α)(1 − β)

¦ As usual, we begin with an adaptive state equation to which we have added

a clever form of zero.

ak+1 − a∗
k+1 = fa(k, ak, xk) − a∗

k + a∗
k − a∗

k+1 + na
k

Taking norms of both sides and using the triangle inequality yields

‖ak+1 − a∗
k+1‖ ≤ ‖fa(k, ak, xk) − fa(k, a∗

k, xk)‖ + ‖a∗
k − a∗

k+1‖ + ‖na
k‖
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Using the assumption we made about the contractivity of the first element’s adap-

tive state equation, we have

‖ak+1 − a∗
k+1‖ ≤ α‖ak − a∗

k‖ + ‖a∗
k − a∗

k+1‖ + ‖na
k‖

Running the recursion and replacing the disturbances and time variation with their

bounds we have

‖ak+1 − a∗
k+1‖ ≤ αk‖a1 − a∗

1‖ +
k∑

i=0

αi(d1 + ca)

Since the sum above is a finite geometric series, and α is a positive parameter,

it will be less than the corresponding infinite geometric series, which gives us our

next equation

‖ak+1 − a∗
k+1‖ ≤ αk‖a1 − a∗

1‖ +
d1 + ca

1 − α

which is the bound that we predicted on the error in the first adaptive element

from its tuned trajectory. Continuing on to the second adaptive element we have

bk+1 − b∗k+1 = fb(k, bk, ga(ak, xk)) − fb(k, bk, ga(ak, xk)) + fb(k, bk, ga(ak, xk))

−b∗k + b∗k − b∗k+1 + nb
k

Taking norms and using the triangle inequality gives

‖bk+1 − b∗k+1‖ ≤ ‖fb(k, bk, ga(ak, xk)) − fb(k, bk, ga(a
∗
k, xk))‖+

‖fb(k, bk, ga(a
∗
k, xk)) − fb(k, b∗k, ga(a

∗
k, xk))‖ + ‖b∗k − b∗k+1‖ + ‖nb

k‖

Using the assumed Lipschitz continuities we have

‖bk+1 − b∗k+1‖ ≤ χ‖ak − a∗
k‖ + β‖bk − b∗k‖ + ‖b∗k − b∗k+1‖ + ‖nb

k‖

Running the recursion gives

‖bk+1 − b∗k+1‖ ≤ βk‖b1 − b∗1‖ +
k−1∑

i=0

βi
(
χ‖ak−i − a∗

k−i‖ + ‖b∗k−i − b∗k−i+1‖ + ‖nb
k−i‖

)
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Substituting in (4.1.2), we have

‖bk+1 − b∗k+1‖ ≤ βk‖b1 − b∗1‖ +
k−1∑

i=0

βiχ

(

αk−i−1‖a1 − a∗
1‖ +

d1 + ca

1 − α

)

+
d2 + cb

1 − β

Using once again the sum of a finite geometric series and the sum of an infinite

geometric series as we did in the previous theorem, for the case that α 6= β we

have

‖bk+1 − b∗k+1‖ ≤ βk‖b1 − b∗1‖ +
χ(αk − βk)

α − β
‖a1 − a∗

1‖ +
d1 + ca

(1 − α)(1 − β)
+

d2 + cb

1 − β

and for the case when α = β, we have

‖bk+1 − b∗k+1‖ ≤ βk‖b1 − b∗1‖ + χkβk‖a1 − a∗
1‖ +

d1 + ca

(1 − α)(1 − β)
+

d2 + cb

1 − β
(4.13)

Which is our final desired bound on the parameter error in the second adaptive

element. We note that the misadjustment in the first block causes misadjustment in

the second block through the sensitivity, χ. Thus, in the second adaptive element,

the size of the ball within which we can guarantee that our solution lies is affected

by the size of the ball in which the first adaptive element’s parameters are known

to lie.

To finish the proof, we need to verify that we never left the ball in which our

assumptions valid. To do so it is necessary to determine our maximum error. For

α 6= β

maxk ‖bk+1 − b∗k+1‖ ≤ maxk

(

βk‖b1 − b∗1‖ + χ(αk−βk)
α−β

‖a1 − a∗
1‖ + d1+ca

(1−α)(1−β)

+d2+cb

1−β

)

Taking the derivative with respect to k allows us to perform the maximization.

First, rewrite the bound as

eln(β)k‖b1 − b∗1‖ +
χ(eln(α)k − eln(β)k)

α − β
‖a1 − a∗

1‖ +
d1 + ca

(1 − α)(1 − β)
+

d2 + cb

1 − β
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Taking the derivative with respect to k gives

ln(β)eln(β)k‖b1 − b∗1‖ +
αχ‖a1 − a∗

1‖

α − β

(
ln(α)eln(α)k − ln(β)eln(β)k

)

which is the same as (4.7). We have already characterized the location of the

zeros of this function when we studied the zeros of (4.7). Furthermore, since the

second derivatives will be the same as well, we know that kmax from the previous

theorem will be a local maximum for the bound on the error in this theorem as

well. Thus, we can use our results for kmax from the previous theorem for the case

that α 6= β. We must also consider the special case when α = β. In this instance,

we can apply the same derivation as in the previous theorem to get km, since the

derivative of (4.13) with respect to k is exactly the same as the derivative of (4.6)

which was for the special case α = β in the previous theorem. Thus, using the km

from the previous theorem and our bound on the parameter error, we can produce

the initialization error bounds required in Table 4.2. ¦

Qualitatively, this theorem assures us that our SFFBAC will be robust to small

disturbances and perturbations when we initialize it accurately enough. Essen-

tially, all we need to guarantee this is contractivity of the undisturbed and time-

invariant system, and continuity in the second adaptive state equation with respect

to the first elements adaptive state. We provide an example here to highlight the

quantitative aspects of the theorem. Not surprisingly, the theorem shows that

(possible2) jitter in the first element couples through to (possible) jitter in the

second element’s adaptive state. This fits with intuition: since the first element

processes the input to the second element, if it does so in a noisy way, it is possi-

ble that the second element will be sensitive to this noise. The parameter χ is a

2The theorem provides an upper bound on the error, which is not necessarily
the achieved supremum.
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measure of this sensitivity: second elements which are more sensitive to changes

in the first elements parameters have larger χs and possibly have more jitter due

to fluctuations in the first element’s state. Of course, we have not characterized

the disturbances yet, and, thus we have not exploited fully the possibility that

they might be zero on average. Our next two theorems specialize our analysis to

this case. But first, we consider a numerical example to highlight the quantitative

aspects of the previous theorem.

Example 4.2 (SFFBAC Time Varying and Disturbances). Consider two

adaptive elements connected together in series feedforward form, as in Figure 3.1,

with adaptive state equations

ak+1 = ak − µa (ak − a∗
k) + nk

bk+1 = bk − µb (bk − 3ak − b∗k) + nk,2

We wish to verify the accuracy of Theorem 7. To begin, we calculate the Lipschitz

and contractivity constants, which are α = (1−µa), β = (1−µb), as well as χ = 3µb

since the algorithm is in a simple linear form. Furthermore, the linear form allows

these constants to be globally true. As we can see in Figure 4.2, the bound offered

by this Theorem is not tight at all. Thus, we will develop averaging theory in the

next two sections to allow us to more fully study the way the two adaptive elements

interact, as well as get a better handle on how the step sizes affect convergent

jitter in an averaging form algorithm. Our current bounds do not indicate that

turning our step size down will decrease the bound due to the disturbance, while

our intuition and practical experience with averaging form algorithms suggest that

such a situation is indeed the case. Deterministic averaging theory will provide us

with a method of confirming our intuition about this concept, and of showing that
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Figure 4.2: Series Feed-forward Binary Adaptive Compound with disturbances and

time variation.

it does indeed apply to the series feed-forward binary adaptive compound case as

well.

4.1.3 SFFBAC Deterministic Finite Time Averaging The-

orem

Now we extend our analysis to include the possibility that we might not have a

contraction towards the desired points at every step, even when the first element is

at its desired state, while on average there will still be a contraction. The theorem
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we will develop will be similar to Theorem 4.

Theorem 8 (SFFBAC Finite Time Averaging). Consider two adaptive el-

ements connected as in Figure 3.1 to form a series feed-forward binary adaptive

compound with the averaging form adaptive state equations

âk+1 = âk + µaf̂a(k, âk, xk) (4.14)

b̂k+1 = b̂k + µbf̂b(k, b̂k, ga(âk, xk)) (4.15)

and its associated error form

ãk+1 = ãk + µafa(k, ãk, xk) + a∗
k − a∗

k+1

b̃k+1 = b̃k + µbfb(k, b̃k, ãk) + b∗k − b∗k+1 (4.16)

where ãk = âk − a∗
k, fa(k, ãk) = f̂a(k, ãk + a∗

k), b̃k = b̂k − b∗k, and fb(k, b̃k, ãk) =

f̂b(k, b̃k + b∗k, ga(ãk + a∗
k, xk)). Suppose that the following averaged update functions

exist

fav,a(ξ) = lim
N→∞

1

N

N∑

i=1

fa(i, ξ, xi)

fav,b(ν, ξ) = lim
N→∞

1

N

N∑

i=1

fb(i, ν, ξ)

Which give the following averaged systems

āk+1 = āk + µafav,a(āk) + a∗
k − a∗

k+1

b̄k+1 = b̄k + µbfav,b(b̄k, āk) + b∗k − b∗k+1 (4.17)

Suppose that the averaged systems, (4.14) and (4.15), obey the conditions in The-

orem 7, so that they are exponentially stable to balls around the trajectories a∗
k and

b∗k. Specifically, the averaged error system must satisfy conditions related to (4.10)

and (4.11) (DAC Conditions 3 and 4)

‖āk + µafav(āk)‖ ≤ α‖āk‖
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‖b̄k + µbfav,b(b̄k, 0)‖ ≤ β‖b̄k‖

and related to (4.12) (DAC Condition 5)

‖ν + µbfav,b(ν, ξ1) − (ν + µbfav,b(ν, ξ2)) ‖

= |µb|‖fav,b(ν, ξ1) − fav,b(ν, ξ2)‖ ≤ µbγ‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ B0(ha) ∀ν ∈ B0(hb)

Also suppose the unaveraged ãk system, (4.14), obeys the conditions of Theorem

5, so that the averaging error can be bounded linearly in µa. Define the total

perturbation for the second element to be

p(k, ν, ξ) =
k∑

i=1

[fb(i, ν, ξ) − fav,b(ν, ξ)]

and assume it is Lipschitz continuous uniformly in both arguments and bounded at

the desired states such that

‖p(k, ν1, ξ) − p(k, ν2, ξ)‖ < Lp,b‖ν1 − ν2‖ ∀ν1, ν2 ∈ B0(hb), ξ ∈ B0(ha) (4.18)

‖p(k, ν, ξ1) − p(k, ν, ξ2)‖ < χ‖ξ1 − ξ2‖ ∀ν ∈ B0(hb), ξ1, ξ2 ∈ B0(ha) (4.19)

‖p(k, 0, 0)‖ ≤ Bp,b ∀k ∈ {1, 2, · · · , Tb/µb} (4.20)

where B0(hb) = {ν|‖ν‖ < hb}, B0(ha) = {ξ|‖ξ‖ < ha}, and ha = h, where h is the

size of the balls used in Theorem 4. Assume that fav,b(b, a) is locally Lipschitz such

that

‖fav,b(ξ1, ν) − fav,b(ξ2, ν)‖ < Lf,b‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ B0(hb) ∀ν ∈ B0(ha)

‖fav,b(ν, ξ1) − fav,b(ν, ξ2)‖ ≤ γ‖ξ1 − ξ2‖ ∀ν ∈ B0(hb) ∀ξ1, ξ2 ∈ B0(ha)

where B0(ha) = {ξ|‖ξ‖ < ha} and B0(hb) = {ν|‖ν‖ < hb}. Furthermore, assume

that the second element’s unaveraged adaptive state equation is bounded, such that

‖fb(k, νk, ga(ξk, xk))‖ < Bf,b ∀k ∀νk ∈ B0(hb) ∀ξk ∈ B0(ha)
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Also assume that the step sizes are small enough and the time variation is slow

enough that

‖a∗
k+1 − a∗

k‖ ≤ ca ‖b∗k+1 − b∗k‖ ≤ cb

and

hb > βkm(α,β)‖b1‖ + d(km(α, β), α, β)‖a1‖ + ca

(1−α)(1−β)
+ cb

1−β

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

where

d(k, α, β) =







µbγ(αk−βk)
α−β

α 6= β

µbγkβk α = β

and

km(α, β) =







ln
(

ln(β)
ln(α)

(

1−
(α−β)‖b̃1‖

χ‖ã1‖

))

ln(α
β

)
α 6= β

−‖b̃1‖
χ‖ã1‖

− 1
ln(β)

α = β ≥ exp
{

−χ‖ã1‖

χ‖ã1‖+‖b̃1‖

}

1 α = β < exp
{

−χ‖ã1‖

χ‖ã1‖+‖b̃1‖

}

and w(µa, T ) is the bound on the difference between the averaged and unaverged

systems’ trajectories in the second adaptive element (‖ãk − āk‖) from Theorem 5

w(µa, T ) =
2 − αT/µ

1 − αT/µ
(cT + µ(Bp + Lph + LpBfT )) eλf T

If all of these assumptions hold, then over the time interval {1, ..., Tb/µb}, the

difference between the averaged trajectory and the unaveraged trajectory, ∆k =

‖b̃k− b̄k‖, is bounded by a function which can be made arbitrarily small by shrinking

BOTH µa and µb

∆k+1 ≤ eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

∀k ∈ {1, ..., Tb/µb}

(4.21)
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¦ Subtracting the averaged system, (4.15), from the unaveraged system, (4.17),

yields

b̃k+1 − b̄k+1 = b̃1 − b̄1 + µb

∑k
i=1

[

fb(i, b̃i, ga(ãi, xi)) − fav,b(b̃i, ãi)
]

+
∑k

i=1

[

fav,b(b̃i, ãi) − fav,b(b̄i, āi)
]

We observe again that

p(k, ãk, b̃k) − p(k − 1, ãk, b̃k) = fb(k, b̃k, ga(ãk, xk)) − fav,b(ãk, b̃k) k ≥ 2

which allows us to rewrite (4.1.3) as

b̃k+1 − b̄k+1 = b̃1 − b̄1 + µb

∑k
i=2

[

p(i, b̃i, ãi) − p(i − 1, b̃i, ãi)
]

+
∑k

i=1

[
fav,b(ai, bi) − fav,b(āi, b̄i)

]
+ fb(b̃1, ã1) − fav,b(b̃1, ã1)

A change of indices of summation yields

b̃k+1 − b̄k+1 = b̃1 − b̄1 + µb

∑k−1
i=1

[

p(i, b̃i, ãi) − p(i, b̃i+1, ãi+1)
]

+µb

∑k
i=1

[

fav,b(ãi, b̃i) − fav,b(āi, b̄i)
]

+ µbp(k, b̃k, ãk)

Adding a clever form of zero yields

b̃k+1 − b̄k+1 = b̃1 − b̄1 + µb

∑k−1
i=1

[

p(i, b̃i, ãi) − p(i, b̃i+1, ãi) + p(i, b̃i+1, ãi)

−p(i, b̃i+1, ãi+1)
]

+ µb

∑k
i=1

[

fav,b(ãi, b̃i) − fav,b(āi, b̄i)
]

+µbp(k, b̃k, ãk)

Defining ∆k = b̃k − b̄k, taking norms, and using the triangle inequality gives

∆k+1 ≤ ∆1 + µb

∑k
i=1

[

Lp,b‖b̃i+1 − b̃i‖ + χ‖ãi+1 − ãi‖
]

+

µb

∑k
i=1

[

γ‖ãi − āi‖ + Lf,b‖b̃i − b̄i‖
]

+ ‖µbp(k, b̃k, ãk)‖

Using (4.14) and (4.15) gives

∆k+1 ≤ ∆1 + µb

∑k
i=1

[

Lp,b‖µbfb(b̃i, ga(ãi, xi)) + b∗i − b∗i+1‖

+χ‖µafa(ãi, xi) + a∗
i − a∗

i+1‖
]
+

µb

∑k
i=1

[

γ‖ãi − āi‖ + Lf,b‖b̃i − b̄i‖
]

+ ‖µbp(k, b̃k, ãk)‖
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∆k+1 ≤ ∆1 + µb

∑k
i=1 [Lp,bµbBf,b + Lp,bcb + χµaBf + χca]

+µb

∑k
i=1

[

γ‖ãi − āi‖ + Lf,b‖b̃i − b̄i‖
]

+ µb

‖p(k, b̃k, ãk) − p(k, 0, ãk) + p(k, 0, ãk) − p(k, 0, 0) + p(k, 0, 0)‖

which allows us to use our assumptions to bound the last term. Using the triangle

inequality yields

∆k+1 ≤ ∆1 + µb

∑k
i=1 [Lp,bµbBf,b + Lp,bµbcb + χµaBf + χµaca]

+µb

∑k
i=1

[

γw(µa, T ) + Lf,b‖b̃i − b̄i‖
]

+µb

(

‖p(k, b̃k, ãk) − p(k, 0, ãk)‖ + ‖p(k, 0, ãk) − p(k, 0, 0)‖
)

+µb‖p(k, 0, 0)‖

where w(µa, T ) is the bound on the difference between the averaged and unaveraged

system trajectories in the second adaptive element provided by Theorem 5, and

we have that w(µa, T ) = O(µa), given certain conditions on the speed at which

the desired trajectory changes.

∆k+1 ≤ ∆1 + µb

∑k
i=1 [Lp,bµbBf,b + Lp,bcb + χµaBf + χca]

+µb

∑k
i=1

[

γw(µa, T ) + Lf,b‖b̃i − b̄i‖
]

+ µb

(

Lp,b‖b̃k‖ + χ‖ãk‖ + Bp,b

)

We finally have

∆k+1 ≤ ∆1 + µbk [Lp,bµb(Bf,b + cb) + χµa(Bf + ca)] + µbkγw(µa, T )

+µbLf,b

∑k
i=1 ‖b̃i − b̄i‖ + µb (Lp,bhb + χha + Bp,b)

which, after applying the discrete Bellman-Gronwell identity3 gives us

∆k+1 ≤ (1 + µbLf,b)
k [∆1 + Tb (Lp,bµbBf,b + Lp,bcb + χµaBf + χca)

+Tbγw(µa, T ) + µb (Lp,bhb + χha + Bp,b)]

3See Appendix C.
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Rearranging the terms in order to emphasize the impact of the step sizes, we have

∆k+1 ≤ (1 + µbLf,b)
k [∆1 + µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

which gives us the bound we desire. Assuming that we start the averaged and

unaveraged systems at the same place, we have

∆k+1 ≤ eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

∀k ∈ {1, ..., Tb/µb}

The last concern we must address is that we must verify that we never left

the balls in which our Lipschitz continuities and bounds were valid. We must now

verify that the second algorithm remains within the appropriate region. Continuing

in a similar manner as in the single algorithm case, we have

‖b̃k‖ ≤ ‖b̄k‖ + ∆k

Now, our assumptions about the averaged system dictate that it is exponentially

stable to balls around zero error from the desired trajectory

‖b̄k+1‖ ≤ βk‖b̄1‖ + d(k, α, β)‖ā1‖ +
ca

(1 − α)(1 − β)
+

cb

1 − β

where

d(k, α, β) =







µbγ(αk−βk)
α−β

α 6= β

µbγkβk α = β

Combining this with the bound on ∆k, and using Theorem 7 gives

‖b̃k‖ < βkm(α,β)‖b̃1‖ + d(km(α, β), α, β)‖ã1‖ + ca

(1−α)(1−β)
+ cb

1−β

eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]
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where, we have from Table 4.2 that

km(α, β) =







ln
(

ln(β)
ln(α)

(

1−
(α−β)‖b̃1‖

χ‖ã1‖

))

ln(α
β

)
α 6= β

−‖b̃1‖
χ‖ã1‖

− 1
ln(β)

α = β ≥ exp
{

−χ‖ã1‖

χ‖ã1‖+‖b̃1‖

}

1 α = β < exp
{

−χ‖ã1‖

χ‖ã1‖+‖b̃1‖

}

Thus, if the time variation is slow enough and the step sizes are small enough such

that

hb > βkm(α,β)‖b1‖ + d(km(α, β), α, β)‖a1‖ + ca

(1−α)(1−β)
+ cb

1−β

eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

(4.22)

then we remain in the ball in which our assumptions hold. ¦

This theorem is important not only for its quantitative information, but also

for the qualitative information it provides about SFFBACs. The most important

aspect we note from (4.21) is that to make the averaging error in the second element

small, shrinking the step size in the second element alone (as Theorem 4 for a single

adaptive element might be read to suggest) will not guarantee convergence to the

averaged system. Instead we (might4) have to make the step size small in the

first adaptive element as well to make the averaging error in the second adaptive

element small.

Example 4.3 (Averaging example for SFFBACs). Consider the series feed-

foward binary adaptive compound

âk+1 = âk − µa (âk − a∗
k)

3 cos(
2πk

100
)2 −

µa

4
(âk − a∗

k)

4The theorem provides upper bounds, but not necessarily supremums. Thus,
the bounds could be quite loose.
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b̂k+1 = b̂k − 2µb

(

(b̂k − b∗k)(1 + 3(âk − a∗
k))

)

cos(2πk
50

)2

−µb

(

(b̂k − b∗k)(1 + 3(âk − a∗
k))

)3

and its associated error system

ak+1 = ak − µaa
3
k cos(

2πk

100
)2 −

µa

4
ak + a∗

k − a∗
k+1

bk+1 = bk − 2µb (bk + 3akbk) cos(
2πk

50
)2 − µb (bk + 3akbk)

3 + b∗k − b∗k+1

from which we can discern the adaptive state error functions to be

fa(k, a) = −a3 cos(
2πk

100
)2 −

1

4
a

fb(k, b, a) = −2(b + 3ab) cos(
2πk

50
)2 − (b + 3ab)3

We see that these system functions are associated with averaged updates

fav,a(ā) = −
1

2
ā3 −

1

4
ā

fav,b(b̄, ā) = −
(
b̄ + 3āb̄

)
− (b̄ + 3āb̄)3

This produces the following averaged adaptive system

āk+1 = āk −
µa

2
ā3

k −
µa

4
āk + a∗

k − a∗
k+1

b̄k+1 = b̄k − µb

(
b̄k + 3ākb̄k

)
− µb(b̄k + 3ākb̄k)

3 + b∗k − b∗k+1

Theorem 8 quantifies the difference between a trajectory that is moving in the

averaged system and a trajectory moving in the unaveraged system. In order to

verify its tightness for this example, we need to calculate some relevant parameters.

In order to do so, let us assume our desired trajectories are

a∗
k = .2 cos

(
2πk

1000000

)
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b∗k = .3 cos

(
2πk

1000000

)

We need to choose a region of interest in which to calculate uniform Lipschitz

constants. We know that the averaged system needs to be uniformly contractive

to the fixed point for our theorem to apply, so let’s choose our area based on this

restriction. Calculating the contraction constants, we have

α ≤ maxã∈B0(ha)
‖ã−µa

2
ã3−µa

4
ã‖

‖ã‖

≤ maxã∈B0(ha) ‖1 − µa

4
− µa

2
ã2‖

≤ 1 − µa

4

which will work (i.e. be less than one) in any ball we choose, so we can pick

anything for ha and

β ≤ maxb̃∈B0(hb),ã∈B0(ha)
‖b̃−µb(b̃+3ãb̃)−µb(b̃+3ãb̃)3‖

‖b̃‖

≤ maxb̃∈B0(hb),ã∈B0(ha) ‖1 − µb(1 + 3ã) − µbb̃
2(1 + 3ã)3‖

(4.23)

which can be made less than one as desired if

max
b̃∈B0(hb),ã∈B0(ha)

‖1 − µb(1 + 3ã) − µbb̃
2(1 + 3ã)3‖ < 1

For µb = .001, one region in which this is true is the region a, b ∈ [−.2, .2]. Thus,

we choose as our region of interest a, b ∈ [−.2, .2]. Within this region (performing

the calculation in (4.23) numerically) we have

β = .9996

Lf,b ≤ max

∥
∥
∥
∥

∂fav,b

∂b

∥
∥
∥
∥
≤ max

∥
∥−(1 + 3a) − 3b2(1 + 3a)3

∥
∥ = 2.0915

γ ≤ max

∥
∥
∥
∥

∂fav,b

∂a

∥
∥
∥
∥
≤ max ‖ − 3b − 9a2b3‖ = 0.6029
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Lp,b ≤ max
∥
∥
∥
∑k

i=1
∂fb(i,b,a)

∂b
−

∂fav,b(b,a)

∂b

∥
∥
∥

≤ max
∥
∥
∥
∑k

i=1
∂
∂b

(
−2(b + 3ab) cos(2πk

50
)2 + (b + 3ab)

)
∥
∥
∥

≤ max
∥
∥
∥
∑k

i=1
∂
∂b

(
−(b + 3ab) cos(4πk

50
)
)
∥
∥
∥

≤ max
∥
∥
∥
∑k

i=1 −(1 + 3a) cos(4πk
50

)
∥
∥
∥ ≤ 7.1704

χ ≤ max
∥
∥
∥
∑k

i=1
∂fb(i,b,a)

∂a
−

∂fav,b(b,a)

∂a

∥
∥
∥

≤ max
∥
∥
∥
∑k

i=1
∂
∂a

(
−(b + 3ab) cos(4πk

50
)
)
∥
∥
∥

≤ max
∥
∥
∥
∑k

i=1 −3b cos(4πk
50

)
∥
∥
∥ ≤ 2.6889

Bf,b = max ‖ − 2(b + 3ab) cos(
2πk

50
)2 − (b + 3ab)3‖ ≤ 0.6728

Bp,b = max ‖
k∑

i=1

(0 + 0) cos(
4πi

50
)‖ ≤ 0

Lp ≤ max
∥
∥
∥
∑k

i=1
∂fa(i,a)

∂a
− ∂fav,a(a)

∂a

∥
∥
∥

≤ max
∥
∥
∥
∑k

i=1
∂
∂a

(
−a3 cos(2πk

100
)2 + 1

2
a3

)
∥
∥
∥

≤ max
∥
∥
∥
∑k

i=1
∂
∂a

−1
2

a3 cos(4πk
100

)
∥
∥
∥

≤ max
∥
∥
∥
∑k

i=1
−3
2

a2 cos(4πk
100

)
∥
∥
∥ ≤ 0.5078

λf ≤ max

∥
∥
∥
∥

∂fav,a(a)

∂a

∥
∥
∥
∥
≤ max

∥
∥
∥
∥

−1

4
−

3

2
a2

∥
∥
∥
∥
≤ 0.31

Bf = max

∥
∥
∥
∥

−1

4
a − a3 cos(

2πk

100
)2

∥
∥
∥
∥
≤ 0.0580

Bp = max

∥
∥
∥
∥
∥

k∑

i=1

−1

2
a3 cos(

4πk

100
)

∥
∥
∥
∥
∥
≤ 0.0339

Now, applying the theorem with a particular initialization and window lengths,

T and Tb, chosen using Theorem 5, and by picking any Tb, we can create Figure 4.3.
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Figure 4.3: An application of the SFFDASP finite time averaging theorem. Note

that by exploiting the zero mean nature of the disturbance, we have made the

bound tight.

This figure indicates that the bound provided is indeed true for this case, although

not at all tight.

4.1.4 SFFBAC Deterministic Hovering Theorem

Boundedness of the averaging approximation error on a finite interval only is not

necessarily enough information regarding system behavior when one wishes to em-

ploy SFFBACs. Often, we want to continue using the device over an infinite
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amount of time, and thus, we need bounds on the error over an infinite time

window. The next theorem, which is similar to theorem 5, answers this need.

Theorem 9 (SFFBAC Hovering Theorem). Consider two adaptive elements

connected together to form a series feed-forward binary adaptive compound. As-

sume that the first adaptive element satisfies the assumptions of Theorem 5. Fur-

thermore, assume that the second adaptive element satisfies the assumptions of

Theorem 8, with slight modifications to (4.18), (4.19), and (4.20)

pn(k, ξ, ν) =

k+nTb/µb∑

i=nTb/µb

[fb(i, ξ, ga(ν, xi)) − fav,b(ξ, ν)]

‖pn(k, ξ1, ν) − pn(k, ξ2, ν)‖ < Lp,b‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ B0(hb) ∀ν ∈ B0(ha)

‖pn(k, ξ, ν1) − pn(k, ξ, ν2)‖ < χ‖ν1 − ν2‖ ∀ξ ∈ B0(hb) ∀ν1, ν2 ∈ B0(ha)

where B0(hb) and B0(ha) are defined as in Theorem 8

‖pn(k, 0, 0)‖ ≤ Bp,b

We also require

hb ≤ βkmax(α,β)‖b̄1‖ + µbγd(kmax(α, β), α, β)‖ā1‖ + ca

(1−α)(1−β)
+ cb

1−β

(µbLf,b)
Tb/µb1

{µb>L−1
f,b

}
)

1−βTb/µb

[

2µbγα(n−1)Tb/µbu(α, β)‖ã1‖ + 2µbγ
1−βTb/µb−1

1−β
c

1−α

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]] +

eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

(4.24)

and the conditions of Theorem 5 to hold for the first adaptive element. If these

assumptions hold, then over an infinite time window the difference between the

averaged system’s trajectory and the unaveraged system’s trajectory can be bounded



87

by a linear function of µa in the first adaptive element (because Theorem 5 was

assumed to hold), and by a linear function of both µa and µb in the second adaptive

element

‖b̃k‖ ≤ βk‖b̄1‖ + µbγd(k, α, β)‖ā1‖ + ca

(1−α)(1−β)
+ cb

1−β

(µbLf,b)

Tb/µb1
{µb>L−1

f,b
}
)

1−βTb/µb

[

2µbγα(n−1)Tb/µbu(α, β)‖ã1‖ + 2µbγ
1−βTb/µb−1

1−β
c

1−α

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]] +

eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

¦ The trick is once again to divide the time axis in the second element up into

intervals of length Tb/µb, and then use Theorem 8 to guarantee boundedness of

the averaging error on each of these intervals. To do this, we associate with each

interval a interval-averaged system trajectory, b̄n,k, k ∈ {nTb/µb, ..., (n + 1)Tb/µb},

and initialize this trajectory with the unaveraged system’s parameter, b̄n,nTb/µb
=

b̃nTb/µb
. Then, we use the contraction in the averaged system’s map to guarantee

that each of our interval-averaged system trajectories will move toward the infinite-

averaged system trajectory. Thus, we will have a relation between the interval and

infinite-averaged systems, and a relation between the interval-averaged system and

the unaveraged systems. We can then combine these two relations to relate the

unaveraged system with the infinite-averaged system.

We begin by using (4.17) to write

‖b̄nTb/µb
− b̄n−1,nTb/µb

‖ =
∥
∥b̄nTb/µb−1 + fav,b(b̄nTb/µb−1, ānTb/µb−1)

−
(
b̄n−1,nTb/µb−1 + fav,b(b̄n−1,nTb/µb−1, ānTb/µb−1)

)∥
∥
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Adding a clever form of zero produces

‖b̄nTb/µb
− b̄n−1,nTb/µb

‖ =
∥
∥b̄nTb/µb−1 + µbfav,b(b̄nTb/µb−1, ānTb/µb−1)

−µbfav,b(b̄nTb/µb−1, 0) + µbfav,b(b̄nTb/µb−1, 0)

+µbfav,b(b̄n−1,nTb/µb−1, 0) − µbfav,b(b̄n−1,nTb/µb−1, 0)

−
(
b̄n−1,nTb/µb−1 + µbfav,b(b̄n−1,nTb/µb−1, ānTb/µb−1)

)∥
∥

Using the triangle inequality yields

‖b̄nTb/µb
− b̄n−1,nTb/µb

‖ ≤
∥
∥b̄nTb/µb−1 + µbfav,b(b̄nTb/µb−1, 0)

−
(
b̄n−1,nTb/µb−1 + µbfav,b(b̄n−1,nTb/µb−1, 0)

)∥
∥

+‖µbfav,b(b̄nTb/µb−1, ānTb/µb−1) − µbfav,b(b̄nTb/µb−1, 0)‖

+‖µbfav,b(b̄n−1,nTb/µb−1, ānTb/µb−1)

−µbfav,b(b̄n−1,nTb/µb−1, 0)‖

Using the assumption about Lipschitz continuity of fav,b in a, we have

‖b̄nTb/µb
− b̄n−1,nTb/µb

‖ ≤ β‖b̄nTb/µb−1 − b̄n−1,nTb/µb−1‖ + 2µbγ‖ānTb/µb−1‖

Substituting in the bound from the single algorithm hovering theorem, Theorem

5, which we know to hold for the first of the adaptive elements, we have

‖b̄nTb/µb
− b̄n−1,nTb/µb

‖ ≤ β‖b̄nTb/µb−1 − b̄n−1,nTb/µb−1‖ + 2µbγ
(
αnTb/µb−2‖a1‖

+ ca

1−α

)

Running the recursion backwards until the beginning of this particular time seg-

ment and assuming ā1 = a1 yields

‖b̄nTb/µb
− b̄n−1,nTb/µb

‖ ≤ βTb/µb‖b̄(n−1)Tb/µb
− b̄n−1,(n−1)Tb/µb

‖ +
∑Tb/µb−3

i=0 βi (2µbγ

(
αnTb/µb−2−i‖a1‖ + c

1−α

))

Using the fact that we initialized the interval-averaged system with the unaveraged

system, we have

‖b̄nTb/µb
− b̄n−1,nTb/µb

‖ ≤ βTb/µb‖b̄(n−1)Tb/µb
− b̃(n−1)Tb/µb

‖ +
∑Tb/µb−1

i=0 βi (2µbγ

(
αnTb/µb−2−i‖a1‖ + c

1−α

))
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Also, we know from the triangle inequality that

‖b̄nTb/µb
− b̃nTb/µb

‖ ≤ ‖b̄nTb/µb
− b̄n−1,nTb/µb

‖ + ‖b̄n−1,nTb/µb
− b̃nTb/µb

‖

whose first term on the right hand side we just bounded, and whose second term

on the right hand side is bounded by Theorem 8. Thus, we have

‖b̄nTb/µb
− b̃nTb/µb

‖ ≤ βTb/µb‖b̄(n−1)Tb/µb
− b̃(n−1)Tb/µb

‖ +
∑Tb/µb−1

i=0 2µbγβi (

αnTb/µb−1−i‖ã1‖ + c
1−α

)

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

Since we started the averaged an unaveraged system at the same place, we have

‖b̄0nTb/µb
− b̃0nTb/µb

‖ = 0, and thus running the recursion backwards in n of the

above equation yields

‖b̄
n

Tb
µb

− b̃
n

Tb
µb

‖ ≤ 1
1−βTb/µb

[
∑Tb/µb−1

i=0 2µbγβi
(
αnTb/µb−1−i‖ã1‖ + c

1−α

)

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]]

Using the sum of a finite geometric series yields

‖b̄
n

Tb
µb

− b̃
n

Tb
µb

‖ ≤ 1
1−βTb/µb

[

2µbγα(n−1)Tb/µbu(α, β)‖ã1‖ + 2µbγ
1−βTb/µb−1

1−β
c

1−α

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]]

(4.25)

where we recognized a term that was the same as the one we bounded in the

previous theorem and called d(k, α, β), and thus defined

u(α, β) = d(kmax(α, β), α, β)

where d and kmax are defined as in the previous finite time averaging theorem.
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We now have a bound for the difference between the averaged and unaverged

trajectories every Tb/µb steps. Of course, we want to bound the error between these

trajectories for other times as well. To do so, we once again use the contractivity

of the averaged system. Take k ∈ {nTb/µb, nTb/µb + 1, · · · , (n + 1)Tb/µb}, then we

have

‖b̄k − b̄nTb/µb,k‖ ≤ ‖
(
b̄k−1 + µbfav,b(b̄k−1, āk−1)

)

−
(
b̄nTb/µb,k−1 + µbfav,b(b̄nTb/µb,k−1, āk−1)

)
‖

≤ µb‖fav,b(b̄k−1, āk−1) − fav,b(b̄nTb/µb,k−1, āk−1)‖

≤ µbLf,b‖b̄k−1 − b̄nTb/µb,k−1‖

Thus, stepping back in time until we get to nTb/µb gives

‖b̄k − b̄nTb/µb,k‖ ≤ (µbLf,b)
k−nTb/µb‖b̄nTb/µb

− b̄nTb/µb,nTb/µb
‖

Thus, if µb < L−1
f,b, the largest difference between the interval and infinite averaged

systems will be at the beginning of the interval, and if µb > L−1
f,b, the largest

difference will be at the end of interval.

‖b̄k − b̄nTb/µb,k‖ ≤
(µbLf,b)

Tb/µb1
{µb>L−1

f,b
}
)

1−βTb/µb

[
2µbγα(n−1)Tb/µbu(α, β)‖ã1‖

+2µbγ
1−βTb/µb−1

1−β
c

1−α

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]]

The triangle inequality states that

‖b̄k − b̃k‖ ≤ ‖b̄k − b̄nTb/µb,k‖ + ‖b̄nTb/µb,k − b̃k‖

We recognize the term on the right hand side as what we bounded in the finite

time averaging theorem. Furthermore, we just discussed a bound on the second
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term. Thus, we combine these two bounds to get

‖b̄k − b̃k‖ ≤
(µbLf,b)

Tb/µb1
{µb>L−1

f,b
}
)

1−βTb/µb

[

2µbγα(n−1)Tb/µbu(α, β)‖ã1‖ + 2µbγ
1−βTb/µb−1

1−β
c

1−α

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]] +

eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

(4.26)

This is the bound we desired, but we must make sure that we never left the ball

within which our solutions were valid. Since the averaged system is contractive

‖b̄k+1‖ ≤ βk‖b̄1‖ + µbγh(k, α, β)‖ā1‖ +
µbγca

(1 − α)(1 − β)
+

cb

1 − β
(4.27)

Now the triangle inequality tells us that

‖b̃k‖ ≤ ‖b̄k‖ + ‖b̄k − b̃k‖

So we have from (4.26) and (4.27)

‖b̃k‖ ≤ βk‖b̄1‖ + µbγd(k, α, β)‖ā1‖ + ca

(1−α)(1−β)
+ cb

1−β

(µbLf,b)

Tb/µb1
{µb>L−1

f,b
}
)

1−βTb/µb

[

2µbγα(n−1)Tb/µbu(α, β)‖ã1‖ + 2µbγ
1−βTb/µb−1

1−β
c

1−α

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]] +

eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

Recognizing that this equation behaves in k like the bound from Theorem 3 with
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an added constant offset, we define kmax(α, β) as in Theorem 3, and get that

‖b̃k‖ ≤ βkmax(α,β)‖b̄1‖ + µbγd(kmax(α, β), α, β)‖ā1‖ + ca

(1−α)(1−β)
+ cb

1−β

(µbLf,b)
Tb/µb1

{µb>L−1
f,b

}
)

1−βTb/µb

[

2µbγα(n−1)Tb/µbu(α, β)‖ã1‖ + 2µbγ
1−βTb/µb−1

1−β
c

1−α

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]] +

eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

for any k. Thus, to remain in the balls in which our solution exists, we require

hb ≤ βkmax(α,β)‖b̄1‖ + µbγd(kmax(α, β), α, β)‖ā1‖ + ca

(1−α)(1−β)
+ cb

1−β

(µbLf,b)
Tb/µb1

{µb>L−1
f,b

}
)

1−βTb/µb

[

2µbγα(n−1)Tb/µbu(α, β)‖ã1‖ + 2µbγ
1−βTb/µb−1

1−β
c

1−α

+eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]] +

eLf,bTb [µb (Lp,bBf,bTb + Lp,bhb + χha + Bp,b)

+µaTbχBf + Tbγw(µa, T ) + Tbχca + TbLp,bcb]

which is the initialization accuracy required by the theorem. ¦ We now consider

an example in which we are interested in bounding the difference between the

averaged and unaveraged system over an infinite interval.

Example 4.4 (SFFBAC Infinite Averaging). We wish to use Theorem 9 in a

quantitative manner for the same system that we investigated on a finite interval

in Example 4.3. Noticing that we can still use all of the constants we calculated

for that example, we wish to determine what length the time windows, T and Tb,

should be to get the tightest bound on the difference possible. A plot showing the

averaging error versus T and Tb for a particular ‖a1‖ and ‖b1‖ is shown in Figure

4.4. The plot shows the averaging error for different T in the top pane, and the
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Figure 4.4: Selection of T and Tb in Example 4.4.

averaging error for different Tb, given that the optimal (associated with smallest

error) T is chosen in the first adaptive element. The minimum averaging error

over T and Tb is then taken, and Figure 4.5 shows that this averaging error bound

is indeed correct, although terribly conservative.

It is important to notice the quantitative conservativeness of the bounds pro-

vided by this theorem, as was highlighted in the example. We derive useful qualita-

tive information from the theorem by noting that to decrease the error between the

averaged and unaveraged trajectories in the second adaptive element, one should

make both µa and µb smaller. This is an interesting result, because it shows that
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Figure 4.5: Accuracy of bound provided by Theorem 9.
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in a general averaged SFFBAC designed with DaC, to guarantee that the error in

the second element small, we must turn down the step size in both elements. This

fact has interesting practical implications, because it argues roughly for decreas-

ing effective step sizes as one moves along the signal path in a series feed-forward

chain. Furthermore, since we needed the time variation to be on the order of the

step size in each of the adaptive elements, we can draw a further conclusion. Unless

the elements later in the chain are insensitive to error in the earlier elements, the

effective tracking capabilities in a series feed-forward chain exploiting averaging

decrease as you move forward in the chain.

4.2 Analytical Misbehavior Characterization

Now that we have given the conditions under which we can expect our SFFBAC

to behave, we would like to characterize what happens when these compounds

do not behave as we would expect or wish, that is, they do not converge to the

desired points. While lack of convergence does not necessarily cause performance

degradation or failure, if the desired trajectories were chosen to be at a maximum

performance point (a likely occurrence), then the overall performance of the mis-

behaving system can not be better than the behaving system, and it is likely that

it will be worse. One of the simplest ways to cause this to happen is to have a

desired trajectory in the first element which is periodic, but too fast and large

for first element to track (this can be accomplished by making the step size very

small). Thus, instead of following the periodic desired trajectory, the first element

stays near the average value of this trajectory. Since the first device’s adaptive

state is no longer convergent to its desired value, the second device’s adaptation

sub-element could behave non-ideally due to its dependence on proper operation
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of the first device. These are the ideas outlined in the next theorem.

Theorem 10 (Zero Manifold Movement in SFFBACs). Consider a simple

system built from two adaptive algorithms connected to each other in series feed-

forward fashion, as in Figure 3.15.

âk+1 = âk + µfa(âk − aopt
k )

bk+1 = bk + µbfb(bk, ak, xk)

Let fa be a continuously differentiable function such that fa(0) = 0 and α ≡

‖I + µadfa(0)‖ < 1, where dfa(0) is the derivative of fa evaluated at 0. Suppose

aopt
k is periodic, with an average component of a∗, such that

a∗ =
1

N

N+k∑

i=k

aopt
k ∀k

Define a function b∗(k, a) such that

0 = fb(k, b∗(k, a), a) ∀k, a ∈ D (4.28)

We call b∗(k, a) the zero-manifold of the adaptive algorithm. Define

g(k, b, a) =







‖b+µbfb(k,b,a)−b∗(k,a)‖
‖b−b∗(k,a)‖

b 6= b∗(k, a)

limb→b∗(k,a)
‖b+µbfb(k,b,a)−b∗(k,a)‖

‖b−b∗(k,a)‖
b = b∗(k, a)

and

βra,rb
= sup

k∈N ,a∈Ba∗ (ra), b∈Bb∗(k,a)(rb)

g(k, b, a) (4.29)

with Bb∗(k,a)(rb) = {b|‖b − b∗(k, a)‖ ≤ rb} and Ba∗(ra) = {a|‖a − a∗‖ ≤ ra} so that

we have

‖b + µbfb(k, b, a) − b∗(k, a)‖ ≤ βra,rb
‖b − b∗(k, a)‖

5Note that we have dropped the explicit dependance on the input output equa-
tion of the first adaptive element here by defining fb(k, b, a) = fb(b, ga(a, x))
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∀a ∈ Ba∗(ra), b ∈ Bb∗(k,a)(rb)

We assume that the algorithms were chosen such that when the first element is at

its optimal setting aopt
k the second adaptive element is uniformly contractive to bopt

k .

Thus ∃rahb such that βra,rb
< 1 ∀rb ≤ hb and bopt

k = b∗(k, aopt
k ), as is typically done

when using divide and conquer tactics. Also, assume

ra > ‖a1 − a∗‖ +
d

1 − α
+ ε(µa) (4.30)

and

rb > ‖b1 − b∗(a∗, 1)‖ +
c

1 − βra,rb

(4.31)

where we used the following constants

d = sup
a∈B0(ha)

µa‖fa(ak + a∗ − aopt
k ) − dfa(0)

(
ak + a∗ − aopt

k

)
‖

c = sup
k

‖b∗(k, a∗) − b∗(k + 1, a∗)‖

and the function, ε(µa) is O(µa). If these assumptions hold, the first adaptive

element’s state converges to a ball around a∗, whose size can be made arbitrarily

small by shrinking µa, and the second adaptive element’s state converges to a ball

around b∗(k, a∗).

‖ak+1 − a∗‖ ≤ αk‖a1 − a∗‖ +
d

1 − α
+ O(µa)

‖bk+1 − b∗(k + 1, a∗)‖ ≤ βk
ra,rb

‖b1 − b∗(1, a∗)‖ +
c

1 − βra,rb

Thus, as µa → 0, it is possible that neither algorithm converges to its optimal

trajectory! Instead, the first element converges to the average, a∗, of its optimal

periodic trajectory, and the second algorithm moves around in a zero manifold,

b∗(k, a∗) (see example 4.5 for an example of a zero manifold). Since it is possible

that neither adaptive element is at their optimum point, there could be performance

degradation in the system.
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¦ We begin with the adaptive state equation of the first element.

âk+1 = âk + µafa(âk − aopt
k ) (4.32)

To begin, we perform a change of variables in the two systems to make the origin

the point to which we are studying stability. To do so, we define ak = âk − a∗, and

substitute it in for âk to get

ak+1 = ak + µafa(ak + a∗ − aopt
k ) (4.33)

Furthermore, we will base our result upon linearization, so we add a clever form

of zero to get

ak+1 = ak+µadfa(0)
(
ak + a∗ − aopt

k

)
+µa

[
fa(ak + a∗ − aopt

k ) − dfa(0)
(
ak + a∗ − aopt

k

)]

from which we extract a term we label the ”linearization error”

h(a, k) = fa(ak + a∗ − aopt
k ) − dfa(0)

(
ak + a∗ − aopt

k

)

This enables us to write

ak+1 = ak + µadfa(0)
(
ak + a∗ − aopt

k

)
+ µah(ak, k)

We define another system which removes the effect of the difference between a∗

and aopt
k .

āk+1 = āk + µadfa(0)āk + µah(āk, k)

We can use averaging theory, specifically Theorem 5, to relate these two systems.

We check the applicability of this theorem by looking at the total perturbation

p(k, a) =
∑k

i=1

[
dfa(0)

(
a + a∗ − aopt

i

)
+ h(a, i) − (dfa(0) + h(a, i))

]

=
∑k

i=1 dfa(0)
(
a∗ − aopt

i

)



99

which, considering (4.33), must be bounded, since aopt
i is periodic and real with

average zero. We have just shown that assumption (2.16) of Theorem 5 holds,

where we are considering our ”averaged system” to be the one dealing with ā, and

the unaveraged one the one dealing with a. We should also check the Lipschitz

continuity of the total perturbation, which is required by (4) for Theorem 5.

p(k, a) − p(k, a′) =
k∑

i=0

dfa(0)
(
a∗ − aopt

i

)
−

k∑

i=0

dfa(0)
(
a∗ − aopt

i

)
= 0 ≡ Lp

Continuing on, the remaining conditions of Theorem 5 are

‖a∗
k+1 − a∗

k‖ ≤ c ∀k

and a condition ensuring that the system remains within the balls (of radius ra

and rb) where our constants are valid. The first of these will hold with c = 0, due

to the non-time varying nature of the point we are proving stability to, a∗. We

will check the second condition at the end of the proof.

Assuming the Theorem applies, and we can bound the difference in the trajec-

tories between the two systems by

‖āk+1 − ak+1‖ ≤
2 − αT/µ

1 − αT/µ
µ(Bp + Lph + LpBfT )eλf T

Since we know from the triangle inequality that

‖ak+1 − a∗‖ ≤ ‖ak+1 − āk+1‖ + ‖āk+1 − a∗‖ (4.34)

we now focus on verifying that the second term in the sum is bounded. To do so,

we can use Theorem 1, considering h(ak, k) as a disturbance, which we uniformly

bound using

‖h(ak, k)‖ ≤ d ≡ sup
a∈B0(ha)

µa‖h(a, k)‖



100

Theorem 1 tells us that the second term in (4.34) is bounded by

‖āk+1 − a∗‖ ≤ αk‖ā1 − a∗‖ +
d

1 − α

Since we are considering the same initial conditions for both the averaged system

and the un-averaged system, we have ā1 = a1. Using this fact, and combining our

bounds for both the terms using (4.34), we have

‖ak+1 − a∗‖ ≤ αk‖a1 − a∗‖ +
d

1 − α
+

2 − αT/µ

1 − αT/µ
µ(Bp + Lph + LpBfT )eλf T

(4.35)

This is our desired bound for the first element, indicating that, apart from some

linearization error, the first adaptive element converges to within an ball of a∗

which can be made arbitrarily small by shrinking the step size, since d is O(µa).

Now, let us address the part of the theorem that characterizes the behavior in

the second adaptive element. To do so, we wish to quantify the distance from the

zero manifold, b∗(k, a∗).

bk+1 − b∗(k + 1, a∗) = bk + µbfb(k, bk, ak) − b∗(k, a∗) + b∗(k, a∗) − b∗(k + 1, a∗)

using the Triangle inequality and (4.29)

‖bk+1 − b∗(k + 1, a∗)‖ ≤ βra,rb
‖bk − b∗(k, a∗)‖ + ‖b∗(k, a∗) − b∗(k + 1, a∗)‖

Defining c = supk ‖b
∗(k, a∗) − b∗(k + 1, a∗)‖, we have

‖bk+1 − b∗(k + 1, a∗)‖ ≤ βra,rb
‖bk − b∗(k, a∗)‖ + c

and running the recursion and using the sum of an infinite geometric series gives

‖bk+1 − b∗(k + 1, a∗)‖ ≤ βk
ra,rb

‖b1 − b∗(1, a∗)‖ +
c

1 − βra,rb

(4.36)
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which proves that we converge to a ball around the zero-manifold, which is possibly

different from the desired trajectory, bopt = b∗(k, aopt
k ).

The last item which we must verify is that we remained within the balls in

which our constants were valid. We do so using (4.35) and (4.36). Thus, we need

ra > ‖a1 − a∗‖ +
d

1 − α
+

2 − αT/µ

1 − αT/µ
µ(Bp + Lph + LpBfT )eλf T (4.37)

and

rb > ‖b1 − b∗(a∗, 1)‖ +
c

1 − βra,rb

(4.38)

for the theorem to hold. These are conditions (4.30) and (4.31) from the theorem.

To see that (4.30) ⇐⇒ (4.37), we must show that the last term in 4.37 is O(µ) for

small enough µ. This fact follows from the form we chose for α ≡ ‖I + µdfa(0)‖,

which, for small µ and stable averaged systems is ≈ 1 − %µ for some constant %.

Given this information, we can choose T in (4.38) to guarantee the last term is

O(µ). Details for this technique can be found in the hovering theorem section of

[10].

To be complete, we ensure the reader is familiar with the constants used in the

equations above. For Theorem 5, we used the following constants.

Bf = sup
k, a∈B0(ha)

‖dfa(0)a + h(a, k)‖

λf = supk, a1,a2∈B0(ha) ‖ (dfa(0)a1 + h(ak, k)) − (dfa(0)a2 + h(ak, k)) ‖

≤ supk, a1,a2∈B0(ha) ‖dfa(0)‖‖a1 − a2‖

Both of these exist due to differentiability of the averaged system. ¦

Example 4.5 (A Linear Misbehavior Example). Consider the following SFF-

BAC

ak+1 = ak − µa

(

ak − cos(
2πk

100
)

)

(4.39)
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bk+1 = bk − µb

(

bk − .1 −

(

ak − cos

(
2πk

100

)))

(4.40)

Note that we have chosen to deal with linear systems here, because the results in

the theorem are obtained via linearization. This is convenient, because ra, rb = ∞,

and we do not have to check the conditions verifying that we remained within a ball

where our contraction constants were valid, since that ball can be arbitrarily large

when we have used a linear system. Continuing on, we can conclude from (4.39)

and (4.40) that the optimal trajectories are

aopt
k = cos(

2πk

100
)

bopt
k = .1

Our misbehavior predicts that, for small enough µa, the first adaptive element will

converge to a small ball around a∗ = 1
100

∑99
i=0 cos(2πk

100
) = 0. Also, our misbehavior

theorem predicts that the second adaptive element will converge to b∗(k, a∗). Using

(4.28) and (4.40) the zero-manifold in the second adaptive element obeys

0 = b∗(k, a) − .1 −

(

a − cos

(
2πk

100

))

This implies that the zero manifold in the second adaptive element is

b∗(k, a) = .1 +

(

a − cos

(
2πk

100

))

Thus, as we make the first adaptive element’s stepsize approach 0, we expect the

second adaptive element to move in the manifold

b∗(k, a) = .1 − cos

(
2πk

100

)

Figure 4.6 shows that this is indeed the case, by plotting the trajectories of the

system for several µa values.
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Figure 4.6: Misbehavior of two interconnected linear adaptive systems.
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Example 4.6 (A Nonlinear Misbehavior Example). To verify that the theo-

rem holds for nonlinear systems too, we now provide a nonlinear example with

ak+1 = ak + µa

[
(ak − cos(2πk/100)) + (ak − cos(2πk/100))3]

bk+1 = bk + µb sin
(

bk −
π

16
−

π

16
(ak − cos(2πk/100))

)

aopt
k = cos(2πk/100)

bopt
k =

π

16

0 = sin
(

b∗(k, a) −
π

16
−

π

16
(ak − cos(2πk/100))

)

(4.41)

Since we must have both a contraction and b∗(k, aopt
k ) = bopt

k , we pick a solution to

(4.41) which satisfies both of these conditions

b∗(k, ak) =
π

16
+

π

16
(ak − cos(2πk/100))

a∗ =
1

100

99∑

i=0

cos(2πk/100) = 0

b∗(k, a∗) =
π

16
−

π

16
cos(2πk/100)

Figure 4.7 shows thats our conclusions from the the theorem hold in this case. In

particular, as you decrease the step size in the first adaptive element, it actually

converges to a constant, instead of the desired periodic trajectory. This misbehavior

in the first element then causes the second adaptive element to converge to a curve

different from its desired trajectory. Thus, this is an example of an interconnected

nonlinear adaptive system undergoing misbehavior as described in the theorem.

Thus, we have characterized one particular type of misbehavior in SFFBACs.

This theorem strongly suggests that step sizes need to be chosen carefully, since

decreasing them lowers the averaging error but also makes it harder for the device
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to adapt to fast time variations. Thus, in selecting step sizes, one encounters a

tradeoff between lowering the averaging error and the ability to track fast time

variations.

It is important to note, however, that the results in the theorem are essentially

linear. That is, nonlinear systems behave this way only to the extent that they

can be approximated or bounded locally by linear systems. There are other phe-

nomena, not mentioned in this thesis, which only nonlinear systems can have. One

important phenomenon, which we will not consider here, is bifurcation. In fact,

since we were interested in proving convergence within a local context, a great

portion of this thesis did not address some of the fundamental aspects of nonlinear

systems. This does not make the material presented in the thesis incorrect, or in-

accurate, or un-useful, indeed, the theory we have provided has done mostly what

it set out to do. Nevertheless, it is important to note other topics we could have

discussed, and oscillation are bifurcations are a couple of these.



Chapter 5

Application of SFFBAC Theory to

Simple Digital Receivers
Finally we have collected our arsenal of theorems with which to tackle a specific

SFFBAC behavior/misbehavior characterization. We will now use these theo-

rems to study the interaction between two separate adaptive elements in a digital

receiver. We consider two adaptive algorithm pairs, an automatic gain control

followed by carrier recovery, and timing recovery followed by equalization.

5.1 Application: Behavior of Gain Control and Phase Re-

covery

We now apply our conditions and theorem to a simple digital receiver architecture.

5.1.1 The System Architecture

Consider a simple QPSK digital communications system as depicted in Figure 5.1.

The source symbols ak, which are chosen in an independently and identically dis-

tributed manner from a QPSK constellation with unit power, are passed through

+ AGC

Adaptive Receiver

PRgke
jθk

ak = ej( lπ
2

+π
4 )

l ∈ {0, 1, 2, 3}
nke

jφk

nk ∈ U [−ρ
2
, ρ

2
)

φk ∈ U [0, 2π)

xk yk zk

Figure 5.1: A Simple QPSK Digital Communications System.
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a channel which scales, phase shifts, and adds i.i.d. zero-mean noise that is inde-

pendent of the source symbols. From the diagram, we can discern that the output

of the channel, xk can be written as

xk = gke
jθkak + nke

jφk

The receiver then processes this input with the intention of keeping the power

delivered to the rest of the receiver approximately constant. To perform this task,

the receiver employs an automatic gain control, which forms its output yk by

scaling its input xk by its adaptive estimate of the optimal gain, ĝk in

yk = ĝkxk = ĝkgke
jθk + ĝknke

jφk

The receiver then must compensate for the phase shift θk which occurred in the

channel. To do so, it uses a phase recovery adaptive device, which de-rotates its

input with its phase estimate, θ̂k to produce as output

zk = yke
−jθ̂k = ĝkgke

j(θk−θ̂k) + ĝknke
j(φk−θ̂k)

5.1.2 The Adaptive Algorithms

There are a number of adaptive algorithms which the receiver can employ in order

to chose the processing gain, ĝk, and phase, θ̂k. We will consider the following

automatic gain control algorithm [11]

ĝk+1 = ĝk + µGC

(
1 − ĝ2

k|xk|
2
)
sign[gk] (5.1)

We will also consider two possible choices for the phase recovery algorithm, a

blind algorithm and a trained algorithm. The trained algorithm exploits (unusual)

knowledge at the receiver of the transmitted symbols, ak, and is commonly referred
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to as a (trained) PLL [12]. It obeys the recursion

θ̂k+1 = θ̂k + µPRIm
{

a∗
kyke

−jθ̂k

}

(5.2)

The blind algorithm [13] we will consider for phase recovery exploits the QPSK

constellation by using a 4th power nonlinearity in

θ̂k+1 = θ̂k + µPRIm

{(

xke
−jθ̂k

)4
}

(5.3)

5.1.3 Averaged Behavior

We now consider the averaged behavior of the two algorithms given our input

by calculating the expectation of the adaptive state functions (i.e. the expected

value of the portions of (5.1), (5.2), and (5.3) following µ). For the automatic gain

control we have

Sg(ḡk) = E

[

1 − ḡkgk

∣
∣ake

jθk + nke
jφk

∣
∣
2
]

= 1 − (ḡkgk + ḡkE[|nk|
2])

For the trained PLL we have

Sθ(ḡ, θ̄) = E

[

Im
{

a∗
kgkḡkake

j(θk−θ̄k)
}]

= ḡkgk sin
(
θk − θ̄k

)

Finally, the blind fourth power phase recovery unit has the following expected

update

Sθ(ḡ, θ̂) = E

[

Im
{(

gkḡke
jθkake

−jθ
)4

}]

= g4
kḡ

4
k sin

(
4(θk − θ̄k)

)

5.1.4 Average Contractive Fixed Points

Conditions 3 and 4 require the system to be contractive on average to the fixed

points of interest. To investigate these conditions, we now consider the fixed points
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of the averaged system, which are the points where the update, S, we calculated

above is equal to zero. These are the points where the adaptive element’s state

would stay if it reached them. Calculating the fixed point for the automatic gain

control, we have

Sg(g
∗
k) = 0 ⇒ g∗

k =
1

gk + E[|n|2]

For the PLL, the fixed point, θ∗k, which zeros the average update is

Sθ(ḡ, θ∗k) = 0 ⇒ θ∗k = θk + mπ or ḡ = 0

Finally, the 4th power phase recovery has fixed points

Sθ(ḡ, θ∗k) = 0 ⇒ θ∗k = θk +
mπ

4
, m ∈ N

Next we determine which fixed points are contractive, because the algorithm

will move to such points on average if it starts near enough to them. For each

stationary point we calculate a contractivity constant, and check if it is < 1 for

some region surrounding the fixed point of interest. For the gain control, the

contractivity constant is written as

α(ra) = sup
(k,ḡk)∈B

|ḡk + µGC (1 − ḡk (gk + E[|nk|
2])) − g∗

k|

|ḡk − g∗
k|

where

B = {k ∈ N , gk| |gk − g∗
k| < ra}

Similarly, the contractivity constant for a fixed point, θ∗k, of the Costas loop is

βc(rb) = sup
(k,θ̄k)∈C

|θ̄k + µθḡkgk sin
(
θk − θ̄k

)
− θ∗k|

|θ∗k − θ̄k|

and the contractivity constant for the 4th power phase recovery is

β4(rb) = sup
(k,θ̄k)∈C

|θ̄k + µθḡ
4
kg

4
k sin

(
4
(
θk − θ̄k

))
− θ∗k|

|θ∗k − θ̄k|
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where, for both the Costas and the 4th power, the set which the supremum is

taken over is

C =
{
k ∈ N , θ̄k| |θ̄k − θ∗k| < ra

}

For the correct minima, θ∗k = θk, we have for the Costas loop

βc(rb) ≤ 1 − µθḡkgksinc(rb) rb <
π

2
(5.4)

and for the fourth power, we have

β4(rb) ≤ 1 − 4µθḡ
4
kg

4
ksinc(4rb) rb <

π

4
(5.5)

where we have defined sinc(x) = sin(x)
x

. This satisfies Conditions 3 and 4. Now

all that remains is to check condition 5, and then the remaining conditions will

stipulate the channels for which the receiver will work well.

5.1.5 Comparison Using Sensitivities

Next we investigate condition 5, and what it, together with Theorem 7, implies

about the comparative behavior of the two phase recovery algorithms we are con-

sidering. In particular, we wish to compare the two possible phase recovery schemes

based on their sensitivity to misadjustment in the gain (a concept similar to that

in [22]). Using the fact that the mean value theorem allow us to use the norm of

the derivative to determine the Lipschitz constant we have

χcostas ≤ supθ̄∈C,ḡ∈B

∥
∥
∥

∂Sθ(g,θ)
∂g

∥
∥
∥

≤ supθ̄∈C,ḡ∈B

∥
∥gkḡk sin

(
θk − θ̄k

)∥
∥

Similarly, we can take the derivative with respect to the gain of the Fourth Power

nonlinearity based carrier recovery scheme

χ4th ≤ sup
θ̄∈C,ḡ∈B

∥
∥4ḡ3

kg
4
k sin

(
4
(
θk − θ̄k

))∥
∥
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For the correct minima, θ∗k = θk, we have for the Costas loop

χcostas ≤







µθgk sin(rb) rb < π
2

µθgk π > rb > π
2

(5.6)

and for the fourth power phase recovery

χ4th ≤







µθ4ḡ
3
kg

4
k sin(4rb) rb < π

8

µθ4ḡ
3
kg

4
k

π
4

< rb < π
8

(5.7)

We can now use the sensitivities and the contraction constants we have cal-

culated to compare the bounds on the error in the averaged system for the two

phase recovery algorithms. Specifically, subject to some conditions, our theorem

bounds the error in the phase recovery algorithm due to misadjustment in the gain

algorithm by a constant proportional to χ
1−β

. Thus, we compare χ
1−β

for the two

phase algorithms of interest. Using (5.4) and (5.6), we have for the Costas loop

χ

1 − β
=

µθgk sin(rb)

µθḡkgksinc(rb)
=

rb

ḡk

rb <
π

4

and using (5.5) and (5.7), we have for the fourth power phase recovery

χ

1 − β
=

µθ4ḡ
3
kg

4
k sin(4rb)

4µθḡkgksinc(4rb)
=

4rb

ḡk

rb <
π

8

Thus, for rb < π
8
, the 4th power phase algorithm is 4 times as sensitive as the

Costas loop to errors in the gain algorithm. This suggests that the Costas loop

is superior to the fourth power loop due to its higher robustness to errors in the

gain tracking algorithm. This comparison is not quite fair, however, because the

Costas loop needs to know the source symbols to operate, which on an infinite

horizon, is unlikely in communications systems, since the entire point is to transmit

information unknown to the receiver. Thus, the training segment will appear only

intermittently. Thus, the extra jitter (along with the extra stationary points of the
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blind 4th power scheme relative to the trained Costas loop) can be viewed as the

penalty paid for removing the need for sending training data, or data known to the

receiver. Since the theorem using χ provides only an upper bound on the adaptive

state error, there is no guarantee that the upper bound will be tight. Thus, we

are led to wonder if the sensitivity we calculated actually can correspond to a

larger error (instead of only the possibility of a larger error). Figure 5.2 indicates

that this is indeed the case, since from it we can ascertain that the fluctuations in

the adaptive gain are causing noisy behavior in the 4th power nonlinearity based

carrier recovery scheme.

5.2 Timing Recovery and Equalization

We now wish to use the theorems we have developed to give us some insight into

the way a system employing timing recovery followed by equalization will behave.

The system which we are considering is diagrammed in Figure 5.3.

One expects that the timing algorithm, which is in front of the equalizer, will

affect the equalizer’s adaptation. We will use our theorems and some simulations

to confirm that this is indeed the case and to quantify their interaction. We will

use our observations to draw some conclusions as to how to choose good timing

and equalization algorithms and step sizes.

5.2.1 Exact Gradient Stability

We have shown in Theorem 6 that if the timing algorithm is exponentially sta-

ble to a ”good” location, the equalization algorithm is exponentially stable to a

”good” location when the timing algorithm is frozen at its ”good” location, and

the equalization element is continuous with respect to the timing phase, then when
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hooked together, both algorithms will be exponentially stable to their ”good” lo-

cations. Let’s see what Theorem 6 can tell us about how a power maximization

timing scheme followed by a least mean squares equalizer will behave. Since it

is for a disturbance free adaptive algorithm, to apply this theorem we consider

the noiseless, exact gradient case. Looking at Tables 2.3 and 2.5, we see that the

sensitivities are

Sτ |g,f (τ |gk, f) = |gk|
2
E[|an|

2]
∑

n

Re
{
h∗

τ,f [k, n]dhτ,f [k, n]
}

+ σ2

with

hτ̂ ,f [k, n] =
P−1∑

l=0

Q
∑

i=1

ci((k − l)T + τ̂k)p((k − l − n)T + τ̂k − τi)fl

for the power maximization timing recovery, and

Sf |τ,g,θ(f |τ, g, θ̂) = ĝk−mejθ̂k−mE[|a|2]h∗
τ̂ [k − m, k − δ] −

∑P−1
l=0 ĝk−mĝk−l

ej(θ̂k−m−θ̂k−l)
∑

n E[|a|2]h∗
τ̂ [k − m,n]hτ̂ [k − l, n]fl +

∑P−1
l=0 E[v∗

k−mvk−l]fl

with

hτ [k, n] =
P−1∑

i=0

ci(kT + τ̂k)p((k − n)T + τ̂k − τi)

for the least mean squares equalizer. Since we have chosen to use a series feed-

forward form, the output of the timing recovery is fed into the input of the equalizer

(see Figure 5.3). Thus, in the sensitivity for the timing from Table 2.3, we must

remove the equalizer. Furthermore, since there will be no automatic gain control

or phase recovery in our analysis, we must remove these from the sensitivity as

well. To do so, we can rewrite hτ̂ ,f [k, n] from the last entry in Table 2.3 as

hτ [k, n] =

Q
∑

i=1

ci(kT + τ̂k)p((k − n)T + τ̂k − τi(kT + τ̂k)) (5.8)

for the time varying channel case, and

hτ [k, n] =

Q
∑

i=1

cip((k − n)T + τ̂k − τi)
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for the time-invariant channel case. The exact gradient descent for the power based

timing algorithm is then

τ̂k+1 = τ̂k + µaE[|an|
2]

∑

n

Re {h∗
τ [k, n]dhτ [k, n]}

Continuing on to the equalizer, and remembering that we are investigating the

noiseless case, the expected update for the mth equalizer tap is

fk+1,m = fk,m+µbE
[
|a|2

]

(

h∗
τ [k − m, k − δ] −

∑

n

h∗
τ [k − m,n]

P−1∑

l=0

hτ [k − l, n]fk,l

)

We now wish to establish whether or not the conditions of Theorem 6 hold in this

case. Define τ̂ ∗
k to be a solution to

∑

n

Re
{

h∗
τ̂∗
k
[k, n]dhτ̂∗

k
[k, n]

}

= 0

To find a contraction constant (if it exists) for this stationary point, we must look

at

αra = sup
{τ |‖τ−τ̂∗

k ‖<ra}

‖τ + µa

∑

n Re {h∗
τ [k, n]dhτ [k, n]} − τ̂ ∗

k‖

‖τ − τ̂ ∗
k‖

(5.9)

Let’s consider the particular case of a time-invariant channel,

c(τ) = δ(τ − 3.1) − 0.2δ(τ + 1.2T ) (5.10)

which is plotted in the upper left pane of Figure 5.4. For this example, we use a

raised cosine pulse shape with roll-off factor 0.25, a BPSK source signal, and no

additive channel noise. For this case, we can use numerical techniques to calculate

the stationary points and to test for contraction constants for each stationary point.

In the upper right pane of Figure 5.4, we plot the sensitivity function for various

values of the adaptive parameter. From this plot, we can determine the stationary

points, since they will be the values of τ that zero the drawn curve. Then, we

plot the function that we took the supremum of in (5.9) for each stationary point
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in order to determine if this stationary point has a contraction towards it (these

are the dotted lines). Any fixed point that has a region surrounding it in which

its dotted line lies below one is a locally stable fixed point. Note the ”u-shaped”

nature of the lower dotted line, which indicates the contraction constant grows as

we move away from the minimum in the timing algorithm.

To apply Theorem 6, we also need to investigate whether or not we have a

contraction in the equalizer (the second element) when the timing (first) element

is at its stationary point, and we need to determine the Lipschitz constant which
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indicates the sensitivity of the equalization algorithm to the timing parameter.

The first of these involves looking at

βrb
= max

f |‖f−f∗k ‖<rb

‖f + µbSf (τ
∗
k )‖

‖f − f∗k‖

where f∗k solves

Sf |τ (f
∗
k |τ

∗) = 0 (5.11)

To find the solution to this equation in a compact manner, introduce the P × P

matrix Rh such that

[Rh]i,j =
∑

n

h∗
τ̂ [k − i, n]hτ̂ [k − j, n]

Also introduce the 1 × P vector P such that

[P]i = hτ∗ [k − i, k − δ]

Then, the LMS sensitivity can be written as

Sτ (f) = E[|a|2] (P − Rhf) (5.12)

Assuming Rh is invertible, we can solve (5.11) for f∗k , getting

f∗k = R−1
h P (5.13)

Recall that we are interested in finding the contraction constants. Thus, we are

interested in relating ‖f − f∗k‖ with ‖f + µbE[|a|2] (P − Rhf) − f∗k‖. Rearranging

terms in the second expression and substituting in (5.13) gives

‖f − f∗k + µbE[|a|2]Rh

(
R−1

h P − f
)
‖ = ‖f − f∗k − µbE[|a|2]Rh (f − f∗k ) ‖

= ‖ (I − µbE[|a|2]Rh) (f − f∗k ) ‖

or

‖f − f∗k + µbE[|a|2]Rh

(
R−1

h P − f
)
‖ ≤ ‖I − µbE[|a|2]Rh‖‖f − f∗k‖
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where the reader is expected to be able to deal with the sloppy notation.1 Thus,

we see that will have a contraction if

β = ‖I − µbE[|a|2]Rh‖ < 1

This is a condition we can easily check. This equation also shows for LMS, that

if we have a uniform2 contraction, then it is a global uniform contraction, since

Rh is the same for every equalizer, f . This is a special property of LMS3, which

leads to its nice global convergence under mild conditions. We can determine

both the stationary point and the update using numerical methods too. For the

particular example channel we are investigating and our particular step size and

timing recovery timing algorithm, a two tap real LMS equalizer has a contraction

to the optimal location given by (5.10) with rate β = .9985.

Finally, to determine the Lipschitz constant that indicates the equalization

algorithm’s sensitivity to the timing parameter, we look at

χra = sup
ξ1,ξ2∈Bτ̂∗

k

|µb|‖Sf |τ (f |ξ1) − Sf |τ (f |ξ2)‖

‖ξ1 − ξ2‖

Substituting in (5.12), we have

χ = sup
τ1,τ2

|µb|‖E[|a|2](Pτ1 − Rh,τ1f) − E[|a|2](Pτ2 − Rh,τ2f)‖

‖τ1 − τ2‖

χ ≤ sup
τ1,τ2

|µb|E[|a|2] (‖Pτ1 − Pτ1‖ + ‖Rh,τ1 − Rh,τ2‖‖f‖)

‖τ1 − τ2‖

which is a form that is good for numerical calculations. This is a function of τ1

and τ2 which we must take the supremum over within the ball of size ra. This

Lipschitz constant, is shown as a function of the size of the ball, ra, which we

1There is an linear operator norm implied here. It has the usual definition:
‖A‖ := sup‖x‖=1 ‖Ax‖

2remember that Rh depends on the current time, k
3and other algorithms with linear updates (quadratic costs) in the parameters.
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Figure 5.5: Theorem 6 applied to a digital receiver containing an equalizer and a

timing recovery unit undergoing exact gradient descent.

restrict ourselves to in the bottom left pane of Figure 5.4. Furthermore, Figure 5.5

shows that the bound provided by Theorem 6 is indeed working.

5.2.2 Inexact Gradient Descent

However, since they are often stochastic gradient descents of some cost function,

many adaptive equalization and timing algorithms are not exponentially stable:

usually, only their averaged system has such a property. Thus, we wish to use

averaging theory to quantify what sort of deviations from the averaged trajectory
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we could have. Continuing with the two algorithms and channel example we had

previously, we now use the stochastic gradient descent form of the two algorithms.

Referring to Table 2.2, for the power based timing recovery the unaveraged adap-

tive state equations becomes

τ̂k+1 = τ̂k + µaRe {y∗(kT + τ̂k)dy(kT + τ̂k)}

and, referring to Table 2.4, the unaveraged adaptive state equation for the LMS

equalizer is

f̂k+1 = f̂k + µa

(

ak−δ − rT
k f̂k

)

r∗k

where

y(kT + τ̂k) = ĝke
−jθ̂k

∑

n an

∑P−1
l=0

∑Q
i=1 ci((k − l)T + τ̂k)

p((k − l − n)T + τ̂k − τi)fl + vk

(5.14)

and

rk =

[

ĝme−jθ̂m
∑

n

an

Q
∑

i=1

ci(mT + τ̂m)p((m − n)T + τ̂m − τi) + vm

]

m∈[k:−1:k−P+1]

(5.15)

Once again considering that our receiver will contain only timing recovery followed

by equalization, (5.14) and (5.15) become

y(kT + τ̂k) =
∑

n

an

Q
∑

i=1

ci(kT + τ̂k)p((k − n)T + τ̂k − τi) + vk (5.16)

rk =

[
∑

n

an

Q
∑

i=1

ci(mT + τ̂m)p((m − n)T + τ̂m − τi) + vm

]

m∈[k:−1:k−P+1]

Let us further simplify the model by removing the noise, vk.

τ̂k+1 = τ̂k + µaE[|an|
2]

∑

n

Re {h∗
τ [k, n]dhτ [k, n]} + µaE[|vk|

2]
∑

ζ

qτ̂ [k, ζ]dqτ̂ [k, ζ]
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f̂k+1,m = f̂k,m + µbE [|a|2]
(

h∗
τ [k − m, k − δ] −

∑

n h∗
τ [k − m,n]

∑P−1
l=0 hτ [k − l, n]

f̂k,l

)

+ µbE[|vk|
2]

∑P−1
l=0

∑

ζ qτ̂ [k − m, ζ]q∗τ̂ [k − l, ζ]f̂k,l

We wish to use the SFFBAC Hovering Theorem on this binary adaptive compound.

To do so, we must calculate some parameters and verify some assumptions. The

parameters which we must calculate are

• The averaged error system and unaveraged error system for the

timing recovery

fav(a) = lim
N→∞

1

N

N∑

i=1

f(i, a, xi)

To get this, we need to choose a desired trajectory. Operating under the

assumption that we designed the adaptive element by stochastic gradient

techniques, as is the case with power based timing recovery, we choose the

stationary points of the averaged system to be the desired points. Thus, the

trajectory τ̂ ∗
k solves

E[|an|
2]

∑

n

Re
{

h∗
τ̂∗
k
[k, n]dhτ̂∗

k
[k, n]

}

+ µaE[|vk|
2]

∑

ζ

qτ̂∗
k
[k, ζ]dqτ̂∗

k
[k, ζ] = 0

as with the case of the disturbance free timing equalizer system, we will resort

to numerical techniques to calculate this, since it is analytically messy and

difficult to solve when the received signal contains more than one multipath

component. Once we have determined, τ̂ ∗
k numerically, the averaged error

system becomes

τ̄k+1 = τ̄k + µaE[|an|
2]

∑

n Re
{

h∗
τ̄k+τ̂∗

k
[k, n]dhτ̄k+τ̂∗

k
[k, n]

}

+µaE[|vk|
2]

∑

ζ qτ̄k+τ̂∗
k
[k, ζ]dqτ̄k+τ̂∗

k
[k, ζ] + τ̂ ∗

k − τ̂ ∗
k+1

(5.17)

and the unaveraged error system becomes

τk+1 = τk + µaRe {y∗(kT + τk + τ̂ ∗
k )dy(kT + τk + τ̂ ∗

k )} + τ̂ ∗
k − τ̂ ∗

k+1 (5.18)
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• The averaged error system and unaveraged error system for equal-

ization

fav,b(b, a) = lim
N→∞

1

N

N∑

i=1

fb(i, b, a)

To get the averaged error system for the equalizer, we use the averaged

system and a desired trajectory. Once again, we proceed assuming that the

equalizer has been designed with a stochastic gradient descent mindset, as is

the case with LMS. In this case, the averaged system’s fixed points determine

the desired trajectory, and f∗k solves

(

µbE [|a|2]
(

h∗
τ [k − m, k − δ] −

∑

n h∗
τ [k − m,n]

∑P−1
l=0 hτ [k − l, n]f̂k,l

)

+µbE[|vk|
2]

∑P−1
l=0

∑

ζ qτ̂ [k − m, ζ]q∗τ̂ [k − l, ζ]f̂k,l

)

= 0

Proceeding as we did in the disturbance free case, we rewrite this system in

a matrix/vector description. First, we define a P × 1 column vector, Pτk,k,

and a P × P matrix, Rτk,k such that

[Pτk,k]i = E
[
|a|2

]
hτ∗ [k − i, k − δ] (5.19)

[Rτk,k]i,j =
E [|a|2]

∑

n h∗
τ+τ̂ [k − i, n]hτ+τ̂ [k − j, n]

+E[|vk|
2]

∑

ζ qτ+τ̂ [k − i, ζ]q∗τ+τ̂ [k − j, ζ]
(5.20)

to make the averaged system

f̂k+1 = f̂k + µb

(

Pτk,k − Rτk,k f̂k

)

Recalling that we want the desired equalizer to be the stationary point of the

averaged equalizer system when the timing recovery is at its optimal point,

f∗k solves

f∗k = R−1
τ̂∗
k ,kPτ̂∗

k ,k (5.21)

Using this as our desired trajectory gives an averaged equalizer error system

f̄k+1 = f̄k + µb

(
Pτk,k − Rτk,k

(
f̄k + f∗k

))
+ f∗k − f∗k+1 (5.22)
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and an instantaneous equalizer error system

fk+1 = fk + µb

(
ak−δ − rT

k (fk + f∗k )
)
r∗k + f∗k − f∗k+1 (5.23)

• Boundedness of time variation of the desired timing signal.

‖τ̂ ∗
k+1 − τ̂ ∗

k‖ ≤ ca ∀k

ca is a constant which we will have to find numerically after we solve for τ̂ ∗
k .

• Boundedness of time variation of the desired equalizer.

‖f∗k+1 − f∗k‖ ≤ cb

cb is a constant which we will calculate numerically using (5.21).

• Contraction of the timing adaptive element to zero error

‖āk + µafav(āk)‖ ≤ α‖āk‖

We will find α numerically, and show how it grows as the ball of interest

around τ̂ ∗
k grows.

• Contraction of the equalizer to zero error, given perfect timing

‖b̄k + µbfav,b(b̄k, 0)‖ ≤ β‖b̄k‖

Using (5.22), we have

β = max
k,‖f‖<rb

‖fk + µb

(
Pτ̂∗

k ,k − Rτ̂∗
k ,k (fk + f∗k )

)
‖

‖f‖

substituting in (5.21) gives

β = max
k,‖f‖<rb

‖fk − µbRτ̂∗
k ,kfk‖

‖f‖
≤ max

k
‖I − µbRτ̂∗

k ,k‖
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• Total averaging perturbation for the timing recovery

pnT/µ(k, a) =

nT/µ+k
∑

i=nT/µ

[f(i, a, xi) − fav(a)]

To get the total perturbation for the timing recovery, we subtract (5.17) and

(5.18) to get

pnT/µ(k, τ) =
∑nT/µ+k

i=nT/µ [Re {y∗(kT + τ + τ̂ ∗
k )dy(kT + τ + τ̂ ∗

k )}

−E[|an|
2]

∑

n Re
{

h∗
τ+τ̂∗

k
[k, n]dhτ+τ̂∗

k
[k, n]

}

−E[|vk|
2]

∑

ζ qτ+τ̂∗
k
[k, ζ]dqτ+τ̂∗

k
[k, ζ]

]

Using (5.16) we know that

y(kT + τ + τ̂ ∗
k ) =

∑

n

anhτ+τ̂∗
k
[k, n] + vk

where

hτ+τ̂∗
k
[k, n] =

Q
∑

i=1

ci(kT + τ + τ̂ ∗
k )p((k − n)T + τ + τ̂ ∗

k − τi)

so we can write

pnT/µ(k, τ) =
∑nT/µ+k

i=nT/µ

[
∑

n1

∑

n2
Re

{

a∗
n1

an2h
∗
τ+τ̂∗

k
[k, n1]dhτ+τ̂∗

k
[k, n2]

+v∗
n1

vn2q
∗
τ+τ̂∗

k
[k, n1]dqτ+τ̂∗

k
[k, n2]

}

−E[|an|
2]

∑

n Re
{

h∗
τ+τ̂∗

k
[k, n]dhτ+τ̂∗

k
[k, n]

}

−E[|vk|
2]

∑

ζ qτ+τ̂∗
k
[k, ζ]dqτ+τ̂∗

k
[k, ζ]

]

Rearranging yields

pnT/µ(k, τ) =
∑nT/µ+k

i=nT/µ

∑

n1

∑

n2

[
Re

{(
a∗

n1
an2 − E[|an|

2]δ[n1 − n2]
)

h∗
τ+τ̂∗

k
[k, n1]dhτ+τ̂∗

k
[k, n2] +

(
v∗

n1
vn2 − E[|vk|

2]δ[n1 − n2]
)

q∗τ+τ̂∗
k
[k, n1]dqτ+τ̂∗

k
[k, n2]

}]

which is the total perturbation for the timing recovery averaging approxima-

tion.
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• Lipschitz continuity for the total perturbation of the timing recov-

ery

‖pnT/µ(k, τ1) − pnT/µ(k, τ2)‖ ≤ λp‖τ1 − τ2‖

Beginning with the calculation, we have

λp = maxk,τ1,τ2∈B0(ra)

∑nT/µ+k
i=nT/µ

∑

n1

∑

n2

1
‖τ1−τ2‖

[
Re

{(
a∗

n1
an2

−E[|an|
2]δ[n1 − n2])

(

h∗
τ1+τ̂∗

k
[k, n1]dhτ1+τ̂∗

k
[k, n2]

−h∗
τ2+τ̂∗

k
[k, n1]dhτ2+τ̂∗

k
[k, n2]

)

+
(
v∗

n1
vn2 − E[|vk|

2]δ[n1 − n2]
)

(

q∗τ1+τ̂∗
k
[k, n1]dqτ1+τ̂∗

k
[k, n2]q

∗
τ2+τ̂∗

k
[k, n1]dqτ2+τ̂∗

k
[k, n2]

)}]

Introduce the following symbols amax = maxk,j a∗
kaj and vmax = maxk,j v∗

kvj.

Then we have

λp ≤ maxk,τ1,τ2∈B0(ra)

∑nT/µ+k
i=nT/µ

∑

n1

∑

n2

1
‖τ1−τ2‖

[(amax − E[|an|
2]δ[n1 − n2])

∥
∥
∥h∗

τ1+τ̂∗
k
[k, n1]dhτ1+τ̂∗

k
[k, n2] − h∗

τ2+τ̂∗
k
[k, n1]dhτ2+τ̂∗

k
[k, n2]

∥
∥
∥

+ (vmax − E[|vk|
2]δ[n1 − n2])

∥
∥
∥q∗τ1+τ̂∗

k
[k, n1]dqτ1+τ̂∗

k
[k, n2]

q∗τ2+τ̂∗
k
[k, n1]dqτ2+τ̂∗

k
[k, n2]

∥
∥
∥

]

which is the formula we will use to numerically bound this Lipschitz constant.

• Total averaging perturbation for the equalizer

pn(k, b, a) =

k+nTb/µb∑

i=nTb/µb

[fb(i, b, ga(a, xi)) − fav,b(b, a)]

Subtracting the update functions in (5.22) and (5.23) gives

pn(k, f , τ) =

k+nTb/µb∑

i=nTb/µb

[
(Pτ,i − Rτ,i (f + f∗i )) −

(
ai−δ − rT

τ,i(f + f∗i )
)
r∗τ,i

]

• Lipschitz continuity of the total perturbation to changes in the

equalizer

‖pn(k, f1, τ) − pn(k, f2, τ)‖ < Lp,b‖f1 − f2‖ ∀f1, f2 ∈ B0(hb) ∀τ ∈ B0(ha)



127

In order to simplify matters, let us assume differentiability of the adaptive

state equation, since the example we are dealing with is differentiable. In

this case, we can write

Lp,b = max
f∈B0(hb)

∥
∥
∥
∥
∥
∥

k+nTb/µb∑

i=nTb/µb

∂
[
(Pτ,i − Rτ,i (f + f∗i )) −

(
ai−δ − rT

τ,i(f + f∗i )
)
r∗τ,i

]

∂f

∥
∥
∥
∥
∥
∥

which, using some properties of matrix differentiation, becomes

Lp,b = max
f∈B0(hb)

∥
∥
∥
∥
∥
∥

k+nTb/µb∑

i=nTb/µb

(Rτ,i − Ai)

∥
∥
∥
∥
∥
∥

where we have introduced the P × P matrix A whose elements are [A]m,n =

rk−mrk−n. Note that this gives us an easier form with which to calculate the

Lipschitz constant numerically.

• Lipschitz continuity of the total perturbation in the equalizer to

changes in timing

‖pn(k, f , τ1) − pn(k, f , τ2)‖ < χ‖τ1 − τ2‖ ∀f ∈ B0(hb) ∀τ1, τ2 ∈ B0(ha)

assuming differentiability with respect to τ , which we have in the example

we are considering, we can write

χ <

∥
∥
∥
∥
∥
∥

k+nTb/µb∑

i=nTb/µb

∂Pτ,i

∂τ
−

∂Rτ,i

∂τ
(f + f∗i ) − ai−δ

∂r∗τ,i

∂τ
+

∂rT
τ,i(f + f∗i )r∗τ,i

∂τ

∥
∥
∥
∥
∥
∥

Recalling (5.19) we know
[
∂Pτk,k

∂τ

]

i

= E
[
|a|2

]
dhτ+τ∗ [k − i, k − δ] (5.24)

and recalling (5.20) we know
[

∂Rτk,k

∂τ

]

i,j
= E [|a|2]

∑

n

(
dh∗

τ+τ̂ [k − i, n]hτ+τ̂ [k − j, n]

+h∗
τ+τ̂ [k − i, n]dhτ+τ̂ [k − j, n]

)

+E[|vk|
2]

∑

ζ

(
dqτ+τ̂ [k − i, ζ]q∗τ+τ̂ [k − j, ζ]

+qτ+τ̂ [k − i, ζ]dq∗τ+τ̂ [k − j, ζ]
)

(5.25)
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and using some elementary properties of matrix differentiation, we have

∂rT
τ,i(f+f∗i )r∗τ,i

∂τ
=

∂rT
τ,i

∂τ
(f + f∗i )r∗τ,i + rT

τ,i(f + f∗i )
∂r∗τ,i

∂τ

=
(

r∗τ,i

∂rT
τ,i

∂τ
+

∂r∗τ,i

∂τ
rT

τ,i

)

(f + f∗i )

where

[
∂rτ,i

∂τ

]

m∈[k:−1:k−P+1]

=
∑

n

andhτ+τ∗
m
[m,n] +

∑

i

vidqτ+τ∗
m
[m, i]

We now have all of the terms which we need to calculate the Lipschitz con-

stant. We shall calculate them numerically for the particular example we are

considering.

χ <
∥
∥
∥
∑k+nTb/µb

i=nTb/µb

(

r∗τ,i

∂rT
τ,i

∂τ
+

∂r∗τ,i

∂τ
rT

τ,i −
∂Rτ,i

∂τ

)∥
∥
∥ ‖f + f∗‖

+
∥
∥
∥
∑k+nTb/µb

i=nTb/µb

(
∂Pτ,i

∂τ
− ai−δ

∂r∗τ,i

∂τ

)∥
∥
∥

χ <
∥
∥
∥
∑k+nTb/µb

i=nTb/µb

(

r∗τ,i

∂rT
τ,i

∂τ
+

∂r∗τ,i

∂τ
rT

τ,i −
∂Rτ,i

∂τ

)∥
∥
∥ ‖f + f∗‖

+
∥
∥
∥
∑k+nTb/µb

i=nTb/µb

(
∂Pτ,i

∂τ
− ai−δ

∂r∗τ,i

∂τ

)∥
∥
∥

We separate this into two terms, one which remains even when the equalizer

is at its optimal location, and one which is proportional to the error in the

Equalizer, which we have bounded by rb.

χ < Ψ(k, τ)‖f + f∗‖ + Φ(k, τ)

< Ψ(k, τ)(‖f∗k‖ + ‖fk‖) + Φ(k, τ)

< Ψ(k, τ)(‖f∗k‖ + rb) + Φ(k, τ)

where

Ψ(k, τ) =

∥
∥
∥
∥
∥
∥

k+nTb/µb∑

i=nTb/µb

(

r∗τ,i

∂rT
τ,i

∂τ
+

∂r∗τ,i

∂τ
rT

τ,i −
∂Rτ,i

∂τ

)
∥
∥
∥
∥
∥
∥

Φ(k, τ) =

∥
∥
∥
∥
∥
∥

k+nTb/µb∑

i=nTb/µb

(
∂Pτ,i

∂τ
− ai−δ

∂r∗τ,i

∂τ

)
∥
∥
∥
∥
∥
∥
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Figure 5.6: The two functions determining the Lipschitz Constant that gives the

sensitivity of the total perturbation to the timing recovery.

These two functions are shown in Figure 5.6. Note that the size of the total

perturbation depends on the length of time we are considering, since the

function is growing with time.

• Boundedness of total perturbation for the equalizer

‖pn(k, 0, 0)‖ ≤ Bp,b

‖pn(k, 0, 0)‖ ≤

∥
∥
∥
∥
∥
∥

k+nTb/µb∑

i=nTb/µb

[(
ai−δ − rT

τ,if
∗
i

)
r∗τ,i

]

∥
∥
∥
∥
∥
∥

We plot this for the example we have chosen in Figure 5.7. We can see

that we could conservatively bound pn(k, 0, 0) with Bp,b = .01. Note that,



130

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3 p
n
(k,0,0)

Time

Figure 5.7: The Total Perturbation in the Equalizer Over Time

numerically, this particular bound is very sensitive to errors. That is to say,

if the accuracy in our calculation of f∗ and τ ∗
k is not very good, then there

will still be some mean gradient attempting to push us to the exact f∗k , and

this will show up as growth of ‖pn(k, 0, 0)‖ over time. Within the accuracy

of the simulations used (0 ≈ 10−7), Figure 5.7 shows that over a reasonable

time frame the total perturbation does not appear to grow.
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• Continuity of Averaged Equalizer to changes in timing

‖b̄k + µbfav,b(b̄k, āk) −
(
b̄k + µbfav,b(b̄k, ā

′
k)

)
‖

= |µb|‖fav,b(b̄k, āk) − fav,b(b̄k, ā
′
k)‖ ≤ µbγ‖āk − ā′

k‖

We had that the averaged error system for the equalizer was given by

f̄k+1 = f̄k + µb

(
Pτk,k − Rτk,k

(
f̄k + f∗k

))
+ f∗k − f∗k+1

γ ≤

∥
∥
∥
∥

∂Pτ,k

∂τ
−

∂Rτ,k

∂τ

(
f̄k + f∗k

)
∥
∥
∥
∥

Thus, we can use (5.24) and (5.25) to find this Lipschitz constant as well.

Now that we have calculated the parameters, we wish to see if the SFFBAC Hover-

ing Theorem applies to this situation. Our hovering theorem tells us that, since we

have no time variation in the desired trajectories in this case, as we shrink the step

size to zero, the true system trajectories should approach the desired (averaged

system) trajectories. Figure 5.8 compares the averaged and unaveraged trajecto-

ries for several pairs of µ. The fact that the smaller pairs of µ values have error

closer to zero verifies that the qualitative information provided by the theorem is

true. Figure 5.9 compares the bound provided by the theorem with the actual

error between the actual and desired trajectories.

5.2.3 Misbehavior

Finally, our misbehavior theorem predicts that, if we make our timing algorithm

move so slowly that it can not track a desired periodic trajectory, we have the

possibility that the equalizer parameters will move periodically in a manifold away

from the point that was chosen as to have ”good” performance. We wish to inves-

tigate what this means in the case of a particular timing-equalizer pair. Instead of
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calculating the relevant constants, this time, we merely verify their existence, and

then use µ shrinking arguments. Since the bounds provided by even the averaging

theorems are typically not very tight, this is a more typical use of this type of the-

orem. Once again we consider a power based timing recovery followed by a LMS

equalizer. All of our Lipschitz and boundedness properties are guaranteed by the

fact that we have chosen two continuously differentiable adaptive state functions

with respect to both the equalizer and the timing parameters4. The remaining

difficulty is only to ensure that the averaged adaptive element state functions are

contractive to zero error. We have already established this fact for the Power-

based timing recovery followed by a LMS equalizer for a particular timing offset

and channel combination in Section 5.2, and we use the same set up here, only

now with a slow variation around the fixed timing offset we previously had. We

then verify for this example via simulation that we see exactly what Theorem 10

predicts. Looking at Figure 5.10 we see just what our theorem predicts for a tim-

ing step size which is too small. The timing recovery does not track the sinusoidal

timing offset quickly enough, and settles in near a constant timing parameter.

The equalizer then moves in a zero manifold, fluctuating around its desired values

(which are the means which we have subtracted).

5.3 Conclusions

We see that, while we want smaller step sizes to decrease averaging error in adaptive

devices, we pay a price for a smaller step size of decreased ability to track time

variation. The misbehavior shown in Figure 5.10 is a perfect example of this

4Differentiable ⇒ Lipschitz continuous on a compact set (ball) and continuous
⇒ bounded on a compact set.
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phenomenon, where almost all of the averaging error is gone, but both the timing

recovery and the equalization do not move to their desired points, since the timing

recovery can not track the time variation in the timing offset fast enough. The

important information that our analysis has given us is that the inability of the

first element to track its desired point can cause the second element to misbehave.

The tendency for such a phenomenon to occur has been linked, [22], to the size

of sensitivity (χ or µbγ) through Theorems 7, 8, and 9. And from this, we can

deduce that algorithms with lower sensitivities (but the same stationary points)

will be better second elements in SFFBACs. We investigated an example of this

phenomenon in section 5.1 by comparing two schemes for carrier recovery in a

digital receiver that contained an automatic gain control followed by an carrier

phase recovery.



Chapter 6

Results Summary and Conclusions
We began this thesis by introducing the notion of an adaptive element and pro-

viding an arsenal of theorems to characterize the way adaptive elements behave

from a deterministic stability theory standpoint. Examples of adaptive devices

found in digital receivers were then analyzed, removing any assumptions about

idealities in other adaptive processing in the receiver. We saw that in general,

the behavior of adaptive state equations for adaptive signal processing elements

commonly found in adaptive receivers depends on the other adaptive devices that

are included in the receiver. Then, referring to an appendix containing quotes

about the interaction of these devices which suggested a lack of a general theory,

we found practical evidence that engineers encounter interactions among adaptive

elements in the systems they build.

We were then inspired to investigate the way that multiple adaptive signal pro-

cessing elements behave when they are connected together. To begin an attack of

this large problem, we selected a particular binary adaptive compound structure:

the series feedforward binary adaptive compound (SFFBAC). To characterize the

behavior of SFFBACs, we provided a set of qualitative guidelines that guaran-

tee proper operation. We then showed that these qualitative guidelines could be

connected to rigorous mathematical quantitative guidelines, and derived a version

of all of the theorems in the single algorithm case for the SFFBAC case. Along

the way, we gained insight into the way the two adaptive elements in a SFFBAC

interact.

From our theoretical work on SFFBACs, we learned that both jitter from dis-
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turbances as well as averaging error from the earlier element in a SFFBAC can

couple into the second element’s state and produce jitter, through a sensitivity

constant χ (aka µbγ). This suggests that second elements which are less sensitive

to the first element’s parameters with equally good stationary points were better

than those that are more sensitive. From an averaging theory standpoint, the cou-

pling of averaging error in the earlier adaptive element into later adaptive elements

indicated that the step sizes chosen in the first element in a SFFBAC affect the

jitter in the second element, which argues for decreasing (effective) step sizes as

you move further along down a chain of serially connected adaptive elements.

We also provided a characterization of possible misbehavior in SFFBACs, where

the adaptation (or lack of adaptation) of the first element caused the second el-

ement to misbehave. After we proved this theorem, we showed an example in

which two digital receiver components, a timing recovery unit and an equalizer,

underwent the misbehavior described in the theorem.

Now, we sit at the border between past and future work.



Chapter 7

Future Work
The results in this thesis can be extended in a multitude of ways. First of all,

one could investigate more fully specific systems which employ distributed adap-

tation. We could continue on characterizing the behavior of particular types of

signal processing pairs. Possible pairs from digital receivers to investigate include:

automatic gain control and phase correction, auto-regressive whitening followed

by CMA equalization, adaptive beam-forming followed by adaptive equalization,

beam-forming and power control, gain control and echo cancellation, etc. Each

of these applications of the theory could serve as motivating examples with which

to extend the basic results provided here to more specific situations. While such

extensions would inevitably narrow the applicability of the results, they could also

serve to broaden the implications of the theory.

More fundamentally, the characterization here of the behavior of series feed-

forward binary adaptive compounds is far from complete. The theorems provided

here all gave sufficient conditions for good behavior. Thus, an interesting topic

would be to explore conditions which are also necessary for good behavior. When

addressing questions of necessity from a nonlinear stability theory standpoint, one

inevitably encounters Lyapunov techniques [8], [6], [7]. Thus, an immediate, and

important, enlargement of this theory is to develop and include the relevant the-

orems for using Lyapunov techniques to describe the stability of adaptive com-

pounds. Since there are a wealth of Lyapunov based results for single adaptive el-

ements, the majority of the relevant work would be to extend the ideas to consider

the coupling of two adaptive systems. Here, a large body of dynamical systems
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literature could come in handy.

Yet, the study of series feed-forward binary adaptive compounds need not be

done entirely from a deterministic stability theory mindset. Continuing from a

dynamical systems mindset the first natural (and probably necessary) alternative

method of viewing this problem involves using stochastic tools. Many of the the-

orems that have described stochastic adaptation for just a single algorithm are

developed with techniques similar to the proofs used in the deterministic theory,

characterizing stochastic adaptation by describing the evolution of means and vari-

ances. Yet, when we add stochastic concepts, we have not only moments, but whole

densities, which often can not be found in closed form, to deal with. The rigorous

theory of the behavior of stochastic difference equations is still somewhat in its

infancy, and thus, along this route it would be possible to conduct some difficult,

yet broadly impacting research.

Yet, one need not study the behavior of adaptive compounds through the dy-

namical systems magnifying glass alone. There are a number of other fields of

research which can be directly applied to this problem. If we look at the dis-

tributed adaptation as competing optimizations, immediately a framework for

game-theoretic discussion pops out. Thus, it could be fascinating to investigate

applying game-theoretic ideas to binary adaptive compounds.

Of course, whatever one does for specific binary adaptive structures, SFFBACs

for instance, one could investigate for other structures. Once one is considering this

problem along the structural level, the possibilities become endless. A researcher

who truly understands the way several adaptive elements will behave when hooked

together ought to have great insight into the study of complex adaptive systems.

Once one can do adequate research in this realm, one could begin to investigate
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anything from the economy to the human visual system. The possibilities are

endless.



Appendix A

Sensitivity Analysis for Digital

PAM/QAM Receivers
In this appendix we provide the derivations for the sensitivity functions listed in

Tables 2.1-2.4. For sake of brevity, we define the input to the following algorithms

to be of the form

xk = gke
jθ̂k

∑

n

anhτ̂k,fk [k, n] + vk (A.1)

where the impulse response is given by

hτ̂ ,f =
P−1∑

l=0

Q
∑

i=1

ci((k − l)T + τ̂k)p((k − l − n)T + τ̂k − τi)fl (A.2)

We will remove the adaptive state of the device (e.g. timing recovery, equalization,

etc.) which we are studying from this equation when we calculate a particular

algorithm’s sensitivity. Furthermore, if the system of interest does not use one of

the devices we’ve included to process the input to the device of interest, we can

simply remove that devices parameter from the input equation.

A.1 Gain Control

We are now considering adaptive algorithms that adjust the gain. Using A.1, the

general input to a gain control can be written as

xk = ejθ̂k

∑

n

anhτ̂k,fk [k, n] + vk (A.3)

where hτ̂k,fk [k, n] is defined as in (A.2). Using this input, we now develop the

sensitivity function corresponding to (2.29)
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Sg(θ̂, τ̂ , f , g) = E
[(

g2
k|xk|

2 − d
)
sign[gk]

]
(A.4)

One of the key terms in this expectation is

E
[
|xk|

2
]

= E

[(
∑

n

ane
−jθ̂khτ̂ ,f [k, n] + e−jθ̂vk

) (
∑

n2

a∗
n2

ejθ̂kh∗
τ̂ ,f [k, n2] + ejθ̂kv∗

k

)]

which, under standard assumptions of iid zero mean source symbols that are un-

correlated with the iid noise, becomes

E
[
|xk|

2
]

= E[|a|2]
∑

n

|hτ̂ ,f [k, n]|2 + E[|v|2]

Substituting this into (A.4), we have

Sg(θ̂, τ̂ , f , g) =

(

g2
k

(

E[|a|2]
∑

n

|hτ̂ ,f [k, n]|2 + E[|v|2]

)

− d

)

sign[gk]

which is the sensitivity function for the automatic gain control that we will be

considering.

A.2 Carrier Phase Tracking

Next, we turn to calculating sensitivity functions for some of the algorithms listed

in Table 2.1 that adjust the carrier phase. A general (possibly processed by all of

the other adaptive elements we are considering) input to a carrier phase recovery

unit is

xk = gk

∑

n

anhτ̂k,fk [k, n] + vk

where hτ̂k,fk [k, n] is defined as in (A.2). Now that we have defined the input, we

begin by developing the sensitivity of the trained QAM Costas loop

Sθ(θ̂, τ̂ , f , g) = E

[

Im
{

a∗
ke

−jθ̂xk

}]
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Sθ(θ̂, τ̂ , f , g) = E

[

Im

{

a∗
ke

−jθ̂

(

gk

∑

n

anhτ̂ ,f [k, n] + gk

P−1∑

l=0

vk−lfl

)}]

Using the property of complex numbers, Im{α} = 1
2
[α − α∗], gives

Sθ(θ̂, τ̂ , f , g) =

1
2
E

[

a∗
ke

−jθ̂
(

gk

∑

n anhτ̂ ,f [k, n] + gk

∑P−1
l=0 vk−lfl

)

−ake
jθ̂

(

gk

∑

n a∗
nh

∗
τ̂ ,f [k, n] + gk

∑P−1
l=0 v∗

k−lf
∗
l

)]

Using standard assumptions of a zero mean iid source uncorrelated from zero mean

iid noise gives

Sθ(θ̂, τ̂ , f , g) = gkE[|a|2]Im
{

e−θ̂h∗
τ̂ ,f [k, k]

}

writing the imaginary part operation another way gives

Sθ(θ̂, τ̂ , f , g) = gkE[|a|2] |hτ̂ ,f [k, k]| sin
(

∠hτ̂ ,f [k, k] − θ̂
)

Which is the sensitivity function for the trained Costas Loop, which is the first

entry in Table 2.1.

Next we attempt to derive the sensitivity function for the last entry in the

Table, which works well for QPSK and okay for QAM16

Sθ(θ̂, ĝ, f , τ̂) = E

[

e(k)|θ̂, ĝ, f , τ̂
]

= E

[

Im
{

x4
ke

−j4θ̂
}]

(A.5)

To simplify the ensuing discussion, we first determine one of the important terms

E [x4
k] = E

[

ĝ4
k

(
∑

n

∑

l

∑

m

∑

p ak−nak−lak−mak−ph
4
τ̂ ,f [k]

+4vk

∑

l

∑

m

∑

p ak−lak−mak−ph
3
τ̂ ,f [k]

+4v2
k

∑

m

∑

p ak−mak−ph
2
τ̂ ,f [k] + 4v3

k

∑

p ak−phτ̂ ,f [k] + v4
k

)]

(A.6)

E [x4
k] = ĝ4

k

(
∑

n

∑

l

∑

m

∑

p E [ak−nak−lak−mak−p] h
4
τ̂ ,f [k]

+4E [v2
k]

∑

m

∑

p E [ak−mak−p] h
2
τ̂ ,f [k] + E [v4

k]
) (A.7)

E [x4
k] =

∑

n E
[
a4

k−n

]
h4

τ̂ ,f [k] + 3
∑

l

∑

m6=l E[a2
l ]E[a2

m]h4
τ̂ ,f [k]+

4E [v2
k]

∑

m E[ak−m]h2
τ̂ ,f [k] + E [v4

k]
(A.8)
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Assuming that the noise, v, is circularly Gaussian makes E[v2
k] = 0 and E[v4

k] = 0,

so we have

E
[
x4

k

]
=

∑

n

E
[
a4

k−n

]
h4

τ̂ ,f [k] + 3
∑

l

∑

m6=l

E[a2
l ]E[a2

m]h4
τ̂ ,f [k] (A.9)

Also, if we assume the source constellation is such that

• the variance of the real part is equal to the variance of the imaginary part

(symmetric constellations)

• the real part of the symbols are chosen independently of the imaginary part

• the real part and the imaginary part are zero mean.

as is the case with many constellations (square QAM, etc.), then, we have E[a2
k] = 0,

and

E
[
x4

k

]
=

∑

n

E
[
a4

k−n

]
h4

τ̂ ,f [k] (A.10)

Now we use this fact and the assumptions to get the sensitivity function

Sθ(θ̂, ĝ, f , τ̂) = 1
2

(

E

[

x4
ke

−j4θ̂
]

+ E

[

(x4
k)

∗ej4θ̂
])

=
∣
∣E [a4]

∑

n h4
τ̂ ,f [k, n]

∣
∣ sin

(

∠
∑

n h4
τ̂ ,f [k, n] + ∠E [a4] − θ̂k

)

(A.11)

A.3 Timing Recovery

We will begin by calculating some sensitivity functions for the update terms in

Table 2.2. Many of these update terms use the signal

y(kT + τ̂) = ĝke
−jθ̂k

∑

n

an

P−1∑

l=0

Q
∑

i=1

ci((k − l)T + τ̂k)p((k − l − n)T + τ̂k − τi)fl + vk

(A.12)
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Which has been written to include the effects of the other parameters (under the

same assumptions on slow movement as for carrier recovery) on the timing update

function.

We begin by deriving the Mueller-Mueller sensitivity function

Sτ (τ̂ , θ̂, f , ĝ) = E

[

Re
{
â∗

k−1y(kT + τ̂k) − â∗
ky((k − 1)T + τ̂k)

}
|τ̂ , θ̂, f , ĝ

]

(A.13)

E
[
â∗

k−1y(kT + τ̂k)
]

= ĝke
−jθ̂kE[|a|2]

P−1∑

l=0

Q
∑

i=1

ci((k− l)T + τ̂k)p((1− l)T + τ̂k − τi)fl,k

(A.14)

E [â∗
ky((k − 1)T + τ̂k−1)] = ĝk−1e

−jθ̂k−1E[|a|2]
∑P−1

l=0

∑Q
i=1

ci((k − 1 − l)T + τ̂k−1)p((−1 − l)T + τ̂k−1 − τi)fl,k−1

(A.15)

Sτ (τ̂ , θ̂, f , ĝ) = Re
{

ĝke
−jθ̂kE[|a|2]

∑P−1
l=0

∑Q
i=1

ci((k − l)T + τ̂k)p((1 − l)T + τ̂k − τi)fl,k

−ĝk−1e
−jθ̂k−1E[|a|2]

∑P−1
l=0

∑Q
i=1

ci((k − 1 − l)T + τ̂k−1)p((−1 − l)T + τ̂k−1 − τi)fl,k−1}

(A.16)

Next we derive the sensitivity function for the zero crossing timing error detec-

tor

Sτ (τ̂ , θ̂, f , ĝ) = E

[

Re
{(

â∗
k−1 − â∗

k

)
y(kT − T/2 + τ̂k−1)e

−jθ̂k

}

|τ̂ , θ̂, f , ĝ
]

(A.17)

Sτ (τ̂ , θ̂, f , ĝ) = Re
{

ĝke
−jθ̂kE [|a|2]

∑P−1
l=0

∑Q
i=1 ci((k − l − 1

2
)T + τ̂k−1)

[
p((1

2
− l)T + τ̂k−1 − τi) − p((−1

2
− l)T + τ̂k−1 − τi)

]
fl,k

}

(A.18)
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Next we compute the sensitivity function for the early late detector.

Sτ (τ̂ , θ̂, f , ĝ) = E

[

Re

{

â∗
k

(

y((k +
1

2
)T + τ̂k) − y((k −

1

2
)T + τ̂k−1)

)}]

(A.19)

Sτ (τ̂ , θ̂, f , ĝ) = Re
{

ĝke
−jθ̂kE[|a|2]

(
∑P−1

l=0

∑Q
i=1 ci((k − l + 1

2
)T + τ̂k)

p((1
2
− l)T + τ̂k − τi)fl,k −

∑P−1
l=0

∑Q
i=1 ci((k − l − 1

2
)T + τ̂k−1)

p((−1
2
− l)T + τ̂k−1 − τi)fl,k

)}

(A.20)

Next we compute the sensitivity function for the special case of M-nonlinearity

timing recovery for M=2.

τk+1 = τk + µRe
{
yτ̂k

y′
τ̂k

}
(A.21)

yτ̂k
= gke

−jθ̂k

∑

n

anhτ,f [k, n] + vk (A.22)

y′
τ̂k

= gke
−jθ̂k

∑

n

andhτ,f [k, n] + vk (A.23)

E
[
y∗

τ̂k
y′

τ̂k

]
= |gk|

2
E[|an|

2]
∑

n

h∗
τ,f [k, n]dhτ,f [k, n] + σ2 (A.24)

Sτ (θ̂, f , g, τ̂) = |gk|
2
E[|an|

2]
∑

n

Re
{
h∗

τ,f [k, n]dhτ,f [k, n]
}

+ σ2 (A.25)

hτ̂ ,f [k, n] =
P−1∑

l=0

Q
∑

i=1

ci((k − l)T + τ̂k)p((k − l − n)T + τ̂k − τi)fl (A.26)
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dhτ̂ ,f [k, n] =
∑P−1

l=0

∑Q
i=1 [dci((k − l)T + τ̂k)p((k − l − n)T + τ̂k − τi)

+ci((k − l)T + τ̂k)dp((k − l − n)T + τ̂k − τi)] fl

(A.27)

A.4 Equalization

We now study the sensitivities of equalization algorithms to other devices param-

eters in a digital receiver. Handling the possibility that all of the other devices

have processed the input to the equalizer, we have a general input of the form

xk = ĝke
−jθ̂k

∑

n

anhτ̂ [k, n] + vk (A.28)

Define f = [f0f1 · · · fP−1]
T and rk = [xkxk−1 · · · xk−P+1]

T . First we analyze the

LMS update sensitivity function

Sfm(ĝ, θ̂, τ̂ , f) = E

[

xk−m

(

ak−δ −
P−1∑

l=0

xk−lfl

)]

(A.29)

Sfm(ĝ, θ̂, τ̂ , f) = E
[
x∗

k−mak−δ

]
−

P−1∑

l=0

E
[
xk−lx

∗
k−m

]
fl (A.30)

using standard iid zero mean assumptions about the source we have

Sfm(ĝ, θ̂, τ̂ , f) = ĝk−mejθ̂k−mE[|a|2]h∗
τ̂ [k − m, k − δ] −

∑P−1
l=0 ĝk−mĝk−le

j(θ̂k−m−θ̂k−l)

∑

n E[|a|2]h∗
τ̂ [k − m,n]hτ̂ [k − l, n]fl + E[v∗

k−mvk−l]fl

(A.31)

Next we derive the sensitivity equation for (2,2) CMA. We begin our analysis with

Sfm(f , τ, θ, g) = E [(γ − |
∑

i fi (
∑

n anh[k − i, n] + vk−i) |
2)

∑

i fi (
∑

n anh[k − i, n] + vk) (
∑

n anh[k − m,n] + vk)]

So our analysis breaks into finding two terms

E




∑

i

fi

(
∑

n

anh[k − i, n] + vk−i

)2
∑

i3

f ∗
i3

(
∑

n3

an3h[k − i3, n3] + vk−i3

)


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and

E
[
fT
k rkrk−m

]
= E [

∑

i fi (
∑

n anh[k − i, n] + vk−i)

(∑

n2
an2h[k − m,n2] + vk−m

)]

Doing the second term (which is far easier) first, we have

E
[
fT
k rkrk−m

]
= E[|a|2]

∑

n

∑

i

h∗[k − i, n]h[k − i, n]fi + fmE[|vk−m|
2]

Writing out all of the sums in the first term

E [
(∑

n1

∑

n2

∑

i2

∑

i2
an1an2fi1fi2h[k − i1, n1]h[k − i2, n2]

+2
∑

i1
fi1vk−i1

∑

n2
an2

∑

i2
fi2h[k − i2, n2] +

∑

i1
fi1vk−i1

∑

i2
fi2vk−i2

)

(∑

n3
a∗

n3

∑

i3
f ∗

i3
h∗[k − i3, n3] +

∑

i3
f ∗

i3
v∗

k−i3

)

(∑

n4
a∗

n4
h∗[k − m,n4] + v∗

k−m

)]

and expanding, yields

E [
(
∑

n1,n2,n3
an1an2a

∗
n3

∑

i1,i2,i3
fi1fi2f

∗
i3
h[k − i1, n1]h[k − i2, n2]h

∗[k − i3, n3]

+
∑

n1

∑

n2
an1an2

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
v∗

k−i3
h[k − i1, n1]h[k − i2, n2]

+2
∑

n2

∑

n3
an2a

∗
n3

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
h[k − i2, n2]h

∗[k − i3, n3]vk−i

+2
∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
vk−i1v

∗
k−i3

∑

n2
an2

∑

i2
h[k − i2, n2]

+
∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
vk−i1vk−i2v

∗
k−i3

)

(∑

n4
a∗

n4
h∗[k − m,n4] + v∗

k−m

)]
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expanding again produces

E [
∑

n1

∑

n2

∑

n2

∑

n3

∑

n4
an1an2a

∗
n3

a∗
n4

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3

h[k − i1, n1]h[k − i2, n2]h
∗[k − i3, n3]h

∗[k − m,n4]

+
∑

n1

∑

n2

∑

n3
an1an2a

∗
n3

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
h[k − i1, n1]h[k − i2, n2]

h∗[k − i3, n3]v
∗
k−m

+
∑

n1

∑

n2

∑

n4
an1an2a

∗
n4

h∗[k − m,n4]
∑

i1

∑
i2

∑
i3fi1fi2f

∗
i3
v∗

k−i3

h[k − i1, n1]h[k − i2, n2]

+
∑

n1

∑

n2
an1an2

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
v∗

k−i3
v∗

k−m

h[k − i1, n1]h[k − i2, n2]

+2
∑

n2

∑

n3

∑

n4
an2a

∗
n3

a∗
n4

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
vk−i1

h[k − i2, n2]h
∗[k − i3, n3]h

∗[k − m,n4]

+2
∑

n2

∑

n4
an2a

∗
n4

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
vk−i1v

∗
k−i3

h[k − i2, n2]h
∗[k − m,n4]

+
∑

n4
a∗

n4
h∗[k − m,n4]

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
vk−i1vk−i2v

∗
k−i3

+2
∑

n2

∑

n3
an2a

∗
n3

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
vk−i1v

∗
k−mh[k − i2, n2]h

∗[k − i3, n3]

+2
∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
vk−i1v

∗
k−i3

v∗
k−m

∑

n2
an2h[k − i2, n2]

+
∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
vk−i1vk−i2v

∗
k−i3

v∗
k−m

]

Now we drop terms which, under standard iid distribution of source symbols and

iid uncorrelated noise assumptions, have expectation zero

∑

n1

∑

n2
(δ[n1 − n2]E[|a|4] + (1 − δ[n1 − n2])(E[|a|2])2)

∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
h[k − i1, n1]h

∗[k − i3, n1]h[k − i2, n2]h
∗[k − m,n2]

+2
∑

n1
E[|a|2]

∑

i1

∑

i2
|fi1 |

2fi2E[|v|2]h[k − i2, n1]h
∗[k − m,n1]

+2
∑

n E[|a|2]fk−mE[|vk−m|
2]

∑

i2

∑

i3
fi2f

∗
i3
h[k − i2, n]h[k − i3, n]

+
∑

i |fi|
2fm (δ[i − m]E[|vi|

4] + (1 − δ[i − m])(E[|vi|
2])2)
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Thus, we have that the total sensitivity is

Sfm(f , τ, θ, g) = γ [E[|a|2]
∑

n

∑

i h
∗[k − i, n]h[k − i, n]fi + fmE[|vk−m|

2]]−

[∑

n1

∑

n2
(δ[n1 − n2]E[|a|4]

+(1 − δ[n1 − n2])(E[|a|2])2)
∑

i1

∑

i2

∑

i3
fi1fi2f

∗
i3
h[k − i1, n1]

h∗[k − i3, n1]h[k − i2, n2]h
∗[k − m,n2]

+2
∑

n1
E[|a|2]

∑

i1

∑

i2
|fi1 |

2fi2E[|v|2]h[k − i2, n1]h
∗[k − m,n1]

+2
∑

n E[|a|2]fk−mE[|vk−m|
2]

∑

i2

∑

i3
fi2f

∗
i3
h[k − i2, n]h[k − i3, n]

+
∑

i |fi|
2fm (δ[i − m]E[|vi|

4] + (1 − δ[i − m])(E[|vi|
2])2)]



Appendix B

Digital Receiver Component Interaction

Comments
This appendix contains some quotes pulled from the adaptive receiver literature

about multiple adaptive devices interacting. From these quotes we can discern

recognition of the interaction of different adaptive systems to be an existing prob-

lem about which very little research has been done. Specifically, adaptive com-

munications receivers are a prime example of this phenomenon. Algorithms are

designed and proposed, complete with signal models, which assume that all of the

other tasks in the receiver have been performed perfectly. To give some validity to

these broad reaching statements, here are some quotes from the adaptive receiver

literature

• ”The sequential order of some of the digital signal processing blocks can be

interchanged, depending on the realization constraint.” [23] page 225

• ”Phase estimation is performed at symbol rate. Since timing recovery is

performed before phase recovery, the timing estimation algorithm must either

work (i) with an arbitrary phase error offset or (ii) with a phase estimate

(phase-aided timing recovery) or (iii) phase and timing are acquired jointly.”

[23]

• ”Phase recovery can be performed after timing recovery. This is the opposite

order as found in classical analog receivers.” [23]

• ”When deriving a synchronization algorithm from the ML criterion, one as-
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sumes an idealized channel model (to be discussed shortly) and constant

parameters, at least for quasi-static channels. In principle, a more realistic

channel model and time-variable parameters could be taken into account,

but it turns out that this approach is mathematically far too complicated.

In view of the often crude approximations made to arrive at a synchronizer

algorithm, it makes no sense to consider accurate channel models. Instead,

one derives synchronization algorithms under ...” [23] page 273

• ”Several carrier synchronizers make use of a timing estimate, and several

symbol synchronizers make use of a carrier phase estimate. Hence, carrier

and symbol synchronizers in general do not operate independently of each

other.” [23] page 345

• ”In the case of a feedback carrier synchronizer which makes use of a timing

estimate (the same reasoning holds for a feedback symbol synchronizer which

makes use of a carrier phase estimate), the phase error detector characteristic

depends not only on the phase error φ but also on the timing error e...” [23]

page 346

• ”..it follows that the linearized tracking performance of the feedback carrier

synchronizer is affected by the timing error.” [23] page 346

• ”Consequently, carrier synchronizers will be analyzed under the assumption

of perfect carrier recovery.” [23] page 347

• ”Both synchronizers make use of the carrier phase estimate and of the re-

ceiver’s decisions.... it will be assumed that a perfect carrier phase estimate

is available.” [23] page 351
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• ”When operating in the tracking mode, the considered carrier and symbol

synchronizers do not interact after linearization of the system equations,

when the baseband pulse at the matched filter output is real and even.” [23]

page 377

• ”frequency correction has been applied to the signal entering the carrier phase

and symbol synchronizers.” [23] page 400

• ”Several feedback carrier synchronizers make use of a timing estimate, and

several feedback symbol synchronizers make use of a carrier phase estimate...”

[23] page 401

• ”Consequently, in general the dynamics of carrier and symbol synchronizers

are coupled. Although for most synchronizers the coupling is negligible in the

tracking mode because linearization of the system equations about the stable

equilibrium point yields uncoupled dynamics, the coupling can no longer be

ignored during acquisition, where estimation errors might be so large that

linearization does no longer apply.” [23] page 401

• ”Acquisition performance is hard to predict, because the analysis of coupled

nonlinear dynamical systems that are affected by noise is very difficult...”

[23] page 402

• ”The coupling between the dynamics of the carrier and symbol synchronizer

can be avoided by using a carrier synchronizer which operates independently

of the timing estimate [a candidate algorithm is the discrete time version of

(6-209)] and a symbol synchronizer which does not use the carrier phase esti-

mate [candidate algorithms are the NDA algorithm (6-150) and the Gardener

algorithm (6-205)]” [23] page 402
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• ”The time needed to acquire both the carrier phase and the symbol timing

is the maximum of the acquisition times for the individual synchronization

parameters.” [23] page 402

• ”Let us consider the case where the symbol synchronizer does not use the

carrier phase estimate, but the carrier synchronizer needs a timing estimate

(this is the case for most carrier synchronizers).” [23] page 402

• ”During the symbol timing acquisition, the carrier phase acquisition process

is hardly predictable, because it is influenced by the instantaneous value of

the symbol timing estimate. However, when the symbol timing acquisition

is almost completed the carrier synchronizer uses a timing estimate which

is close to the correct timing; from then on, the carrier phase acquisition is

nearly the same as for correct timing, and is essentially independent of the

symbol synchronizer operation.” [23] page 402

• ”On the other hand, a coupling is introduced when both the carrier and the

symbol synchronizer use DA algorithms, because most feedback DA carrier

synchronizers (symbol synchronizers) need a timing estimate (a carrier phase

estimate).” [23] page 402

• ”In the following, we consider the acquisition of the carrier synchronizer

assuming perfect timing; a similar reasoning applies to a symbol synchronizer,

assuming perfect carrier phase estimation.” [23] page 403

• ”The results (6-244) and (6-246) for carrier synchronization assume perfect

timing” [23] page 406

• ”Because of their long acquisition time, feedback algorithms are not suited
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for short burst operation.” [23] page 407

• ”The received burst is processed a first time to derive the symbol timing by

means of an NDA algorithm which does not use a carrier phase estimate.”

[23] page 407

• ”The received burst is processed a second time to derive a carrier phase

estimate by means of an NDA algorithm which makes use of the timing

estimate obtained in the previous step.” [23] page 407

• ”For the acquisition of the carrier phase and the symbol timing, it is advan-

tageous that there is no strong coupling between the carrier and the symbol

synchronizers. In the case of feedforward synchronization, the coupling in-

creases the computation requirements because a two-dimensional maximiza-

tion over the carrier phase and the symbol timing must be performed.” [23]

page 416

• ”Therefore, it is recommended that at least one synchronizer operates com-

pletely independently of the other.” [23] page 416

• ”The least processing is required when at least one synchronizer operates

independently of the other.” [23] page 416

• ”When the post-processing also performs additional filtering in order to re-

duce the variance of the individual feedforward estimates, the feedback gives

rise to an acquisition transient, and hangup might occur.” [23] page 417

• ”we assume that timing has been established prior to frequency synchroniza-

tion.” [23] page 478
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• ”the allowed frequency offset range is now no longer determined solely by

the capture range of the frequency estimation algorithm itself but also by

the capability of the timing synchronization algorithm to recover timing in

the presence of a frequency offset.” [23] page 478

• ”If this cannot be guaranteed, a coarse frequency estimate of a first stage

operating independently of timing information (see Sections 8.2 and 8.3) is

required.” [23] page 478

• ”Timing and phase synchronizer are separated (see Figure 10-15), which

avoids interaction between these units. From a design point of view this

separation is also advantageous...” [23] page 549

• ”Timing recovery was the square and filter algorithm. The algorithm works

independently of the phase.” [23] page 549

• ”The second problem is the interaction between the combiner, the synchro-

nization circuits and the adaptive baseband equalizer.” [24] page 1

• ”on the contrary, the convergence behavior outlined in [9] is not so good in

any distorted channel condition, because of interactions with the equalizer

updating and carrier recovery loops.” [24] page 4

• ”in this case, to avoid interaction between the equalizer control and the

carrier recovery loop, a phase independent equalizer is advisable.” [24] page

5

• ”therefore, the effects of interaction due to simultaneous estimation of data,

timing, and carrier could not be studied. These effects are considered in this

paper, and the earlier results revisited and compared.” [25] page 1
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• ”the sensitivity of various equalizers to sampling timing phase is then exam-

ined. Fading effects on carrier phase estimation are considered. Individual

and joint operation (interaction) of synchronization and demodulation cir-

cuitry is investigated.” [25] page 1

• ”The choice of a correct timing phase is critical for the performance of a

conventional (synchronous) equalizer.” [25] page 4

• ”We can see from (13) and (17) that φ has an effect on the estimation of δ

and vice versa.” [25] page 4

• ”Timing sensitivity computations on TE’s...confirm the well-known result

that FSE’s are less sensitive to timing variations that synchronous equaliz-

ers.” [25] page 5

• ”during midband fades the T/2 TE appears to be slightly to inferior to the

3T/4 TE in timing sensitivity- a result which may on the surface appear to

be contradictory to Gitlin.” [25] page 5

• ”The T-spaced DFE also shows a higher sensitivity to timing that either of

the fractional DFE’s... during both MP and NMP fades.” [25]

• ”Considering the timing sensitivity of the T-DFE, a timing shift of this mag-

nitude results in a deteriorated performance. Fractional DFE’s, on the other

hand, are more robust to timing deviations from optimum and are able to

”tolerate” this shift.” [25] page 6

• ”The choice of an optimum timing phase criterion cannot be regarded as

universal for all equalizers studied.” [25] page 7
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• ”At a high SNR, the timing-recovery process can be separated from the de-

coding process with little penalty; timing recovery can use an instantaneous

decision device to provide tentative decisions that are adequately reliable,

which can then be used to estimate the timing error.” [26] page 1

• ”At low SNR, however, timing recovery and decoding are intertwined. The

timing-recovery process must exploit the presence of the code to get reli-

able decisions, and the decoders must be fed well-timed samples to function

properly.” [26] page 1

• ”derives joint ML phase and frequency estimation but the symbol timing is

assumed perfectly known. In actual application, however, all these parame-

ters need to be estimated from each data burst.” [27] page 1

• ”Timing recovery is necessary because like the carrier phase, symbol timing

is subject to Doppler effects. The compensation could be left to the equalizer

[12], which is able to perform this task as long as the corresponding time span

of the equalizer is longer than the cumulated time offset during transmission.”

[28] page 1

• ”to restrict the tasks of the equalizer to inter-symbol interference (ISI) reduc-

tion, time synchronization should be better performed by a separate unit.”

[28] page 2

• about DD LMS and DD PLL interaction ”To obtain a good dynamical be-

havior of the coupled system, the phase synchronizer should be able to track

time variations more rapidly than the equalizer to provide the latter with

reasonably phase-compensated symbol decisions. Therefore, the step-size

parameter α is chosen roughly 10 times the value of µ” [28]
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• ”The effectiveness of our proposal relies upon the synergic action of clock re-

covery and adaptive baseband combining, which allows optimal equalization

of the two-ray diversity channel.” [24]

• ”This paper considers two solutions to the problem of frequency offset. Firstly,

the equalizer coefficients can be updated on a continuous basis. This method

is computationally complex and has limited performance. Secondly, joint op-

timization of equalizer tap weights and demodulator phase can be achieved

by incorporating a phase locked loop in the equalizer.” [29] page 1

• ”We will not address these problems in this paper, and we will assume that

the system has perfect synchronization.” [30] page 3

• ”These distortions [multipath] can have disastrous effects on decision directed

carrier and timing recovery loops (in particular the timing algorithm, as this

relies on the symmetry of the pulse shape).” [31]

• ”Since it has been shown in [1] that a (5,5) complex tap DFE yields satis-

factory performance during fading, it is logical to take advantage of the full

equalizer structure for carrier and timing recovery.” [31]

• ”In this paper we show [via simulations] that the carrier and timing recovery

loops do remain in lock with an acceptable amount of jitter, when they are

operated in conjunction with the adaptive DF, in the presence of multipath

distortion.” [31]

• ”Due to the complex interaction between the receiver subsystems, the results

presented here were generated via computer simulation.” [31]
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• ”The insignificant effect of the jitter values obtained is put into perspective

by relating them to estimated performance degradation, derived assuming

worst-case conditions.” [31]

• ”Finally the effect of the carrier and timing recovery loops on the operation

of the DFE is examined when the taps adapt according to the complex LMS

algorithm. The results indicate that the nominal sampling time is no longer

optimal when the signal is distorted by multipath.” [31]

• ”Both the TR loop and tap values adapt (the CR loop remains relatively

constant) to a new sampling location such that the mean-square error is re-

duced compared to when the optimum tap weights and the nominal sampling

time are used.” [31]

• ”This result indicates that the interactive effects of the receiver subsystems

tend to improve, rather than degrade, system performance.” [31]

• ”Usually, the clock recovery is carried out before equalization because there

is a system instability when it is processed after equalization.” [32]

• ”The main disadvantage of decision-directed [timing recovery] techniques is

the delay through the feedfoward filter w between the sampling instant and

the computation of the timing error update. The delay degrades the phase-

locked loop (PLL) tracking capability. However, in the critical initial acqui-

sition phase, the equalizer input is used to form the timing error update,

thus eliminating a large part of this latency.” [33]

• ”To optimize the performance of synchronous equalizers, an appropriate sam-

pling instant must be selected. Various schemes have been proposed for track-
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ing its optimum position during fading events; maximization of the sampled

signal energy, tracking of the zero-crossings, and minimizations of the output

mean-square-error are among the more widely used. If applied at the quan-

tized output, most of these lead to almost the same near-optimal sampling

instant. In addition, it seems that using the equalized signal in this way

tends to improve the general robustness of timing recovery schemes in the

presence of selective fading.” [34]

• ”The other crucial aspect of carrier recovery is steady-state performance.

As the complexity of high-level modulation techniques increases, so does

their sensitivity to phase jitter, and the carrier-recovery loop must provide

correspondingly tighter control. For normal propagation conditions, this

is achieved by choosing the loop parameters appropriately. However, any

signal distortions induced by the multipath fading will increase the loop

noise spectral density and its noise bandwidth, and reduce the phase detector

gain.” [34]

• ”As in timing recovery, to improve robustness against selective fading, the

signals used for carrier recovery should be derived from the output of any

adaptive channel equalization. This presents no problems for IF equalizers,

but means that, for baseband implementation, the equalizer (or its feed-

foward part in a decision-feedback scheme) will be inside the carrier-recovery

loop. Excessive delays must then be avoided to prevent consequent degrada-

tions in loop performance.” [34]

• ”Care also needs to be taken to minimize any interaction betweens he equal-

izer adaptation algorithm and control of the carrier-recovery loop; selec-
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tive correlation techniques and constraint of the equalizer reference tap are

commonly-adopted measures.” [34]



Appendix C

Identities/Preliminaries

C.1 Sum of an Infinite Geometric Series

First we develop the finite form of the sum

(1 − β)
N∑

i=0

βi =
N∑

i=0

βi −
N+1∑

i=1

βi = 1 − βN+1

Using the first and last equation, and dividing both side by 1 − β, we have

N∑

i=0

βi =
1 − βN+1

1 − β
(C.1)

For 0 < β ≤ 1, we can either replicate the argument above, or take the limit as

N → ∞ of the finite sum to obtain:

∞∑

i=0

βi =
1

1 − β
(C.2)

C.2 (Discrete) Bellman Gronwell Identity

The version of the discrete Bellman Gronwell Identity found here is taken from

[10]. Let hk ≥ 0, xk ≥ 0, x0 ≤ g, ∀k ∈ {0, 1, ...}, and assume we know:

xk+1 ≤ g +
k∑

i=0

hixi

Then

xk+1 ≤ g

(
k∏

i=1

(1 + hi)

)

C.3 Lipschitz Continuity

Definition 6 (Lipschitz Continuity). A function, f : D → R
M , D ⊆ R

N is said

to be Lipschitz continuous with constant L > 0 if for all x1, x2 ∈ D the function
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satisfies ‖f(x1) − f(x2)‖ ≤ L‖x1 − x2‖.

Theorem 11 (Differentiability and Lipschitz Continuity). If a function,

f : D → R
M , where D is open, D ⊆ R

N , is differentiable on D then it is Lipschitz

Continuous on any compact subset G of D. Furthermore, the Lipschitz constant

obeys L ≤ supx∈G

∥
∥∂f

∂x
(x)

∥
∥.



REFERENCES

[1] A. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ: John Wiley
and Sons, Inc., 2003.

[2] S. Haykin, Adaptive Filtering.

[3] I. Mareels and J. W. Polderman, Adaptive Systems: An Introduction. Boston:
Birkhauser, 1996.

[4] R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and
Applications. 2nd Edition. New York: Marcel Dekker, 2000.

[5] S. N. Elaydi, An Introduction to Difference Equations. New York: Springer,
1999.

[6] H. Khalil, Nonlinear Systems. New York, NY: Macmillan Publishing Com-
pany, 1992.

[7] T. L. Saaty and J. Bram, Nonlinear Mathematics. New York, NY: McGraw-
Hill Book Company, 1964.

[8] M. Vidyasagar, Nonlinear Systems Analysis. Englewood Cliffs, N.J.: Prentice
Hall, 1978.

[9] B. Anderson, R. Bitmead, C. R. Johnson, Jr., P. Kokotovic, R. L. Kosut,
I. M. Y. Mareels, L. Praly, and B. D. Riedle, Stability of Adaptive Systems:
Passivity and Averaging Analysis. Cambridge, Mass.: MIT Press, 1986.

[10] V. Solo and X. Kong, Adaptive Signal Processing Algorithms: Stability and
Performance. Englewood Cliffs, N.J.: Prentice Hall, 1995.

[11] C. R. Johnson, Jr. and W. Sethares, Telecommunications Breakdown: Con-
cepts of Communication Transmitter via Software-Defined Radio. Prentice
Hall, 2004.

[12] U. Mengali and A. D’Andrea, Synchronization Techniques for Digital Re-
ceivers. New York, NY: Plenum Press, 1997.

[13] A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and Stochas-
tic Approximations. New York, NY: Springer-Verlag, 1990.

[14] K. Mueller and M. Muller, “Timing recovery in digital synchronous data re-
ceivers,” IEEE Trans. Commun., vol. 24, pp. 516–523, May 1976.

[15] F. Gardner, “A bpsk/qpsk timing-error detector for sampled receivers,” IEEE
Trans. Commun., vol. 34, pp. 423–429, May 1986.

166



167

[16] D. Godard, “Passband timing recovery in an all-digital modem receiver,”
IEEE Trans. Commun., vol. 26, pp. 517–523, May 1978.

[17] J. Bingham, The Theory and Practice of Modem Design. New York, NY:
Wiley, 1988.

[18] Y. Sato, “A method of self-recovering equalization for multilevel amplitude-
modulation systems,” IEEE Trans. Commun., vol. 23, pp. 679–682, June
1975.

[19] D. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,” IEEE Trans. Commun., vol. 28,
pp. 1867–1875, Nov. 1980.

[20] J. Treichler and B. Agee, “A new approach to multipath correction of constant
modulus signals,” IEEE Trans. Commun., vol. 31, pp. 459 –472, Apr. 1983.

[21] A. Benveniste and M. Goursat, “Blind equalizers,” IEEE Trans. Commun.,
vol. 32, pp. 871–883, Aug. 1984.

[22] W. Sethares, J. M. Walsh, and C. R. Johnson, Jr., “An adaptive view of
timing and synchronization in telecommunication systems,” in Proceedings of
the 45th IEEE International Midwest Symposium on Circuits and Systems
(invited paper), 2002.

[23] H. Meyr, M. Moeneclaey, and S. Fechtel, Digital Communication Receivers :
Synchronization, Channel Estimation and Signal Processing. New York, NY:
John Wiley, 1998.

[24] F. Guglielmi, C. Luschi, and A. Spalvieri, “Blind algorithms for joint clock
recovery and baseband combining in digital radio,” in Fourth European Con-
ference on Radio Relay Systems, 1993., 1993, pp. 279 – 286.

[25] M. Shafi and D. Moore, “Further results on adaptive equalizer improvements
for 16 qam and 64 qam digital radio,” IEEE Trans. Commun., vol. 34, pp. 59
– 66, Jan. 1986.

[26] A. Nayak, J. Barry, and S. McLaughlin, “Joint timing recovery and turbo
equalization for coded partial response channels.” IEEE Trans. Magn., vol. 38,
pp. 2295 – 2297, Sept. 2002.

[27] Y. Fan and P. Chakravarthi, “Joint carrier phase and symbol timing syn-
chronization for burst satellite communications,” in 21st Century Military
Communications Conference Proceedings, vol. 2, 2000, pp. 1104 – 1108.

[28] R. Weber, A. Waldhorst, F. Schulz, and J. Bohme, “Blind receivers for msk
signals transmitted through shallow water,” in OCEANS, 2001. MTS/IEEE
Conference and Exhibition, vol. 4, 2001, pp. 2183–2190.



168

[29] C. Tellambura, I. R. Johnson, Y. Guo, and S. Barton, “Equalisation and
frequency offset correction for hiperlan.” in Personal, Indoor and Mobile Radio
Communications, 1997. ’Waves of the Year 2000’, vol. 3, Sept. 1997, pp. 796
– 800.

[30] A. Popper, F. Buda, and H. Sari, “An advanced receiver with interference can-
cellation for broadband cable networks,” in 2002 International Zurich Seminar
on Broadband Communications, 2002, pp. 23–1 to 23–6.

[31] G. McMillen, M. Shafi, and D. Taylor, “Simultaneous adaptive estimation of
carrier phase, symbol timing, and data for a 49-qprs dfe radio receiver,” IEEE
Trans. Commun., vol. 32, pp. 429 – 443, Apr. 1984.

[32] J. Palicot and J. Veillard, “Equalization system including clock recovery ap-
plication to mac/packet family signals,” in Global Telecommunications Con-
ference, vol. 1, 1991, pp. 380–384.

[33] W. Abbott and J. Cioffi, “Timing recovery for adaptive decision feedback
equalization of the magnetic storage channel,” in Global Telecommunications
Conference, vol. 3, 1990, pp. 1794–1799.

[34] J. Chamberlain, H. Sari, and P. Vandamme, “Receiver techniques for mi-
crowave digital radio.” IEEE Commun. Mag., vol. 24, pp. 43 – 54, Nov. 1986.


