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Multicarrier modulation has been gaining in popularity in recent years. It has

been implemented in systems such as Digital Subscriber Loops, broadcast High

Definition Television in Europe, wireless local area network standards such as IEEE

802.11a, power line communications, and satellite radio. In a multicarrier receiver,

a time-domain equalizer (TEQ) is needed to mitigate the distortion due to the

transmission channel. This typically takes the form of a filter that is designed such

that the delay spread of the channel-TEQ combination has a much shorter delay

spread than that of the channel alone.

This thesis has two thrusts: the primary goal is to propose, analyze, and simu-

late several blind, adaptive algorithms for designing the TEQ. The secondary goal

is characterization and complexity reduction of both adaptive and non-adaptive

TEQ designs. This will include examining symmetry of the impulse response and

the locations of its zeros, as well as techniques to reuse calculations in laborious

matrix computations.
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Chapter 1

Introduction
“When we mean to build, we first survey the plot, then draw the

model.”

– William Shakespeare, Henry IV Part II, Act I, Scene iii.

Loosely speaking, the goal of equalization for single carrier transmission systems

is to design an equalizer such that the convolution of the channel and equalizer

is a Kronecker delta, i.e. an impulse at some delay ∆ and zero otherwise. In

multicarrier transmission systems, the problem is more general. The delay spread

of the transmission channel must be within a predefined length, and the equalizer

is designed such that the convolution of the channel and equalizer produces an

effective channel that has been shortened to this length. This design problem is

referred to as “channel shortening.”

Although the task of blind adaptive equalization is well understood, its gen-

eralization, blind adaptive channel shortening, has not hitherto received nearly as

much attention from academics. Essentially all of the published literature on chan-

nel shortening has considered bit rate maximization for an ADSL system with a

known, time-invariant channel and known, time-invariant noise statistics. However,

multicarrier systems have been proposed for and deployed in increasing numbers

of applications in which time variations are expected. This chapter first motivates

the need for channel shortening, then motivates why blind, adaptive designs are

of interest. In addition, the notation to be used throughout the thesis will be

established in this chapter.

1
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1.1 Channel shortening system model

Channel shortening first became an issue for reduced-state sequence estimation

(RSSE) in the 1970’s, and then reappeared in the 1990’s in the context of multi-

carrier modulation. Channel shortening has also recently been proposed for use in

multiuser detection. This section begins by reviewing these three applications as

a means of motivating the channel shortening problem. Particular attention will

be paid to channel shortening for multicarrier systems.

Maximum likelihood sequence estimation (MLSE) [32] is the optimal estimation

method in terms of minimizing the error probability of a sequence. However, for

an alphabet of size A and an effective channel length of Lc + 1, the complexity of

MLSE grows as ALc . For many practical transmission schemes, such as Enhanced

Data rates for GSM Evolution (EDGE), the complexity of the MLSE is too high to

be implemented [33], [114]. There are several methods available for reducing the

complexity. Delayed Decision Feedback Sequence Estimation (DDFSE) [27], and

its generalization, Reduced-state Sequence Estimation (RSSE) [28], [29], reduce

the number of states considered in the trellis. DDFSE only considers the first K

taps of the channel for use in the trellis, and hard decisions are used to cancel the

remaining taps; whereas RSSE divides the constellation into subsets, effectively

reducing the constellation size.

An alternate approach is to use the full MLSE algorithm, but to employ a

prefilter to shorten the effective channel to a manageable length [4], [30], [48],

[50], [68], [82]. One approach is to design both the prefilter and the (shortened)

target impulse response to minimize the mean squared error (MSE) between the

outputs of the target and the convolution of the channel and prefilter [4], [30].

Other approaches use a decision feedback equalizer (DFE) to shorten the channel,
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and then apply the MLSE [48], [68]. However, the use of a DFE assumes that

the transmitted data has a finite alphabet, which may not be the case for other

applications (e.g. multicarrier systems).

More recently, channel shortening has been proposed for use in multiuser detec-

tion [66]. Consider a DS-CDMA system with L users, with a flat fading channel for

each user. The optimum multiuser detector in this case is the MLSE, yet complex-

ity grows exponentially with the number of users. “Channel shortening” can be

implemented to suppress L−K of the scalar channels and retain the other K chan-

nels, effectively reducing the number of users from L to K. Then the MLSE can be

implemented to recover the signals of the remaining K users [66]. In this context,

“channel shortening” means reducing the number of scalar channels rather than

reducing the number of channel taps, and the mathematical structure is similar to

channel shortening for MLSE applications.

Channel shortening has recently seen a revival due to its use in multicarrier

modulation (MCM) [11]. MCM techniques like orthogonal frequency division mul-

tiplexing (OFDM) and discrete multi-tone (DMT) have been deployed in applica-

tions such as the wireless LAN standards IEEE 802.11a [76] and HIPERLAN/2

[39], Digital Audio Broadcast (DAB) [41] and Digital Video Broadcast (DVB)

[40] in Europe, asymmetric and very-high-speed digital subscriber loops (ADSL,

VDSL), power line communications (PLC), and satellite radio. MCM is attractive

due to the ease with which it can combat channel dispersion, provided the channel

delay spread is not greater than the length of the cyclic prefix (CP). However, if the

cyclic prefix is not long enough, the orthogonality of the sub-carriers is lost, caus-

ing inter-carrier interference (ICI) and inter-symbol interference (ISI). A review of

MCM is provided in [1].

A well-known technique to combat the ICI/ISI caused by the inadequate CP
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length is the use of a time-domain equalizer (TEQ)1 at the receiver front-end. The

TEQ is a filter that shortens the channel so that the delay spread of the combined

channel-equalizer response is no larger than the length of the CP.

In many cases, the receiver may need to jointly shorten multiple channels using

a single TEQ. In a multicarrier code division multiple access (MC-CDMA) system,

multiple users each spread their signals using a spreading code before multicarrier

modulation takes place [46]. To enhance performance, the receiver can jointly

shorten all of the users’ channels to mitigate ISI before de-spreading takes place.

In DSL, each modem receives the desired signal as well as crosstalk from other

signals in the same cable bundle. In this case, joint channel shortening can be

combined with multiuser detection to improve the receiver’s performance. If a

DSL system is operating in echo cancelling mode [95], then the channel and the

echo path must be jointly shortened [67], [69]. As another example, multiple receive

antennas or oversampling of the received data may be employed, leading to multiple

outputs for each input. This motivates a multiple input, multiple output (MIMO)

system model, in which multiple channels need to be shortened simultaneously.

Joint channel shortening has been studied in [2], [49], [67], [69], [94], [96], [114].

However, these works involved extending the training-based, non-adaptive single-

input, single output (SISO) TEQs proposed in [4], [30], and [67] to the MIMO case;

whereas this thesis considers the blind, adaptive case.

Single-input, multiple-output (SIMO) channel shortening, which often arises

due to oversampling the signal from one user, is of particular interest. Conditions

(either necessary or sufficient) on the ability to achieve perfect shortening have

been considered in [72], [73], [79], [80], [88].

For clarity, we first discuss the traditional single-input single-output (SISO)

1The TEQ has also been called a channel shortening equalizer (CSE) [2].
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Figure 1.1: Traditional SISO multicarrier system model. (I)FFT: (inverse) fast

Fourier transform, P/S: parallel to serial, S/P: serial to parallel, CP: add cyclic

prefix, xCP: remove cyclic prefix.

system model, then generalize to the MIMO case. The SISO multicarrier system

model is shown in Figure 1.1, and the time-domain portion of the MIMO model

is shown in Figure 1.2. The notation is summarized in Tables 1.1, 1.2, 1.3, and

1.4. In the SISO case, the input stream is first divided into blocks of N QAM

symbols. Each block of symbols is mapped into N bins, and each bin is viewed

as a QAM signal that will be modulated by a different carrier. An efficient means

of implementing the modulation in discrete time is to use an inverse fast Fourier

transform (IFFT), with each bin acting as one of the frequency components that

will be converted into a time signal by the IFFT. Then, after transmission, an FFT

can be used to restore the data to its original format.

In order for the subcarriers to be independent, the convolution of the signal and

the channel must be a circular convolution. It is actually a linear convolution, so it

is made to appear circular by adding a cyclic prefix to the start of each data block,

which is obtained by prepending the last ν samples of each block to the beginning

of the block. If the CP is at least as long as the channel, then the output of each

subchannel is equal to the input times a scalar gain factor. The signals in the bins

can then be equalized by a bank of complex scalars, referred to as a frequency
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Figure 1.2: MIMO TEQ model, for L transmitters and P receive antennas (or

oversampling by a factor of P ). Channel hp,l connects the lth transmitter to the

pth receive antenna.

Table 1.1: Notation for signals used in multicarrier systems

Notation Meaning

Xi,l(k) source signal for tone i, user l (IFFT input)

xl(k) transmitted signal for user l (IFFT output)

np(k) additive noise on pth received sequence

rp(k) pth sequence of received data

yp(k) output of TEQ p

y(k) recombined output =
∑

p yp(k)

ẑi,l(k) signal at input of FEQ for tone i, user l

zi,l(k) signal at output of FEQ for tone i, user l

domain equalizer (FEQ).

The above discussion assumes that the CP length + 1 is greater than or equal

to the channel length. However, transmitting the cyclic prefix wastes time slots

that could be used to transmit data. Thus, the CP is usually set to a reasonably
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Table 1.2: Notation for filters used in multicarrier systems

Notation Meaning

Di(k) FEQ for tone i at time k

hp,l = [hp,l,0, · · · , hp,l,Lh
]T channel from user l to receiver p

wp = [wp,0, · · · , wp,Lw ]T pth TEQ impulse response

cp,l = [cp,l,0, · · · , cp,l,Lc
]T effective channel = hp,l ? wp

bp,l = [bp,l,0, · · · , bp,l,ν ]
T target impulse response from user l to receiver p

vi,p = [vi,p,0, · · · , vi,p,Lv ]
T per tone equalizer (PTEQ) for tone i, receiver p

wp = [wp,Lw , · · · , wp,0]
T time-reversal (of wp, e.g.)

small value, and a TEQ is employed to shorten the channel to this length. The

TEQ design problem has been extensively studied in the literature [5], [7], [17],

[30], [31], [47], [53], [67], as will be discussed in Chapter 2.

For the MIMO case, we will consider L transmitters, indexed by 1 ≤ l ≤ L;

and P receivers (or oversampling by P ), indexed by 1 ≤ p ≤ P . The received

signal rp(k) from antenna p (or the sequence of each pth sample per baud interval),

p ∈ {1, · · · , P}, is obtained by passing each signal from user l ∈ {1, · · · , L} through

channel hp,l, adding the L channel outputs, and adding noise sequence np(k). In an

MC-CDMA system, each user’s signal xl(k) is obtained by spreading one or more

symbols in the frequency domain, taking an IFFT, and adding a cyclic prefix; see

[46], e.g. If the multiple users arise due to cross-talk in a wireline system, then

each signal xi(k) is generated in the manner of Figure 1.1.

After the CP is added, the last ν samples are identical to the first ν samples in

each transmitted symbol, i.e.

xl (Mk + i) = xl (Mk + i + N) , i ∈ {1, . . . , ν} , l ∈ {1, . . . , L} , (1.1)
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Table 1.3: Notation for parameters and indices

Notation Meaning

i tone index

k symbol index

j sample index within a symbol, or generic index

l user (transmitter) index

p receiver (or polyphase) index

L number of transmitters

P number of receivers

N FFT size

ν cyclic prefix (CP) length and TIR order

M = N + ν total time-domain symbol size

Nc number of used carriers (containing data, not pilots or zeros)

Nz number of null carriers (zeros transmitted)

TCP time span of the cyclic prefix

∆ delay of effective channel

L̃h = Lh + 1 channel length

L̃w = Lw + 1 TEQ length

L̃c = Lc + 1 length of effective channel

where M = N + ν is the total symbol duration and k is the symbol index. The

received data rp is obtained from {xl : l = 1, · · · , L} by

rp(Mk + i) =
L∑

l=1

Lh∑

j=0

hp,l(j) · xl(Mk + i − j) + np(Mk + i), (1.2)

and yp, the output of TEQ p, is obtained from rp by

yp(Mk + i) =
Lw∑

j=0

wp(j) · rp(Mk + i − j). (1.3)
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Table 1.4: Notation for matrices used in multicarrier systems

Notation Meaning

Hp,l L̃c × L̃w tall channel convolution matrix

Hp,l,win middle ν + 1 rows of H

Hp,l,wall H with middle ν + 1 rows removed

Rn,p autocorrelation matrix of np(k)

IN N × N identity matrix

JN N × N matrix with ones on the cross diagonal

and zeros elsewhere

FN FFT matrix of size N × N

IN = FH
N IFFT matrix of size N × N

fT
i ith row of FN

P M × N matrix that adds the cyclic prefix

P̂ N × M matrix that removes the cyclic prefix

A∗, AT , AH conjugate, transpose, and Hermitian (of A, e.g.)

Then the final, recombined output is obtained by

y(Mk + i) =
P∑

p=1

yp(Mk + i). (1.4)

One could either work with the collection of P sequences {yp(k)} or the single out-

put sequence y(k). The weights for the linear combination in (1.4) have implicitly

been absorbed into the P TEQs. Each of the P ·L channels is modeled as an FIR

filter of length Lh + 1, each of the P TEQs is an FIR filter of length Lw + 1, and

each effective channel cp,l = hp,l ? wp has length Lc + 1, where Lc = Lh + Lw. The

symbol ? denotes linear convolution.

In a wireline system such as DSL, the transmitted signal is at baseband and

must be real. This is accomplished by only using N
2

inputs, and then conjugating



10

and mirroring the first half of the tones such that the resulting N IFFT inputs

obey conjugate symmetry. The transform of such a sequence will be real [77].

Specifically, given N
2

complex symbols X ′
i, the N IFFT inputs Xi are obtained by

X1 = R{X ′
1}

X2 = X∗
N = X ′

2

X3 = X∗
N−1 = X ′

3

...

XN/2−1 = X∗
N/2+3 = X ′

N/2−1

XN/2 = X∗
N/2+2 = X ′

N/2

XN/2+1 = I {X ′
1}

(1.5)

where R{·} and I {·} denote the taking of the real or imaginary part of a complex

number, respectively. This distinction between baseband and passband channels

is important, since most TEQ algorithms were designed for DSL and assume real

(baseband) data and channels, yet here we consider the more general case of com-

plex (passband) channels and complex time-domain data.

1.2 The need for blind, adaptive algorithms

“There is no reason but I shall be blind. If I can check my erring love,

I will.”

– William Shakespeare, Two Gentlemen of Verona, Act II, Scene iv.

Most channel shortening schemes in the literature have been designed in the

context of ADSL, which runs over twisted pair telephone lines [5], [7], [31], [67].

As a consequence, most of the TEQ designs in the literature are trained and non-

adaptive. However, other current and emerging multicarrier standards have less
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training and are used in environments with more rapid time-variations, so new

adaptive TEQ design methods are needed. This section motivates the need for

blind, adaptive algorithms.

There are several factors which can give rise to time variations. In wireline

systems such as ADSL and VDSL, circuits heat up over time, changing the char-

acteristics of the channel. In addition, the number of other users may change,

affecting the noise (crosstalk) statistics. The current solution to this problem is to

design the TEQ with a large performance margin, and then keep the same static

TEQ despite the time-variations. The hope is that the time-variations do not

change the channel enough to push the TEQ out of its performance margin. How-

ever, eventually the TEQ will need to be retrained. The current standard does not

have a provision for retransmitting a training sequence after the initial handshake

period, so designs that are non-adaptive or require training can do nothing but re-

quest a complete reinitialization of the DSL modem. This leads to an interruption

in service while the 17000 training symbols are retransmitted and the new TEQ is

computed. As stated in The Ericsson Review [42],

During data transmission, [the TEQ] remains fixed. Overall perfor-

mance would improve, however, if the TEQ continued its adaptation

relative to time-variant loop2 and noise conditions.

The current ADSL standard transmits one synchronization symbol per 69 symbols,

which, as the name implies, is intended to be used for synchronization rather than

training. However, it can be used to train the TEQ adaptively. A blind, adaptive

algorithm could allow the TEQ to adapt 69 times as often as a trained, adaptive

TEQ. Alternatively, one could repeatedly perform a blind channel estimation3 and

2In the context of DSL, “loop” refers to the transmission channel.
3Blind channel estimation methods for OFDM are readily available [37], al-
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then design the TEQ based on the channel estimate, using the methods in [4],

[7], [67], e.g. However, it is computationally expensive to repeatedly perform non-

adaptive TEQ designs, and the validity of the channel estimates decrease if they

are performed infrequently.

The channels for wireless systems are prone to more rapid time variations than

wireline systems. Examples of such systems are the European Digital Audio Broad-

cast (DAB) [41] and Digital Video Broadcast (DVB) [40] standards, the High Per-

formance Radio Local Area Network (HIPERLAN/2) [39] standard, the local area

network (LAN) standard IEEE 802.11a [76], and the proprietary modulation tech-

niques employed by both companies currently providing satellite radio to North

America. As multicarrier modulation becomes more popular, we can expect more

wireless standards to arise which use OFDM.

We can also expect existing standards to be pushed beyond their initial design

intentions. IEEE 802.11a is intended for indoor, non-mobile use. However, these

systems will eventually be pushed into other uses (such as outdoor and/or mobile

use), and even during the intended use the design assumptions may not be correct.

The IEEE 802.11a standard specifies a CP of duration 0.8µs, yet indoor channel

measurement studies [24], [25], [83], [89] have shown that the worst case delay

spreads can be as large as 1µs to 3µs depending on the topology of the indoor

environment and the surrounding buildings. Current IEEE 802.11a receivers do

not typically employ TEQs, but they would have better performance (in some

situations) if they did. Future wireless LAN standards may be designed for outdoor

use, which would lead to even longer delay spreads and faster time variations.

Broadcast systems, such as DAB and DVB, do not have the long initial training

though in some cases they assume the channel is already short [74], [108], and thus
will not help in designing a TEQ.
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sequence used in ADSL, but rather have sporadic training sequences that only occur

in some frequency bins and/or some symbols. This can lead to severe problems for

trained TEQ algorithms. For example, the adaptive MMSE TEQ of [30] requires

that the time-domain signal be known in order to adapt the TEQ. However, in

DVB, the training is implemented during every symbol, but only on some frequency

bins. That is, a known subset of carriers contain known data, but the time-domain

signal is the IFFT of all the frequency data (both known and unknown) for that

symbol, so no samples of the time-domain symbol are known. This means that

the receiver cannot use the trained algorithm of [30], or in fact any other TEQ

that uses time-domain training. Furthermore, even in a broadcast system that

transmits known time-domain symbols on occasion, a blind TEQ will be able to

adapt much more often, and hence will have superior tracking capabilities.

Another advantage of blind equalizers is that they sometimes facilitate the

design of the rest of the receiver. The standard example for a single carrier system

is the Constant Modulus Algorithm (CMA) [34], which allows the equalizer to

be designed before carrier frequency offset (CFO) estimation is performed [101].

Then the CFO estimation can be performed with greater ease and accuracy on

the equalized signal. This thesis discusses a TEQ design algorithm with similar

properties, called SAM [8]. The SAM cost function is also invariant to carrier

frequency offsets, so SAM can also be applied before CFO estimation is performed.

Moreover, like CMA, SAM allows the equalizer to be designed without specifiying

the equalization delay ∆. In contrast, existing multicarrier equalization techniques

require a costly global search over the delay parameter [7], [30], [67], [70]. Such

approaches require a complete TEQ design for each possible value of ∆, increasing

the complexity by one to two orders of magnitude.
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1.3 Examples of multicarrier systems

Table 1.5 shows typical parameter values for several multicarrier applications. Ap-

plications for which other FFT sizes or CP lengths are allowed are marked with an

asterisk. The systems considered are the wireless LAN standards IEEE 802.11a,

IEEE 802.11g, and HIPERLAN/2; the standard for upstream and downstream

ADSL; the terrestrial broadcast standards for digital audio and video broadcast;

power line communications; and a representative model for satellite radio. The

notation is as in Table 1.3, and “R or C?” refers to whether or not the transmitted

time domain signal is real or complex.
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Table 1.5: Parameters of various multicarrier systems. The “∗” denotes systems

for which multiple FFT sizes and/or CP lengths are allowed. “TBD” (to be deter-

mined) means that the parameters have not been standardized yet.

System N ν M Nc Nz TCP R or C?

IEEE 802.11a [76] 64 16 80 48 12 0.8 µs C

IEEE 802.11g 64 16 80 48 12 0.8 µs C

HIPERLAN/2∗ [39] 64 16 80 48 12 0.8 µs C

Upstream ADSL [95] 64 4 68 28 4 14.5 µs R

Downstream ADSL [95] 512 32 544 224 32 14.5 µs R

DAB mode I [41] 2048 504 2552 1536 512 250 µs C

DAB mode IV [41] 1024 252 1276 768 256 500 µs C

DAB mode II [41] 512 126 638 384 128 1 ms C

DAB mode III [41] 256 63 319 192 64 2 ms C

DVB, 2K mode∗ [40] 2048 64 2112 1512 343 0.7 µs C

DVB, 8K mode∗ [40] 8192 256 8448 6048 1375 0.28 µs C

PLC TBD TBD TBD TBD TBD TBD R

Satellite Radio 2048 200 2248 1000 1048 25 µs C



Chapter 2

Design Methods: Literature Survey and

Unification
“Come, and take choice of all my library, and so beguile thy sorrow.”

– William Shakespeare, Titus Andronicus, Act IV, Scene i.

This chapter1 will discuss the multitude of multicarrier equalizer designs in the

literature. The focus will be on SISO non-adaptive designs related to the adaptive

designs discussed in this thesis, as well as on alternate adaptive algorithms. Sec-

tion 2.1 sets up a common design formulation that encapsulates the vast majority

of TEQ designs in the literature. Sections 2.2 and 2.3 deal with special cases of

this formulation, and Section 2.4 deals with TEQ designs that do not fall into

this formulation. Section 2.5 discusses alternate equalizer structures, as opposed

to the TEQ structure of the first four sections. Much of the work in this chapter

was performed jointly with researchers at the University of Texas at Austin and

Catholic University, Leuven [62], [63]. Figure 2.1 categorizes some of the more

popular equalizer structures and designs.

2.1 A common TEQ design formulation

There are many ways of designing the DMT equalizer, depending on how the

optimization problem is posed. However, almost all of the algorithms fit into

the same formulation: the maximization of a generalized Rayleigh quotient or a

1Some material in this chapter is contained in [62]. c© 2004 IEEE. Reprinted,
with permission, from [62].

16
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Figure 2.1: Approaches to multicarrier equalization.

product of generalized Rayleigh quotients [62], [63]. Consider the optimization

problem

ŵopt = arg max
ŵ

M∏

j=1

ŵHBjŵ

ŵHAjŵ
(2.1)

In general, the solution to (2.1) is not well-understood when M > 1. However, for

M = 1,

ŵopt = arg max
ŵ

ŵHBŵ

ŵHAŵ
, (2.2)

the solution is the generalized eigenvector of the matrix pair (B,A) corresponding

to the largest generalized eigenvalue [109]. Equivalently, the inverse of the ratio

in (2.2) is minimized by the eigenvector of (A,B) corresponding to the smallest

generalized eigenvalue. Most TEQ designs fall into the category of (2.2), although

several have M � 1 as in (2.1). The vector ŵ to be optimized is usually the TEQ,

but it may also be e.g. the (shortened) target impulse response (TIR) [30], the

per-tone equalizer [104], or half of a symmetric TEQ [56].
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TEQ designs of the form of (2.2) include the Minimum Mean Squared Error

(MMSE) design [30], [4], the Maximum Shortening SNR (MSSNR) design [67], the

MSSNR design with a unit norm TEQ constraint (MSSNR-UNT) or a symmetric

TEQ constraint (Sym-MSSNR) [60], the Minimum Inter-symbol Interference (Min-

ISI) design [7], the Minimum Delay Spread (MDS) design [92], and the Carrier

Nulling Algorithm (CNA) [23]. When a separate filter is designed for each tone,

as in the per-tone equalizer (PTEQ) [104] or the TEQ filter bank (TEQFB) [70],

[71], each filter can be designed by solving (2.2) separately for each tone.

The generalized eigenvector problem requires computation of the ŵ that satis-

fies [35], [109]

B ŵ = λ A ŵ, (2.3)

where ŵ corresponds to the largest generalized eigenvalue λ. If A is invertible,

the problem can be reduced to finding an eigenvector of A−1B [109]. When A

is real and symmetric, another approach is to form the Cholesky decomposition

A =
√

A
√

A
T
, and define v̂ =

√
A

T
ŵ, as in [67]. Then

v̂opt = arg max
v̂

v̂T

C︷ ︸︸ ︷(√
A

−1
B

√
A

−T
)

v̂

v̂T v̂
. (2.4)

The solution for v̂ is the eigenvector of C associated with the largest eigenvalue,

and ŵ =
√

A
−T

v̂, assuming that A is invertible. If A is not invertible, then it has

a non-zero null space, so the ratio is maximized (to infinity!) by choosing ŵ to be

a vector in the null space of A.

In some cases, A or B is the identity matrix, in which case (2.3) reduces

to a traditional eigenvalue problem. Examples include the computation of the

MMSE target impulse response (TIR) [30], the MSSNR TEQ with a unit norm

constraint on the TEQ [60], the MDS algorithm [92], and CNA [23]. There is
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a variety of all-purpose methods available for finding extreme eigenvectors, such

as the power method [35] and conjugate gradient methods [112]. More specific

iterative eigensolvers may be designed for specific problems, such as the MERRY

(Multicarrier Equalization by Restoration of RedundancY) algorithm [53] and Nafie

and Gatherer’s method [75], which adaptively/iteratively compute the MSSNR

TEQ.

If neither A or B is the identity matrix, efficient iterative techniques can still

be used. The generalized power method [35] can be used to solve (2.2) by iterating

B ŵk+1 = A wk

wk+1 =
ŵk+1

‖ŵk+1‖
,

(2.5)

requiring a square root and division at each step.

The expensive renormalization in (2.5) can be avoided through the use of a

Lagrangian constraint, as in [15], [16], leading to an iterative eigensolver for (2.2)

of the form

w(k + 1) = w(k) + µ
(
Bw − Aw

(
wHBw

))
, (2.6)

where µ is a small user-defined step size. If stochastic rank-one approximations of

B and A are available, as in [53], then the generalized eigensolver in (2.6) requires

O(Lw) multiply-adds per update. If the matrices A and B are used explicitly,

(2.6) requires O(L2
w) multiply-adds per update. For comparison, each Cholesky

decomposition requires O(L3
w) floating point operations, including many divisions.

The much more difficult case when M > 1 in (2.1) is not well-understood.

There may be many solutions that are locally optimal but not necessarily globally

optimal, so gradient-descent strategies only ensure convergence to a local optimum.

Some TEQ algorithms of this form are the maximum geometric SNR (MGSNR)

[5], Maximum Bit Rate (MBR) [7], Maximum Data Rate (MDR) [70], and Bitrate
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Maximum TEQ (BM-TEQ) [105], [106] methods. One approach is to compute sev-

eral reasonable initial guesses, apply gradient descent (or a Newton-like algorithm)

to each initialization, and then pick the best solution. This is not guaranteed to be

optimal. The initial guesses can be made by computing the closed-form solutions

for various M = 1 cases, such as the MSSNR TEQ or TEQs that optimize the bit

rate on individual tones [70].

The next three sections review the literature for the cases of a single Rayleigh

quotient, multiple Rayleigh quotients, and exceptions to the rule.

2.2 Single Rayleigh quotient cases

Several common TEQ designs that are designed by maximizing a generalized Ra-

lyeigh quotient are the minimum mean squared error (MMSE) design [30], [4], the

maximum shortening SNR (MSSNR) design [67], [113], the minimum inter-symbol

interference (Min-ISI) design [7], the minimum delay spread (MDS) design [92], the

minimum inter-block interference (Min-IBI) design [15] and their variants. This

section summarizes these designs.

The design that deals with the concept of “channel shortening” most directly is

the MSSNR design [67], since it operates on the channel with the goal of shortening

it without regard to any other performance metrics. As depicted in Figure 2.2, the

MSSNR TEQ attempts to maximize the ratio of the energy in a window of the

effective channel over the energy in the remainder of the effective channel. The

MSSNR design was reformulated for numerical stability in [113], and iterative and

adaptive implementations have been proposed in [75] and [53]. Following [67], we
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Figure 2.2: Maximum Shortening SNR channel shortening.

define

Hwin =




h(∆) h(∆ − 1) · · · h(∆ − L̃w + 1)

...
. . .

...

h(∆ + ν) h(∆ + ν − 1) · · · h(∆ + ν − L̃w + 1)




(2.7)

as the middle ν + 1 rows of the (tall) channel convolution matrix H, and Hwall as

the remaining rows of H:

Hwall =




h(0) 0 · · · 0

...
. . .

h(∆ − 1) h(∆ − 2) · · · h(∆ − L̃w)

h(∆ + ν + 1) h(∆ + ν) · · · h(∆ + ν − L̃w + 2)

...
. . .

0 · · · 0 h(Lh)




(2.8)

Thus, cwin = Hwinw yields a length ν + 1 window of the effective channel, and

cwall = Hwallw yields the remainder of the effective channel. The MSSNR design



22

problem can be stated as “maximize ‖cwin‖ subject to the constraint ‖cwall‖ = 1,”

[67], [113] which reduces to (2.2) with

A = HH
wallHwall

B = HH
winHwin.

(2.9)

Since HHH = HH
winHwin +HH

wallHwall, it is mathematically equivalent to minimize

the wall energy over the total channel energy [98], with

A = HH
wallHwall

B = HHH;

(2.10)

or to maximize the energy inside the window over the total channel energy [38],

with

A = HHH

B = HH
winHwin,

(2.11)

which results in a reduced-complexity implementation.

The MMSE design [30], originally intended for complexity reduction in max-

imum likelihood sequence estimation (MLSE), is similar to the MSSNR design,

although it takes noise into account. Indeed, for a white input and no noise, the

MMSE and MSSNR designs are identical [20]. The system model for the MMSE

solution is shown in Figure 2.3. It creates a virtual target impulse response (TIR)

b of length ν +1 such that the MSE, which is measured between the output of the

effective channel and the output of the TIR, is minimized.

The MMSE TEQ and TIR must satisfy [4], [30]

Rrxb = Rrw, (2.12)
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Figure 2.3: MMSE system model: h, w, and b are the impulse responses of the

channel, TEQ, and target, respectively. Here, ∆ represents transmission delay.

The dashed lines indicate a virtual path, which is used only for analysis.

where

Rrx(∆) = E







r∗(k)

...

r∗(k − Lw)




[
x(k − ∆) · · · x(k − ∆ − ν)

]



(2.13)

is the channel input-output cross-correlation matrix and

Rr = E







r∗(k)

...

r∗(k − Lw)




[
r(k) · · · r(k − Lw)

]



(2.14)

is the channel output autocorrelation matrix. Typically, b is computed first, and

then (2.12) is used to determine w. The goal is that h ?w approximates a delayed

version of b. The target impulse response is the eigenvector corresponding to the

minimum eigenvalue of [5], [30], [31]

R (∆) = Rx − RxrR
−1
r Rrx. (2.15)
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where Rxr = RH
rx and

Rx = E







x∗(k)

...

x∗(k − ν)




[
x(k) · · · x(k − ν)

]



(2.16)

is the input autocorrelation matrix. Thus, the TIR can be designed using (2.2)

with ŵ = b as the vector to be solved for and

A = R (∆)

B = Iν+1.

(2.17)

It is also possible to solve for the TEQ directly, without first computing the

TIR. For a white input signal, the MMSE TEQ can be designed directly using

(2.2) with [56]

A = HH
wallHwall + Rn

B = HH
winHwin,

(2.18)

where Rn is the L̃w × L̃w noise autocorrelation matrix.

The MSSNR design has spawned many extensions and variations. The mini-

mum inter-symbol interference (Min-ISI) method shapes the residual energy in the

tails of the channel in the frequency domain, with the goal of placing the excess

energy in unused frequency bins [7]. The A and B matrices are more complicated

in this case; see [7] or [62], [63] for details. Efficient implementation of the Min-ISI

algorithm was considered in [111].

The minimum inter-block interference (Min-IBI) method [14], [15] models the

inter-block interference power as increasing linearly with the distance of the channel

taps from the boundaries of the length ν + 1 desired non-zero window. Thus, the

Min-IBI penalty function is similar to the MSSNR penalty function, except with
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a linear weighting matrix, leading to a design of the form of (2.2) with

A = HT
wallQibiHwall

B = HT
winHwin,

(2.19)

where Qibi is a diagonal matrix of the form

Qibi = diag
[
∆, ∆ − 1, · · · , 1, 01×(ν+1), 1, 2, · · · , Lc − ν − ∆

]
. (2.20)

The minimum delay spread (MDS) algorithm [92] attempts to minimize the

RMS delay spread of the effective channel, with a unit norm constraint on the

effective channel. The design again has the form of (2.2) with

A = HT
wallQmdsHwall

B = HTH,

(2.21)

where Qmds is a diagonal matrix of the form

Qmds = diag
[
η2, (η − 1)2, · · · , 1, 0, 1, · · · , (Lc − η)2

]
, (2.22)

and where η is a design parameter indicating the desired “center of mass,” or

centroid, of the channel impulse response.

A generalization of the MSSNR cost function was proposed by Tkacenko and

Vaidyanathan [97], [98] which involves a more flexible “window” of the channel

impulse response as well as an attention to noise gain. The MSSNR, Min-IBI,

and MDS designs are special cases. Additionally, it was proposed (for the sake of

completeness) to consider linear weighting of the delay spread instead of quadratic

weighting,

Qmds,linear = diag [η, η − 1, · · · , 1, 0, 1, · · · , Lc − η] , (2.23)

leading to yet another possible TEQ design.
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Arslan, Evans, and Kiaei [7] proposed another generalization of the MSSNR de-

sign, called the minimum intersymbol interference (Min-ISI) design. The idea is to

penalize the residual interference according to which subchannel it is in. Subchan-

nels with higher signal power have higher weights, hence the residual interference

is penalized more. The design is a minimization of a generalized Rayleigh quotient

with [7], [26]

A = ĤT
wall

∑

i∈Su

(
f∗i

Sx,i

Sn,i

fT

)
Ĥwall

B = HTH,

(2.24)

where Ĥwall is equal to Hwall padded with zeros in the middle, Sx,i is the transmit-

ted signal power in tone i, Sn,i is the received noise power in tone i, Su is the set

of used tones, and fT
i produces the ith FFT coefficient of a vector. If all the tones

were used and if Sx,i/Sn,i were constant across all the tones, then the Min-ISI ma-

trices in (2.24) would reduce to the MSSNR matrices in (2.10). Thus, the MSSNR

design is a special case of the Min-ISI design. The Min-ISI design is also related

to a variant of the MMSE design [21].

De Courville, et al. [23], and later Romano and Barbarossa [88], proposed an

adaptive TEQ which relies on the presence of “null-carriers” in an MCM system.

Often the edge carriers transmit zeros in order to reduce interference, and the TEQ

can be designed to minimize the output energy on these channels. However, this

leads to a TEQ which shortens the effective channel to a single spike, rather than

to a window [23]. This “Carrier Nulling Algorithm” (CNA) design problem has

the form of (2.2) with

A = Pcna + Qcna

B = ILw+1,

(2.25)

where Pcna and Qcna are signal- and noise-dependent matrices [23].
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2.3 Multiple Rayleigh quotients

In a point-to-point system such as DSL, the true performance metric to optimize

is the maximum bit allocation that does not cause the error probability to exceed

a threshold (usually 10−7). In broadcast systems, the true performance metric is

the bit error rate (BER) for a fixed bit allocation, although a TEQ has not yet

been designed to explicitly minimize BER. Optimizing the MSE or SSNR does not

necessarily optimize the bit rate or bit error rate.

Recent work [5], [7], [31], [70], [105] has addressed bit rate maximization. Al-

Dhahir and Cioffi were the first to attempt bit rate maximization, though the use

of several approximations (generally considered dubious [7]), led to an algorithm

which does not truly maximize the bit rate. Their algorithm is called the maximum

geometric SNR (MGSNR) algorithm. Lashkarian and Kiaei proposed an efficient

iterative implementation of the MGSNR algorithm in [47]. Arslan, et al. proposed

the maximum bit rate (MBR) design which is very nearly optimal in terms of bit

rate. However, the use of several small approximations make the MBR algorithm

not quite optimal [70], [105]. These approximations were addressed in [70] and

[105], leading to an accurate model of the bit rate cost function. However, the bit

rate cost function is not unimodal, so the global minimum cannot always be found

by standard gradient descent techniques.

All of the algorithms mentioned in this section can be cast into the framework

of (2.1), with Aj and Bj matrices as given in [62], [63]. However, the adaptive

algorithms considered in this thesis generally do not attempt to maximize the bit

rate, but rather attempt to optimize a simpler proxy cost function in the manner

of the algorithms in Section 2.2. Hence, the details of algorithms that attempt to

maximize the bit rate are ommitted here. The details can be found in [62], [63].
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2.4 Exceptions to the common formulation

A TEQ design that does not have an explicit cost function was proposed by Chow,

Cioffi, and Bingham [17] in 1991, when ADSL was becoming popular. Chow’s

algorithm involves iteratively adapting and truncating the TEQ and the target

impulse response until a short effective channel is achieved. Despite a total absense

of theory on the convergence behavior of Chow’s algorithm, it is popular due to

its ease of use and generally acceptable (if not stellar) performance. However, it

makes explicit use of the initial training sequence in ADSL systems. This sequence

consists of a single time-domain symbol without a prefix, transmitted over and

over. Thus, Chow’s algorithm cannot be used in other multicarrier applications.

2.5 Other equalizer structures

Instead of having a single filter, a multicarrier system can be equalized by a bank

of filters. Van Acker, et al. proposed the use of a bank of filters after the FFT,

called a per tone equalizer (PTEQ) [104]; and Milosevic, et al. proposed the use of

a time-domain equalizer filter bank (TEQ-FB) [69]. The two structures are mathe-

matically equivalent, and both are generalizations of the TEQ/FEQ structure. The

PTEQ or TEQ-FB filters are separately optimized for each tone, leading to better

overall performance at the cost of increased complexity. In terms of the common

formulation of Section 2.1, each of the filters can be designed by maximizing a

generalized Rayleigh quotient.

Trautmann and Fliege proposed another post-FFT equalizer which they call

FEQ-DMT [99]. They show that if the transmitted signal contains Nz null tones

and if the channel order is at most Nz, then even if a cyclic prefix is not present,

the signal can be recovered perfectly. This is accomplished by forming a liner
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combination for each tone i whose inputs are the ith FFT output and the Nz FFT

outputs corresponding to the null input tones. Memory and complexity require-

ments during data transmission are similar to the per tone case.

Yet another approach involves linear precoding [90], [91], in which the trans-

mitted signal is precoded by a not neccessarily square matrix, which can be more

general than precoding by an FFT and CP. The precoding matrix and the de-

coding matrix used at the receiver can be optimized based on the transmission

channel. This brings up a distinction between point-to-point (generally wireline)

multicarrier systems and broadcast (generally wireless) multicarrier systems. In

point-to-point systems, the receiver can enlist the help of the transmitter in equal-

izing the channel. In such a situation, the receiver estimates the channel, then

feeds the estimate back to the transmitter. Then the transmitter and receiver can

implement optimal transmit and receive filter banks to recover the data (hence

the term “linear precoding”). Since the FFT structure is only one specific type

of precoding, it is not necessarily optimal, and the optimal precoder may improve

performance. However, the optimal precoder usually destroys the FFT structure,

and the computational complexity increases significantly for the transmitter and/or

the receiver.



Chapter 3

Cyclic Prefix-based Adaptive Equalizers
“This is the hour of the Shire-folk, when they arise from their quiet

fields to shake the towers and the counsels of the Great.”

– Elrond, in The Fellowship of the Ring, by J. R. R. Tolkien.

When training is unavailable, the next best thing is the presence of known

properties in the transmitted signal. An equalizer (or channel shortener) can then

be designed to restore the presence of such properties in the equalized data. The

“property restoral” philosophy of adaptive algorithm design is discussed in [100,

Chapter 6]. For example, decision-directed algorithms make use of the finite-

alphabet nature of most transmitted signals in digital communication systems,

and the constant modulus algorithm (CMA) makes use of the fact that often the

collection of possible transmitted symbols all have the same modulus.

The question, then, is “what properties are present in the transmitted data in

a multicarrier communication system?” There are in fact numerous properties1:

1. A cyclic prefix is present, so each symbol has redundancy in the data.

2. The channel is desired to be shorter than the cyclic prefix length. If it is,

then the auto-correlation of the output data should be short as well.

3. Often zeros are transmitted on the band edges, which is somewhat like

frequency-domain training.

4. The frequency domain data is generally chosen from QAM constellations.

1Some material in this chapter has been published or submitted for publication.
c© 2004 IEEE. Reprinted, with permission, from [53], [54], [64], and [65].
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Algorithms making use of Property 1 are the focus of this chapter. Properties 2

and 4 are discussed in Chapters 4 and 5, respectively. Property 3 was discussed in

[23], [88], leading to the CNA equalization algorithm.

Throughout this chapter, we assume that:

A1. The L input sequences of the IFFTs are each zero-mean, white, and wide

sense stationary (implying that the output bins of each IFFT are uncorre-

lated), with variance σ2
x,l.

A2. Lc + 1 ≤ N (the length of the effective channel is no larger than the FFT

size).

A3. For each p, the noise autocorrelation function Rn,p(δ) = 0 for δ ≥ N − Lw.

A4. All data sequences xl and noise sequences np are pairwise uncorrelated.

We may alter assumption A4 in some cases to set x1 = x2 = · · · = xL, i.e. for the

case of multiple transmit antennas for a single user. If there is one user with L

antennas, assumption 4 may still hold if space-time coding is applied.

3.1 MERRY: a low cost, blind, adaptive channel shortener

This section derives the basic MERRY algorithm. The following sections will

discuss various generalizations and performance-enhancing extensions. For the

moment, consider a SISO multicarrier system. Once the cyclic prefix (CP) has

been added, the transmitted data obeys the relation

x (Mk + i) = x (Mk + i + N) , i ∈ {1, 2, . . . , ν} , (3.1)

where k is the symbol (block) index. The received data r is obtained from x by

r(Mk + i) =

Lh∑

l=0

h(l) · x(Mk + i − l) + n(Mk + i), (3.2)
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and the equalized data y is similarly obtained from r by

y(Mk + i) =
Lw∑

j=0

w(j) · r(Mk + i − j), (3.3)

where the notation is as in Tables 1.1, 1.2, 1.3, and 1.4, with L = P = 1.

The channel destroys the relationship in (3.1), because the ICI & ISI that affect

the CP are different from the ICI & ISI that affect the last ν samples in the symbol.

Consider the motivating example in the top half of Figure 3.1. The transmitted

samples 2 and 10 are identical. However, at the output of the TEQ in the receiver,

the interfering samples before sample 2 are not all equal to their counterparts

before sample 10. Observe that if c(2), c(3), and c(4) were zero, then we would

have y(2) = y(10). Thus, if we try to force y(2) = y(10) in the mean squared error

sense, we may force the channel to be as short as the CP. This can be viewed as a

form of property restoral [100, Chapter 6].

The astute reader will note that the preceding example shortens the channel

to a particular window of ν taps: the first ν taps in the effective channel. The

location of the window, and thus the transmission delay, can be adjusted by forming

a different comparison. For example, as shown in the bottom half of Figure 3.1, if

we force y(3) = y(11) rather than y(2) = y(10), then the non-zero window of the

effective channel becomes [c1, c2] rather than [c0, c1].

The astute reader will also note that we have shortened the channel to ν taps,

yet a multicarrier system only requires shortening to ν + 1 taps. However, when ν

is large (e.g. 32 in ADSL), shortening the channel by an extra tap should have a

minimal effect on the performance.

In general, if the effective channel has been shortened, then the last sample in

the ∆-delayed CP should match the last sample in the symbol. One cost function
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Figure 3.1: Illustration of the difference in the ISI at the received CP and at the

end of the received symbol. Top: delay of ∆ = 0. Bottom: delay of ∆ = 1. x(i), ci,

and y(i) are the transmitted data, effective channel, and TEQ output, respectively,

and the bracketed terms are intended to be suppressed.

that reflects this is

Jmerry(∆) = E
[
|y(Mk + ν + ∆) − y(Mk + ν + N + ∆)|2

]
,

∆ ∈ {0, . . . , M − 1} , (3.4)

where ∆ is the symbol synchronization parameter, which represents the desired

delay of the effective channel. The choice of ∆ affects the cost function. Eq. (3.4)

can apply to MIMO models as well as SISO models, if the output sequence {y} is
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generated as in (1.4).

A stochastic gradient descent of (3.4) leads to a blind, adaptive TEQ, since the

transmitted data need not be known. The algorithm, “Multicarrier Equalization

by Restoration of RedundancY” (MERRY), performs a stochastic gradient descent

of (3.4), with a constraint to avoid the trivial solution w = 0 [53], [54]. For a SISO

system, the basic MERRY algorithm is:

MERRY:

Given ∆, for symbol k = 0, 1, 2, . . . ,

r̃(k) = r(Mk + ν + ∆) − r(Mk + ν + N + ∆)

e(k) = wT (k) r̃(k)

ŵ(k + 1) = w(k) − µ e(k) r̃∗(k)

w(k + 1) =
ŵ(k + 1)

‖ŵ(k + 1)‖

(3.5)

where r(i) = [r(i), r(i − 1), . . . , r(i − Lw)]T , and ∗ denotes complex conjugation.

The norm can be the common L2 norm, the Lp norm for p an integer, the norm

with respect to a matrix, or any other conceivable norm.

Observe that MERRY is a simple vector update rule, with the added complexity

of a renormalization. Due to the fact that MERRY compares the CP to the end of

the symbol, only one update is possible per symbol. Alternate implementations of

the constraint include fixing one tap to unity, maintaining a channel estimate and

renormalizing to enforce ‖c‖ = 1 instead of ‖w‖ = 1, or including a penalty term

in the cost function to enforce the norm constraint.

MERRY can also be implemented in transmitter-zero OFDM (TZ-OFDM) sys-

tems [90], as opposed to cyclic prefix OFDM (CP-OFDM) systems. TZ-OFDM

systems transmit zeros during the guard period that is used for the cyclic prefix

in CP-OFDM. This is equivalent to assuming that the samples in the CP (x(1)

and x(2) in Figure 3.1) are zero, rather than copies of the data. The MERRY cost
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function then becomes

Jmerry,TZ(∆) = 2 E
[
|y(Mk + ν + ∆)|2

]
, ∆ ∈ {0, . . . , M − 1} . (3.6)

The update equation is a stochastic gradient descent of (3.6) with a periodic renor-

malization.

3.2 FRODO: MERRY’s cousin

This section proposes a generalization to the MERRY cost function. This general-

ization allows for the use of more than one sample in the update rule and allows for

channel shortening to variable window lengths (this last feature is incidental rather

than specifically sought after). The generalization of MERRY will be referred to

as Forced Redundancy with Optional Data Omission (FRODO) [64], for reasons

that will become apparent.

Since there are ν samples in the cyclic prefix, a natural generalization is to

compare more than one of these samples to their counterparts at the end of the

symbol. Thus, for a CP-OFDM system, a more general cost function than the

MERRY cost of (3.4) is

Jfrodo(∆) =
∑

i∈Sf

E
[
|y(Mk + i + ∆) − y(Mk + i + N + ∆)|2

]
,

∆ ∈ {0, . . . , M − 1} , (3.7)

where Sf ⊂ {1, · · · , ν} is an index set. Similarly, for a TZ-OFDM system, the

FRODO cost function can be modifed to

Jfrodo,TZ(∆) = 2
∑

i∈Sf

E
[
|y(Mk + i + ∆)|2

]
, ∆ ∈ {0, . . . , M − 1} . (3.8)

These cost functions can be considered for either the SISO or the MIMO model.
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For MERRY, Sf = {ν}. Different sets allow for the use of more or less data, as

well as for shortening to different channel lengths, which will be shown momentarily.

Since the modified cost function allows the option of using all of the data in the

CP (Sf = {1, · · · , ν}), or a single sample (Sf = {ν}), or anything in between,

we use the name Forced Redundancy with Optional Data Omission (FRODO)

to refer to a stochastic gradient descent algorithm using this cost function. An

equalization (not channel shortening) algorithm equivalent to using FRODO with

the set Sf = {1, · · · , ν} was proposed in [45]. The general FRODO algorithm

includes both [45] and MERRY [53] as special cases.

3.3 Cost function analysis

This section analyzes the MERRY and FRODO cost functions, with the goal of

showing that minimizing the cost function will suppress the unwanted energy in

the impulse response of the effective channel.

The following theorem relates the MERRY and FRODO cost functions to the

non-adaptive maximum shortening SNR (MSSNR) TEQ design [67]. It says that

MERRY attempts to produce a “don’t care” region with a width of ν taps, and

FRODO uses a “don’t care” region that is the intersection of multiple such win-

dows.

Theorem 3.3.1 For CP-OFDM systems and TZ-OFDM systems, the FRODO

cost functions (3.7) and (3.8) simplify to

Jfrodo = 2
∑

i∈Sf

L∑

l=1

σ2
x,l‖ci+∆

l,wall‖2 + 2 |Sf |
P∑

p=1

wH
p Rn,pwp, (3.9)

where

‖ci+∆
l,wall‖2 =

∆+i−ν−1∑

j=0

|cl(j)|2 +
Lc∑

j=∆+i

|cl(j)|2 , l ∈ {1, . . . , L} , (3.10)
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and where

cl(j) =
P∑

p=1

cp,l(j), j ∈ {0, . . . , Lc} , l ∈ {1, . . . , L} . (3.11)

Remarks on Theorem 3.3.1: A proof is given in Appendix A. For the case L =

P = 1, and for Sf = {ν}, we have the term i = ν only, which leads to shortening

to a ν-length window (i.e. the basic MERRY algorithm). MERRY minimizes the

energy outside of a length ν window plus the energy of the filtered noise, subject

to a constraint (e.g. ‖w‖ = 1 or ‖c‖ = 1). In contrast, the MSSNR design [67]

minimizes the energy of the combined impulse response outside of a window of

length ν + 1 (rather than ν), subject to some constraint (usually ‖cwin‖ = 1). For

the case L = 1, P > 1, and Sf = {ν}, the cost function suppresses the tails of

the averaged channel, c =
∑

p cp, allowing for diversity gain. For the case L > 1,

P = 1, and Sf = {ν}, the cost function suppresses the average of the tail energies

of the L channels (rather than the tail energy of the average channel in the previous

case), effectively shortening all L channels at once. In this case, the demodulated

signal will be the sum of the transmitted signals of the L users, but the signal will

be free of ISI and ICI. Thus, in an MC-CDMA scenario, the L signals can now

be separated using the spreading codes, which would not have been possible if the

channels were not shortened first. The case L = P = 1 with Sf ) {ν} will be

discussed in the pedagogical example after Theorem 3.3.2.

Theorem 3.3.2 If we relax assumption A4 so that xl(k) = x(k) ∀l ∈ {1, · · · , L},

i.e. multiple transmit antennas for a single user, then the FRODO cost functions

(3.7) and (3.8) simplify to

Jfrodo = 2σ2
x

∑

i∈Sf

‖ci+∆
wall‖2 + 2 |Sf |

P∑

p=1

wH
p Rn,pwp, (3.12)



38

4 3 2 1 044 1 2 3 4 4 4

force to zerosummed

i = 1

i = 2

i = 3

νi = 4 =

weighting

force to zero

force to zeroforce to zero

force to zero force to zero

force to zero

force to zero

force to zero

force to zero don’t care

don’t care

don’t care

don’t care

don’t care

PSfrag replacements

c = H w

cwin = Hwin w

cwall = Hwall w

y(2) = c0x(2) + c1x(1) + c2x(0) + c3x(−1) + c4x(−2)

= c0x(10) + c1x(9) + [c2x(0) + c3x(−1) + c4x(−2)]

y(10) = c0x(10) + c1x(9) + [c2x(8) + c3x(7) + c4x(6)]

y(3) = c0x(3) + c1x(2) + c2x(1) + c3x(0) + c4x(−1)

= [c0x(3)] + c1x(10) + c2x(9) + [c3x(0) + c4x(−1)]

y(11) = [c0x(11)] + c1x(10) + c2x(9) + [c3x(8) + c4x(7)]

∑

x1(k)

xL(k)

h1,1

h1,L

hP,1

hP,L

w1

wP

n1(k)

nP (k)

r1(k)

rP (k)

y1(k)

yP (k)

y(k)

y(k)

x(k)

n(k)

r(k)

h

w

c = h ? w

Figure 3.2: The relation of the “don’t care” windows in the different terms of

the FRODO cost function, for ν = 4. The line “summed” indicates the effect of

considering all four terms at once, and the line “weighting” indicates how much

emphasis the total cost function places on forcing each tap to zero.

where

‖ci+∆
wall‖2 =

∆+i−ν−1∑

j=0

|c(j)|2 +
Lc∑

j=∆+i

|c(j)|2 , (3.13)

and where

c(j) =
P∑

p=1

L∑

l=1

cp,l(j), j ∈ {0, . . . , Lc} . (3.14)

Remarks on Theorem 3.3.2: The proof of Theorem 3.3.2 follows along the same

lines as the proof of Theorem 3.3.1, except with the definition of (3.14) instead of

(3.11), hence the details of the proof are omitted. In this case, FRODO will try

to minimize the tail energy of the average channel, which is averaged over both p

and l.

The effect of using more than one comparison [more than one value of i in (3.7)]

can be illustrated as follows. For simplicity, let L = P = 1 and drop the subscripts

l and p. Consider using the “full” index set, i ∈ {1, · · · , ν}. The total cost function
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is the sum of (A.7) over these values of i:

J = 2σ2
x

ν∑

i=1

‖ci+∆
wall‖2 + 2

ν∑

i=1

wHRnw. (3.15)

Figure 3.2 shows a pictorial example for ν = 4. Each time i is incremented, the

window location shifts over by one sample. The summed cost function takes the

form

Jfrodo = 2 σ2
x

[
ν c2(0) + ν c2(1) + · · · + ν c2(∆ − ν)+

(ν − 1) c2(∆ − ν + 1) + · · · + 2 c2(∆ − 2) + c2(∆ − 1)+

c2(∆ + 1) + 2 c2(∆ + 2) + · · · + (ν − 1) c2(∆ + ν − 1)+

ν c2(∆ + ν) + ν c2(∆ + ν + 1) + · · · + ν c2(Lc)
]

+ 2 ν wHRnw. (3.16)

Thus, the “full” frodo cost function tries to suppress all of the taps of the effective

channel except for the ∆th tap, and the noise gain is limited as well. Taps farther

from the center are more heavily weighted, and hence should be smaller. This

makes the cost function very similar to the minimum delay spread (MDS) algorithm

[92] which minimizes

JMDS =
Lc∑

j=0

|j − ∆|2 c2(j), (3.17)

subject to a unit norm constraint on the effective channel, ‖c‖ = 1. A variant of

the MDS algorithm proposed in [97] uses linear weights, rather than quadratic:

ĴMDS =
Lc∑

j=0

|j − ∆| c2(j). (3.18)

Notice that this alternate MDS penalty increases linearly with the distance from

tap ∆, and the FRODO penalty [in this example which uses all possible values

of i in the summation in (3.7)] increases linearly for a distance of ν on each side
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of tap ∆, and then remains fixed at that penalty level for larger distances. As

a consequence of suppressing all taps save the ∆th tap, FRODO will attempt to

shorten the channel to an impulse function with delay ∆, but with a tendency

to minimize delay spread rather than simply to equalize. Since the ISI and ICI

caused by channel taps increase with their distance from the ∆th tap [92], the

delay spread minimizing nature of FRODO is more advantageous for a TEQ than a

traditional zero-forcing equalizer, yet less advantageous than an algorithm designed

for channel shortening (such as the MSSNR design [67]). The linearly increasing

penalty function of (3.18) may have the effect of amplifying the effects of channel

estimation errors [15]. The fact that the FRODO penalty function levels off after

a certain distance prevents this from happening.

As a compromise, if a window size between 1 and ν is desired, then the index

set for FRODO can be changed accordingly. If two comparisons are made in (3.7)

rather than one as in (3.4), then the algorithm has access to more data per update,

hence convergence should be faster and smoother. The penalty is that the window

size will be smaller by one sample.

3.4 Equivalent problem statements

In this section, the FRODO design problem is re-cast into several formulations that

are mathematically equivalent but quite different in appearance. This equivalence

will be used in the next section to pick a “good” problem statement which allows

for an update rule that has no divisions or square roots, and allows for the use of

alternate constraints.

Defining “stacked” amalgamations of various vectors as

rp(j) = [rp(j), rp(j − 1), · · · , rp(j − Lw)]T , p ∈ {1, · · · , P} , (3.19)
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r(j) =
[
rT
1 (j), rT

2 (j), · · · , rT
P (j)

]T
, (3.20)

r̃i(k) = r(Mk + i + ∆) − r(Mk + i + N + ∆), ∀i ∈ Sf (3.21)

w =
[
wT

1 ,wT
2 , · · · ,wT

P

]T
, (3.22)

the FRODO cost function (3.7) can be rewritten as

Jfrodo =
∑

i∈Sf

E
[∣∣r̃T

i (k)w
∣∣2
]

(3.23)

= wH
∑

i∈Sf

E
[
r̃∗i (k)r̃T

i (k)
]

︸ ︷︷ ︸
Ai︸ ︷︷ ︸

A

w. (3.24)

Under our four assumptions, it can be shown that

Ai = 2
L∑

l=1

σ2
x,l




HH
1,l,wallH1,l,wall, · · · , HH

1,l,wallHP,l,wall

...
. . .

...

HH
P,l,wallH1,l,wall, · · · , HH

P,l,wallHP,l,wall




+2




Rn,1, · · · , 0

...
. . .

...

0, · · · , Rn,P




(3.25)

where Hp,l,wall is obtained by forming the convolution matrix Hp,l for channel p, l

and removing rows ∆+ i−ν through ∆+ i−1, similar to Hwall in [67]. (The proof

is quite similar to the proof of Theorem 3.3.1, and hence is omitted.) We wish to

minimize (3.24), with some constraint to avoid the trivial solution w = 0.

The FRODO cost function is a measure of the energy in the “wall” portion of

the effective channel. Also of interest are the energy in the “window” portion of

the effective channel, and the total energy of the effective channel. To this end, we

define

Jwin = 2
∑

i∈Sf

E [y∗(Mk + i + ∆) y(Mk + i + N + ∆)]

= wH



∑

i∈Sf

2 E
[
r∗(Mk + i + ∆) rT (Mk + i + N + ∆)

]
︸ ︷︷ ︸

Bi




︸ ︷︷ ︸
B

w,
(3.26)
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and

Jtotal = 2 |Sf | E
[
|y(Mk + io + ∆)|2

]
, io ∈ {0, · · · ,M − 1}

= wH
(
2 |Sf | E

[
r∗(Mk + io + ∆) rT (Mk + io + ∆)

])
︸ ︷︷ ︸

C

w.
(3.27)

It can be shown that the Bi matrices have the same form as the Ai matrices

in (3.25), except with Hp,l,wall replaced by Hp,l,win (which equals rows ∆ + i − ν

through ∆ + i − 1 of the channel convolution matrix Hp,l), and the C matrix has

the same form as the Ai matrices, except with Hp,l,wall replaced by Hp,l.

Theorem 3.4.1 Under the assumtions in Section 3.2, the following optimization

problems all produce the same solution wopt, up to a scale factor:

w1
opt = arg min

w

Jfrodo such that Jwin = 1 (3.28)

w2
opt = arg max

w

Jwin such that Jfrodo = 1 (3.29)

w3
opt = arg min

w

Jfrodo such that Jtotal = 1 (3.30)

w4
opt = arg max

w

Jtotal such that Jfrodo = 1 (3.31)

w5
opt = arg min

w

Jtotal such that Jwin = 1 (3.32)

w6
opt = arg max

w

Jwin such that Jtotal = 1. (3.33)

Proof: For simplicity of notation, we consider the case Sf = {ν}. The general

case is straitforward but more tedious. Let u1 = r(Mk + ν + ∆), u2 = r(Mk +

ν + N + ∆), and u3 = u1 − u2. Note that E
[
u∗

1u
T
1

]
= E

[
u∗

2u
T
2

]
and E

[
u∗

1u
T
2

]
=

E
[
u∗

2u
T
1

]
for uncorrelated source sequences. Then

E
[
u∗

3u
T
3

]
︸ ︷︷ ︸

A

= E
[
u∗

1u
T
1 + u∗

2u
T
2 − u∗

1u
T
2 − u∗

2u
T
1

]
= E

[
2u∗

1u
T
1

]
︸ ︷︷ ︸

C

−E
[
2u∗

1u
T
2

]
︸ ︷︷ ︸

B

, (3.34)
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i.e. A + B = C. Thus,

w1
opt = arg min

w

wHAw

wHBw
(3.35)

= arg max
w

wHBw

wHAw
= w2

opt (3.36)

= arg max
w


wHBw

wHAw
+

wHAw

wHAw︸ ︷︷ ︸
1


 (3.37)

= arg max
w

wHCw

wHAw
= w4

opt. (3.38)

The remaining equivalence relations are proven in a similar fashion.

Thus, we can transform our original constrained minimization problem into

various constrained maximization problems. Chatterjee, et al. [16], have proposed

an iterative algorithm which can solve optimization problems of the form of (3.29),

(3.31), (3.33), rather than the form of (3.28), (3.30), (3.32). We will combine

Chatterjee’s algorithm with the results of Theorem 3.4.1 in the next section.

It is of interest to note that in the SISO case, the matrices A, B, and C used

in the preceeding proof can be simplifed to

A = HH
wallHwall + Rn (3.39)

B = HH
winHwin (3.40)

C = HHH + Rn = A + B, (3.41)

where Hw, Hwinw, and Hwallw form the effective channel, the windowed effective

channel, and the effective channel outside the window, respectively, as in [67].

Thus, from Theorem 3.4.1, the minimization of the MERRY cost (3.4) under the

constraint E [y2(k)] = 1 (which is ‖c‖2
2 = 1 in the noiseless case) yields the same

solution (up to a scale factor) as the minimization of (3.4) under the constraint

‖cwin‖2
2 = 1.
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If we enforce the constraint by monitoring the TEQ output energy E [y2(k)]

and forcing it to unity, then MERRY will converge to the MSSNR solution in

the noiseless case. In the noise case, MERRY converges to the MMSE solution

(assuming a white input signal), since the only difference between the MSSNR

solution and the MMSE solution is that the MMSE solution includes the noise

correlation Rn in the penalty function [56], and MERRY includes this term as

well.

3.5 Division-free update rule

This section derives the FRODO update algorithm. The periodic renormalization

(with square root and division) of MERRY [53] and of other adaptive and iterative

TEQ designs [8], [17], [23], [30], is avoided by using a Lagrangian constraint in the

manner of [16]. The adaptive generalized eigen-decomposition algorithm of [16]

was proposed in the context of neural networks; and it has been applied to trained,

iterative (not adaptive) TEQ design in [15]. The update algorithm is a gradient

ascent of a cost function (wHCw) with a Lagrangian constraint (wHAw = 1),

and it is given by

w(k + 1) = w(k) + µ
(
Cw − Aw

(
wHCw

))
. (3.42)

A proof of the global convergence of this algorithm to the maximum generalized

eigenvalue of the matrix pencil (C,A) in the case of real parameters was given in

[16]. In the case of FRODO, we have blind, stochastic approximations of A and

C available at the receiver, which are obtained by removing the expectations in

(3.24) and (3.27). Making use of these estimates in (3.42), the FRODO update
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rule is

Given ∆ and io, for symbol k = 0, 1, 2, . . . ,

r̃i(k) = r(Mk + i + ∆) − r(Mk + i + N + ∆), ∀i ∈ Sf

ei(k) = wT (k) r̃i(k), ∀i ∈ Sf

yio(k) = y(Mk + io + ∆) = wT r(Mk + io + ∆)

w(k + 1) = w(k) + µ yio(k)


r∗(Mk + io + ∆) − y∗

io(k)
∑

i∈Sf

ei(k)r̃∗i (k)




(3.43)

where the constant 2 |Sf | has been absorbed into the step size µ. When Sf = {ν}

and P = L = 1, we obtain an algorithm that is similar to the MERRY algorithm

(3.5) without the renormalization. The algorithm of (3.43) requires approximately

(2 |Sf |+ 3)PL̃w multiplications and (3 |Sf |+ 2)PL̃w additions, where |Sf |, the size

of the set Sf , is usually 1.

An alternate approach for creating a division-free update rule is to reparame-

tertize the TEQ in generalized spherical coordinates, as in [84]. However, this leads

to the constraint ‖w‖2 = 1, without the option of the more appropriate ‖c‖2 = 1

or ‖cwin‖2 = 1, both of which are possible for the FRODO algorithm (3.43).

3.6 Global convergence

Since MERRY is essentially an iterative eigensolver, a proof of its global conver-

gence is readily derivable.

Theorem 3.6.1 The expectation of the trajectory of the MERRY algorithm of

(3.5) has Lw + 1 stationary points. All of the stationary points corresponding to

local minima have the same value of the cost function, and thus are global minima.

I.e., the MERRY algorithm is globally convergent.
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Proof: Define

rj = [r(j), r(j − 1), . . . , r(j − Lw)]T

r̃i = rj − rj+N

(3.44)

Adding a Lagrangian constraint, the cost function becomes

Jmerry(∆) = E
[
|y (ν + ∆) − y (ν + ∆ + N)|2

]
+ λ

(
1 − wHw

)

= E
[∣∣wT rν+∆ − wT rν+∆+N

∣∣2
]

+ λ
(
1 − wHw

)

= wH E
[
r̃∗ν+∆r̃T

ν+∆

]
︸ ︷︷ ︸

A

w + λ
(
1 − wHw

)
,

with gradient and Hessian

5wJmerry(∆) = 2 (Aw − λw) , (3.45)

HwJmerry(∆) = 2 (A − λI) . (3.46)

The gradient is zero if and only if (w, λ) are an eigenpair of A, hence there are

exactly Lw + 1 stationary points. The Hessian is positive definite (corresponding

to a local minima) if and only if we choose λ to be the smallest eigenvalue. If

the smallest eigenvalue is repeated, then there will be multiple minima but all will

have the same cost (equal to the repeated eigenvalue). This completes the proof.

The proof is similar for the MERRY algorithm using the constraints wTBw = 1,

‖c‖ = 1, and E [y2(k)] = 1. The division-free FRODO algorithm of (3.43) is based

on the generalized eigenvector computation algorithm of [16], which is globally

convergent. However, the FRODO algorithm replaces the product of two expecta-

tions with the instantaneous values of their arguments. Since the expectation of

a product is not the product of the expecatations, we cannot gaurantee that the

stochastic version of FRODO will converge.
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3.7 Initialization

This section proposes a blind, non-adaptive approach to solving the FRODO cost

function. If the matrices A and C in (3.24) and (3.27) are ill-conditioned, then

the FRODO algorithm will have slow modes of convergence, as with the LMS

algorithm [110]. One way to avoid this is to accumulate the estimates of A and C

from the data,

Â =
1

K

K∑

k=1

∑

i∈Sf

r̃∗i (k) r̃T
i (k), (3.47)

Ĉ =
2 |Sf |

K

K∑

k=1

r∗(Mk + io + ∆) rT (Mk + io + ∆), (3.48)

and then find the generalized eigenvector corresponding to the maximum general-

ized eigenvalue of (Ĉ, Â). However, if P is large, this approach is computationally

intensive. A computationally cheaper solution would be to individually solve the

P = 1 eigendecomposition for each wp, p ∈ {1, · · · , P}, and then let the adaptive

FRODO algorithm refine these estimates.

Simulation results have shown that this non-adaptive approach blindly finds a

near-optimum solution for the TEQ, and under ergodicity assumptions, this ap-

proach will find the optimal (in terms of the FRODO cost) solution if an infinite

amount of data is used in the time-averaging. The simulation results will be pre-

sented in Chapter 8.

3.8 Symbol synchronization

One of the difficulties with the MERRY and FRODO algorithms is that the user

must choose a value for the symbol synchronization parameter ∆ before the al-

gorithm is run. This section shows how the basic idea in MERRY/FRODO can
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be used to obtain a reasonable heuristic choice for the symbol synchronization

parameter.

We propose the following heuristic: given the delay ∆peak in which maximizes

the energy of the average (unshortened) channel in a window of taps ∆ through

∆+ν−1, a near-optimum delay (in the shortening SNR sense [67]) can be obtained

by choosing

∆ = ∆peak +

⌊
Lw

2

⌋
. (3.49)

There are two issues to be addressed: (1) the means of obtaining ∆peak, and (2)

the validity of this heuristic. These will be addressed in order.

In the absence of a TEQ (i.e. w = 1), cp,l = hp,l. From Theorem 3.3.1, if we

only make one comparison using i = ν,

Jfrodo (∆) = 2
L∑

l=1

σ2
x,l‖hν+∆

l,wall‖2 + 2
P∑

p=1

σ2
n,p, (3.50)

with an analogous definition for hν+∆
l,wall as for cν+∆

l,wall. Since

‖hl‖2 = ‖hν+∆
l,win‖2 + ‖hν+∆

l,wall‖2, (3.51)

the index ∆peak in which the average windowed channel energy is highest is the

index in which the average walled channel energy is smallest. Thus, ∆peak can be

estimated by minimizing an estimate of Jfrodo (∆) over ∆,

∆̂peak = arg min
0≤∆≤M−1

K∑

k=1

|r(Mk + ν + ∆) − r(Mk + ν + N + ∆)|2 (3.52)

for some number of symbols K. This approach only requires M ·K multiplications

and M · (2K − 1) additions to compute the function to be minimized, and then

M − 1 comparisons to find the minimum. Thus, a sufficiently large value of K can

be used for an accurate estimate with low computational complexity. Moreover,
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Figure 3.3: Shortening SNR versus TEQ length for FRODO using the optimal and

a heuristic delay.

this heuristic can be applied to other design methods (besides FRODO) to avoid

a global search over the delay parameter.

The second question is whether or not this heuristic is valid. Figure 3.3 shows

a plot of the shortening SNR achieved by the delay-optimized FRODO design

and by the FRODO design using the heuristic delay of (3.49). For simplicity,

P = L = |Sf | = 1. The performance was averaged over carrier serving area (CSA)

loops 1 through 8 [7] (standard synthetic ADSL test channels), and the window size

was 32 taps. The heuristic delay provides reasonable performance relative to the

optimal delay for TEQs with at least 8 taps, and very nearly optimal performance

for TEQs with at least 32 taps. For TEQs shorter than 8 taps, the range of “good”

delay choices will be small, so a heuristic approach may not be adequate. For

ADSL, typical TEQ lengths are 16 or 32 taps. Other heuristics may be used; the

proposed approach is merely one method which generally works and is blind.



Chapter 4

Correlation-based Adaptive Equalizers
“By the discovery we shall be shorten’d in our aim.”

– William Shakespeare, Coriolanus, Act I, Scene ii.

This chapter1 is devoted to adaptive TEQs that rely on correlation estimates.

The Sum-squared Auto-correlation Minimization (SAM) algorithm [8], [9], at-

tempts to blindly shorten the autocorrelation of the data at the output of the

channel shortener. The Trained OFDM L2-norm Correlation-based Iterative Equal-

ization with Normalization (TOLKIEN) algorithm assumes that training can be

used to shorten the cross-correlation between the effective channel’s input and out-

put. Both algorithms have much higher complexity than the MERRY and FRODO

algorithms, but have the advantage that they can update every sample rather than

once per symbol. SAM behaves much like the CMA equalization algorithm, in

that it does not require the user to specify the desired delay and can adapt before

carrier frequency offset (CFO) recovery is performed.

4.1 SAM: a rapidly converging, blind, adaptive channel

shortener

Since SAM does not rely on the presence of a cyclic prefix, it need not be used

exclusively for multicarrier systems. Thus, a more general system model is shown

in Figure 4.1. As before, x(k) is the source sequence to be transmitted through

a linear finite-impulse-response (FIR) channel h; and r(k) is the received signal,

1Some material in this chapter has been previously published. c© 2004 IEEE.
Reprinted, with permission, from [8] and [9].
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which will be filtered through a channel shortener (i.e. TEQ) with an impulse

response vector w to obtain the output sequence y(k). Let c = h ? w denote

the effective channel-equalizer impulse response vector. The TEQ will be adapted

with the goal of shortening the effective channel c such that it possesses significant

coefficients only within a contiguous window of size ν + 1 taps. In multicarrier

systems, ν is the CP length, but more generally it is the desired window length

minus one. The received sequence r(k) is

r(k) =

Lh∑

j=0

h(j)x(k − j) + n(k), (4.1)

and the output of the TEQ is

y(k) =
Lw∑

j=0

w(j)r(k − j) = wT r(k), (4.2)

where r(k) = [r(k), r(k − 1), · · · , r(k − Lw)]T . Throughout this chapter, we make

the following assumptions.

A1. The source sequence x(k) is white, zero-mean and wide-sense stationary

(W.S.S).

A2. The relation 2Lc < N holds for multicarrier (or block-based2) systems, i.e.

the effective channel has length less than half the FFT (or block) size.

A3. The source sequence x(k) has unit variance: σ2
x = 1.

A4. The noise sequence n(k) is zero-mean, i.i.d., uncorrelated to the source se-

quence, and has variance σ2
n.

2Vaidyanathan and Vrcelj [102] have proposed the use of a block structure and
a cyclic prefix for single-carrier systems, in which case channel shortening may be
needed.
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Figure 4.1: System model for SAM.

Assumption A1 is critical for the proposed channel shortening algorithm. In a mul-

ticarrier system, since the IFFT matrix is an unitary transformation, the transmit-

ted sequence x(k) will be white, zero-mean and W.S.S if the message vector X(k)

is white, zero-mean and W.S.S. Assumption A2 is important for analytical reasons,

but if it is modestly violated the performance degradation should be minor. This

assumption is irrelevant for the application of SAM to equalization of (non-CP-

based) single carrier systems. Assumptions A3 and A4 are for notational simplicity.

In [9], the parameters were assumed to be real, and in [78], they were generalized

to the complex case. This thesis assumes complex parameters for generality.

Sum-squared Auto-correlation Minimization

This section motivates the use of the SAM cost function, and shows how to blindly

measure it from the data. Consider the auto-correlation sequence of the combined

channel-equalizer impulse response, i.e.,

Rcc(l) =
Lc∑

j=0

c∗(j) c(j − l). (4.3)
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For the effective channel c to have zero-valued taps outside a window of size ν +1,

the auto-correlation values Rcc(l) must be zero outside a window of length 2ν + 1,

Rcc(l) = 0, ∀ |l| > ν . (4.4)

Hence, one possible way of performing channel shortening is by ensuring that (4.4)

is satisfied by the auto-correlation function of the combined response. However,

this has a trivial solution when c = 0 or equivalently w = 0. This trivial solution

can be avoided by imposing a norm constraint on the effective channel, for instance

‖c‖2
2 = 1, or equivalently Rcc(0) = 1.

It should be noted that perfect nulling of the auto-correlation values outside the

window of interest is not possible, since perfect channel shortening is not possible

when a finite length baud-spaced TEQ is used. This is because if the channel

has Lh zeros, then the effective response will always have Lh + Lw zeros. If we

had decreased the length of the channel to, say, Ls < Lh taps, then the combined

response would only have Ls zeros, which contradicts our previous statement.

Hence, we define a cost function Jν+1 in an attempt to minimize (instead of

nulling) the sum-squared auto-correlation terms, i.e.,

JSAM(ν) =
Lc∑

l=ν+1

|Rcc(l)|2. (4.5)

The TEQ optimization problem can then be stated as

wsam
opt = arg min

w:‖c‖2
2=1

JSAM(ν). (4.6)

Consider the auto-correlation function of the sequence y(k),

Ryy(l) = E [y∗(k)y(k − l)]

= E
[(

cHx∗(k) + wHn∗(k)
) (

xT (k − l)c + nT (k − l)w
)]

,

(4.7)
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where x(k) = [x(k), x(k−1), · · · , x(k−Lc)]
T , and n(k) = [n(k), n(k−1), · · · , n(k−

Lw)]T . To simplify,

E
[
n∗(k)nT (k − l)

]
=




Rnn(l) · · · Rnn(l + L)

...
. . .

...

Rnn(l − L) · · · Rnn(l)




(4.8)

where Rnn(l) = E [n∗(k)n(k − l)]. Since n(k) is i.i.d., this matrix will be Toeplitz,

with only one diagonal of nonzero entries. It becomes a shifting matrix, i.e. its

affect on a vector is to shift the elements of the vector up or down (depending

on l). Since the signal and noise are uncorrelated, E
[
x∗(k)nT (k − l)

]
= 0 and

E
[
n∗(k)xT (k − l)

]
= 0. Finally, E

[
x∗(k)xT (k − l)

]
becomes another shifting ma-

trix, provided that the assumption 2 (Lh + Lw) < N holds. If this is violated, then

the matrix is still Toeplitz, but for some values of l there will be another diag-

onal of nonzero entries, corresponding to the correlation between samples in the

transmitted symbol end and samples in the transmitted cyclic prefix. Fortunately,

assumption A2 is a reasonable one, as can be seen by considering the CSA test

loop channels [93] for the case of DSL: Lh
∼= 200, Lw

∼= 32, and N = 512, so

2 (200 + 32) < 512.

Now (4.7) can be simplified to

Ryy(l) =
Lc∑

j=0

c∗(j)c(j − l) + σ2
n

Lw∑

j=0

w∗(j)w(j − l)

= Rcc(l) + σ2
n Rww(l).

(4.9)

Under the noiseless scenario, Ryy(l) = Rcc(l) and hence equation (4.5) can be

rewritten as

JSAM(ν) =
Lc∑

l=ν+1

|Rcc(l)|2 =
Lc∑

l=ν+1

|Ryy(l)|2 . (4.10)
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In the presence of noise, (4.10) is only approximately true. This suggests approxi-

mating the cost function of (4.5) by

ĴSAM(ν) =
Lc∑

l=ν+1

|Ryy(l)|2

=
Lc∑

l=ν+1

|Rcc(l)|2 + 2σ2
n

Lw∑

l=ν+1

R{Rcc(l)Rww(l)} + σ4
n

Lw∑

l=ν+1

|Rww(l)|2 ,

(4.11)

where R{·} indicates the real part of the argument. In many cases, the equalizer

length Lw + 1 is comparable to or shorter than the cyclic prefix length ν. (This

is true, for example, in [7] and [67].) In such situations, both noise terms in

(4.11) vanish entirely, due to the empty summations. Even if Lw is significantly

longer than ν, for typical SNR values σ4
n will be very small (compared to the unit

variance source signal), so we can neglect the last term in (4.11). Furthermore,

the summands in the second term will be both positive and negative, so they

will often add to a small value. Combining this with the fact that the second

summation is multiplied by the (small) noise variance, we are justified in ignoring

the second term in (4.11) as well. This leaves us with ĴSAM(ν) ∼= JSAM(ν) (and

ĴSAM(ν) = JSAM(ν) exactly if Lw ≤ ν). Accordingly, we will henceforth drop the

hat on JSAM(ν) and ignore the noise terms. The effect of noise on the performance

of SAM is investigated in Chapter 8.

Note that the cost function JSAM(ν) depends only on the output of the TEQ

and the choice of ν. Hence, a gradient-descent algorithm over this cost function,

with an additional norm constraint on c or w, requires no knowledge of the source

sequence. Such an algorithm will be derived momentarily. Also note that the

channel length Lh +1 must be known in order to determine Lc. In ADSL systems,

the channel is typically modeled as a length N FIR filter, where N = 512 is the
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FFT size. The CSA test loops [93] typically have almost all of their energy in

200 consecutive taps, so the FFT size is a very conservative choice for Lh + 1

in this application. For other applications, the user must choose a reasonable

estimate (or overestimate) for Lh based on typical delay spread measurements for

that application. Alternatively, one could maximize the auto-correlation of the

received data within the first ν + 1 delays of the auto-correlation function, while

maintaining some constraint. This method would not require an estimate of the

channel length.

Adaptive Algorithm

The steepest gradient-descent algorithm over the cost surface JSAM(ν) is

wnew = wold − µ∇w

(
Lc∑

l=ν+1

|E [y∗(k)y(k − l)]|2
)

, (4.12)

where µ denotes the step size and ∇w denotes the gradient with respect to w. To

implement this algorithm, an instantaneous cost function can be defined, where the

expectation operation is replaced by a moving average over a user-defined window

of length Nav.

J inst
SAM(ν, k) =

Lc∑

l=ν+1

∣∣∣∣∣∣

(k+1)Nav−1∑

n=kNav

y∗(n)y(n − l)

Nav

∣∣∣∣∣∣

2

. (4.13)

The value of Nav is a design parameter. It should be large enough to give a

reliable estimate of the expectation, but no larger, as the algorithm complexity is

proportional to Nav. (One possible choice for block-based systems is Nav = M ,

where M is the total block size. This allows for one update per block, like the
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MERRY algorithm.) The “stochastic” gradient-descent algorithm is then given by

w(k+1) = w(k)

−µ

Lc∑

l=ν+1







(k+1)Nav−1∑

n=kNav

y∗(n)y(n − l)

Nav







∇w




(k+1)Nav−1∑

n=kNav

y(n)y∗(n − l)

Nav







+





(k+1)Nav−1∑

n=kNav

y(n)y∗(n − l)

Nav







∇w




(k+1)Nav−1∑

n=kNav

y∗(n)y(n − l)

Nav










(4.14)

which simplifies to

w(k + 1) = w(k)

−µ

Lc∑

l=ν+1







(k+1)Nav−1∑

n=kNav

y∗(n)y(n − l)

Nav









(k+1)Nav−1∑

n=kNav

(
y(n)r∗(n − l)

Nav

)


+





(k+1)Nav−1∑

n=kNav

y(n)y∗(n − l)

Nav









(k+1)Nav−1∑

n=kNav

(
y(n − l)r∗(n)

Nav

)





(4.15)

The TEQ update algorithm described in (4.15) will be referred to as the Sum-

squared Auto-correlation Minimization (SAM) algorithm, as it attempts to mini-

mize the cost function described in (4.5). The algorithm here with complex pa-

rameters appeared in [78]. The original SAM algorithm with real parameters [9] is

computationally simpler.

An alternate method of implementing the algorithm comes from using auto-
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regressive (AR) estimates instead of moving average (MA) estimates. Let

A(k) = (1 − α)A(k − 1) + α y(k)




r∗(k − ν − 1)

...

r∗(k − Lc − Lw)




B(k) = W∗A(k)

C(k) = (1 − α)C(k − 1) + α




r∗(k)

...

r∗(k − Lw)







y(k − ν − 1)

...

y(k − Lc)




T

(4.16)

where the “forgetting factor” 0 < α < 1 is a design parameter and W is the

(Lc − ν) × (Lc + Lw − ν) convolution matrix of the equalizer,

W =




w0 w1 w2 · · · 0 0

0 w0 w1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · wLw−1 wLw




. (4.17)

The exact SAM update rule is

w(k + 1) = w(k) − µ

Lc∑

l=ν+1

({E [y∗(k)y(k − l)]} · {E [y(k)r∗(k − l)]}+

{E [y(k)y∗(k − l)]} · {E [y(k − l)r∗(k)]}) .

(4.18)

Using the AR estimates, the stochastic update rule can be written as

w(k + 1) = w(k) − µ
Lc∑

l=ν+1




Bl−ν(k)




C1,l−ν(k)

...

CLw+1,l−ν(k)




+ B∗
l−ν(k)




Al−ν(k)

...

Al−ν+Lw
(k)







(4.19)

Again, the algorithm here with complex parameters appeared in [78], and the orig-

inal SAM algorithm with real parameters [9] is computationally simpler. With
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both the MA and AR implementations, w must be periodically renormalized (or

else the constraint may be implemented in some other fashion, such as by adding

a penalty term onto the cost function). The advantage of the AR implementation

is that it allows us to form an update at each time instant, rather than once every

Nav samples, where Nav is the number of samples used in the block averaging of the

expectation estimates. The disadvantage is that the estimates now depend more

on previous settings of w rather than the current setting, but if the time variations

are reasonably slow, this should not matter. In terms of complexity, the auto-

regressive implementation of (4.19) requires approximately 5Lw (Lc − ν) complex

multiplications and additions (each) per update, plus a division for renormaliza-

tion; whereas the moving average implementation of (4.15) requires approximately

4NavLw (Lc − ν) complex multiplications and additions (each) per update, plus a

division for renormalization. Hence the complexity per unit time is approximately

the same for the two if (4.15) is implemented only once every Nav samples. How-

ever, the moving average implementation is useful for analytic purposes.

The choice of α in the AR implementation is analogous to the choice of Nav

in the MA implementation of (4.15). Both the MA and the AR estimates are

unbiased:

E
[
R̂MA

yy (l)
]

=
1

Nav

∑

k

E [y∗(k)y(k − l)]

=
1

Nav

· Nav · Ryy(l) = Ryy(l),

E
[
R̂AR

yy (l)
]

=
∞∑

j=0

α (1 − α)j E [y∗(k − j)y(k − j − l)]

= α · 1

1 − (1 − α)
· Ryy(l) = Ryy(l).

(4.20)

A “fair” comparison of the two approaches should set N and α such that the vari-

ances of the two estimates are equal, yet closed-form expressions for the variances
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of the two estimates are difficult to obtain. An examination of (4.20) suggests that

α = 1/Nav is a reasonable choice.

As stated earlier, to prevent the algorithm from collapsing the TEQ to an all-

zero solution, the equalizer parameters can be normalized after each update to

ensure that the norm of the effective response is unity, i.e., ‖c‖2
2 = 1. As the

source sequence is assumed to be white, from (4.9) we have

E[|y(k)|2] = ‖c‖2
2 + σ2

n‖w‖2
2 ≈ ‖c‖2

2 (4.21)

so the norm of c can be approximately determined by monitoring the energy of the

output sequence y(k). The approximation does not matter much as it is only used

to keep ‖c‖2
2 non-zero, and the actual value of ‖c‖2

2 does not matter. Similarly, if the

source is non-white, (4.21) does not hold exactly, but maintaining E[|y(k)|2] = 1

will still keep ‖c‖2
2 6= 0. A more easily implementable constraint is the unit norm

constraint on w, i.e. ‖w‖2
2 = 1. This is easier to implement because we have direct

access to w, but not to c.

4.2 Properties of the SAM Cost Function

As is typical of blind equalization algorithms, for instance the constant modulus

algorithm (CMA) [44], SAM’s cost surface can be expected to be multi-modal. If

it has bad local minima, then initialization to ensure convergence to the global

minimum becomes important. In general, the SAM cost surface will have local

minima. This is a direct result of the following theorem.

Theorem 4.2.1 The SAM cost function is invariant to the operation w → w∗,

where w denotes w with the order of its elements reversed and ∗ denotes complex

conjugation.
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Proof: Consider the autocorrelation sequences of the combined channels c1 =

h ? w and c2 = h ? w∗.

Rc1c1 = c∗1 ? c1 = (h∗ ? w∗) ? (h ? w)

= h∗ ? w∗ ? h ? w

= (h ? w∗)∗ ?
(
h ? w∗)

= c∗2 ? c2 = Rc2c2 .

(4.22)

Since the autocorrelation is invariant to reversing the order of the elements of w

and conjugating them, the SAM cost is also invariant to such a transformation.

The upshot of Theorem 4.2.1 is that whenever there is a good minimum of the

SAM cost surface, say at wo, there will also be another minimum at w∗
o. There

is no reason to expect that the flipped and conjugated wo is as good an equalizer

as wo (in terms of achievable bit rate or bit error rate, for example), so each

good minimum may give rise to a bad minimum. Here, “good” and “bad” mean

that even though the SAM cost is the same, the ultimate performance metric

(achievable bit rate or bit error rate) will not be the same for the two settings.

Another consequence is that the SAM cost surface is symmetric with respect to

w ⇔ w∗, so there will be minima, maxima, or saddle points along the subspace

w = w∗.

More generally, for a TEQ of order Lw, there will be as many as 2Lw global

minima of the SAM cost, corresponding to any combination of flipping a subset

of the Lw zeros of the TEQ over the unit circle. Inverting the zero locations of a

filter will not change its auto-correlation, so this will not change the value of the

SAM cost. With regrards to Theorem 4.2.1, flipping all of a filter’s zeros over the

unit circle is the same as time-reversing the filter. Again, we can expect minima,

maxima, or saddle points along the subspace w = T {w}, where T {·} flips one or
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more zeros of its argument over the unit circle.

To visualize Theorem 4.2.1, consider the following example. The channel is

h = [1, 0.3, 0.2], the cyclic prefix length is 1 (so we want a 2-tap channel), there is

no noise, the equalizer w has 3 taps, and we use the unit norm constraint ‖w‖ = 1.

With this constraint, the equalizer must lie on a unit sphere, so we can represent

the equalizer in spherical coordinates: w0
4
= wx = cos(θ) sin(φ), w1

4
= wz = cos(φ),

w2
4
= wy = sin(θ) sin(φ). In this case, w → w is equivalent to switching wx and

wy (the first and third taps), which is equivalent to reflecting θ over π
4

or 5π
4

; and

w → −w is equivalent to the combination of reflecting φ over π
2

and adding π to

θ (mod 2π). Since the channel is real, conjugation is ignored.

A contour plot of the SAM cost function is shown in Figure 4.2. The axes

represent normalized values of the spherical coordinates θ and φ. The contours are

logarithmically spaced to show detail in the valleys. There are four minima, but

they all have equivalent values of the SAM cost, due to the symmetry relations

w ⇔ −w and w ⇔ w. Note the presence of maxima and saddle points along the

subspace w = w, indicated by the dashed line.

We compare the locations of these minima to those of a traditional channel

shortening cost function: the shortening SNR (SSNR) [67]. The SSNR is defined

as

SSNR =
cH

wincwin

cH
wallcwall

, (4.23)

where cwin is the effective channel impulse response inside the window of interest

(of width ν + 1), and cwall is the effective channel impulse response outside this

window. Thus, for our 5-tap effective channel, we pick a 2-tap window and compute

the energy of these taps, then divide by the energy of the remaining 3 taps. For each

equalizer setting, we will compute the combined channel, pick the 2-tap window
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Figure 4.2: Logarithmically spaced contours of the SAM cost function. The two

circles are the global minima of the 1/SSNR cost function. The cost function is

symmetric about the dashed line.

with the highest SSNR, and then plot the inverse of that value (so that we are

looking for minima rather than maxima). Contours of this cost function are shown

in Figure 4.3. The four triangles represent the global minima of the SAM cost

function. The pair of global minima of 1/SSNR match up nicely with two of the

global minima of the SAM cost. Thus, if we find a pair of global minima of the

SAM cost, and they have a high value of 1/SSNR, we can fix this by switching to

the other global minima of SAM simply by reversing the order of taps in w, or

more generally by inverting the locations of the zeros.

For comparison, the two global minima of the MERRY cost function are shown

as squares in Figure 4.3. Note that MERRY seeks an effective channel impulse

response with ν = 1 tap rather than ν + 1 = 2 taps, hence the MERRY solution
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= [c0x(3)] + c1x(10) + c2x(9) + [c3x(0) + c4x(−1)]

y(11) = [c0x(11)] + c1x(10) + c2x(9) + [c3x(8) + c4x(7)]
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Figure 4.3: Logarithmically spaced contours of the 1/SSNR cost function. The four

triangled are the global minima of the SAM cost function, and the two squares are

the global minima of the MERRY cost function.

is not expected to be near optimal for such a small CP length. Even so, it lies in

the valley of the optimal shortening SNR solution.

4.3 TOLKIEN: a trained version of SAM

SAM attempts to blindly shorten a channel by shortening the auto-correlation of

the data at the output of the channel shortener. If training is available, one could

instead shorten the cross-correlation of the training data and TEQ output data.

This leads to the Trained OFDM L2-norm Correlation-based Iterative Equalization

with Normalization (TOLKIEN) algorithm, which is the subject of this section.

The goal of the maximum shortening SNR TEQ design [67] is to minimize the

energy of taps in the effective channel outside of a window of length ν + 1 while
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maintaining a fixed energy in the remaining taps. As such, we define the following

sets for convenience:

Swin
∆ = {∆, · · · , ∆ + ν} (4.24)

Swall
∆ = {0, · · · , ∆ − 1, ∆ + ν + 1, · · · , Lc} (4.25)

S = {0, · · · , Lc} = Swin
∆ ∪ Swall

∆ (4.26)

The delay ∆ is a design choice that represents the estimate of the symbol placement

within the data stream, or equivalently, the placement of the desired window of

non-zero taps within the effective channel impulse response.

Observe that an estimate of the channel can be obtained via the cross-correlation

cl = E [y(k)x(k − l)] , l ∈ S. (4.27)

Suppressing the out-of-window energy in the effective channel is equivalent to min-

imizing the cross-correlation squared, summed over the taps of interest, yielding

the cost function

JTOLKIEN(∆) =
∑

l∈Swall
∆

|E [y(k)x(k − l)]|2 . (4.28)

As the undesirable solution w = 0 yields JTOLKIEN(∆) = 0, we must impose a

constraint. Possible constraints include

A.) ‖w‖ = 1,

B.) ‖c‖ = 1,

C.) wl = 1 for some l ∈ {0, · · · , Lw},

D.) ‖ [c∆, · · · , c∆+ν ]
T ‖ = 1 (or equivalently, ‖Hwinw‖ = 1).
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Any type of norm can be used, although here we use the L2 norm. The constraint

used in the MSSNR solution [67] is constraint D, so it should be used if one desires

to converge asymptotically to that solution. However, constraint A can be easily

implemented via a periodic renormalization of the filter w as it adapts.

The gradient of (4.28) is

∇wJ∆ = 2
∑

l∈Swall
∆

E [y(k) x(k − l)] · E [x∗(k − l) r∗(k)] , (4.29)

where r(k) = [r(k), r(k − 1), · · · , r(k − Lw)]T . A stochastic gradient descent up-

date can be implemented by using estimates of the expectation terms, for example

A.) E [y(k) x(k − l)] ≈ y(k) x(k − l),

B.) E [y(k) x(k − l)] ≈ 1
Nav

∑k
j=k−Nav+1 y(j) x(j − l),

C.) E [y(k) x(k − l)] ≈ (1 − α) (previous estimate) + α y(k) x(k − l) .

Estimate A is an instantaneous estimate, B is a moving average (MA), and C is an

auto-regressive (AR) estimate. This thesis uses C, since it is cheap to implement

and provides a better estimate than estimate A. This leads to the TOLKIEN

algorithm:

B(k) = (1 − α)B(k − 1) + α [r(k), · · · , r(k − Lw)]T [x(k), · · · , x(k − Lc)]

a(k) = wTB(k)

ŵ(k + 1) = w(k) − µ
∑

l∈Swall
∆

a(l)B∗(:, l)

w(k + 1) =
ŵ(k + 1)

‖ŵ(k + 1)‖
(4.30)

The TOLKIEN algorithm has a computational complexity similar to the SAM

algorithm.



Chapter 5

Frequency-domain Adaptive Equalizers
“Put away these dispositions which of late transform you from what

you rightly are.”

– William Shakespeare, King Lear, Act I, Scene iv.

Traditional approaches to creating blind, adaptive algorithms rely on the finite

alphabet nature of messages sent in digital communication systems. In particular,

the constant modulus algorithm (CMA) [44] was designed to equalize signals drawn

from symbols all having the same modulus; and decision-directed algorithms rely

on explicit knowledge of the constellation from which the transmitted sequence is

drawn. In a multicarrier system, the frequency-domain data is generally drawn

from a finite alphabet, but the time-domain data is the Fourier transform of the

frequency-domain data, and thus no longer has a finite alphabet. It is natural, then,

to consider forming frequency-domain cost functions for creating blind, adaptive

algorithms for multicarrier receivers.

Section 5.1 discusses several finite-alphabet-based frequency-domain cost func-

tions that can be used to adapt a channel shortener that operates in the time-

domain. Section 5.2 investigates these same cost functions, but for use in a per tone

equalizer, which is a bank of filters operating in the frequency domain. Section 5.3

examines the unusual topograhy of the per-tone CMA cost function. Section 5.4

compares the cost function of the per-tone LMS algorithm to the MERRY cost

function. Sections 5.1–5.3 have been revised from [57].

67
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5.1 TEQ algorithms with frequency-domain cost functions

Since the frequency domain data is expected to be drawn from a QAM constel-

lation, one might consider directly adapting the TEQ to minimize the frequency-

domain decisision-directed mean squared error cost,

JFDD =
N∑

i=1

βi E
[
|Q [zi(k)] − zi(k)|2

]
, (5.1)

where the βi’s are weighting coefficients1, zi(k) is the output of Di (the FEQ for

tone i) at time k, and Q [·] is the quantizer (nearest constellation point detector).

If training is available, then Q [zi(k)] can be replaced by Xi(k), the transmitted

signal on tone i.

Alternatively, one might consider directly adapting the TEQ to minimize the

frequency-domain constant modulus cost,

JFCM =
N∑

i=1

βi E
[(
|zi(k)|2 − γi

)2]
, (5.2)

where γi, the dispersion constant, can be selected individually for each tone. In

[19], the CM cost and related cost functions are considered for adapting the carrier

frequency offset (CFO) estimate. This section discusses the merits and pitfalls of

using the JFCM and JFDD cost functions for TEQ adaptation.

As an aside, it is of note that if a multicarrier system employs null tones, then

Q [zi(k)] = 0 for those tones. If only the set Snull of null tones are included (with

equal weighting) in the summation in (5.1), then the cost function becomes

JCNA =
∑

i∈Snull

E
[
|0 − zi(k)|2

]

=
∑

i∈Snull

E
[
|zi(k)|2

]
,

(5.3)

1If there are different numbers of bits on each subcarrier, then the cost can be
weighted in favor of the bins with more bits, e.g.
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which is the cost function used by the Carrier Nulling Algorithm (CNA) [23], [88].

Using notation similar to [104], the received data r is obtained from the trans-

mitted data X via

r︷ ︸︸ ︷


r(kM + ν − Lw + 1 + ∆)

...

r((k + 1)M + ∆)




=



0(1)

∣∣∣∣∣∣∣∣∣∣

h · · · 0

. . . . . .

0 · · · h

∣∣∣∣∣∣∣∣∣∣

0(2)



·




PIN 0 0

0 PIN 0

0 0 PIN




X︷ ︸︸ ︷


X
(k−1)
1:N

X
(k)
1:N

X
(k+1)
1:N




+

n︷ ︸︸ ︷


n(kM + ν − Lw + 1 + ∆)

...

n((k + 1)M + ∆)




(5.4)

where h is a row matrix containing the physical channel, h is the time-reversal

of h, and n is additive noise or interference. The effective channel H includes

the physical channel h, the addition of the cyclic prefix (inserted by P), and the

IFFT (implemented by IN); and X contains the symbol of interest as well as the

preceding and succeeding symbols. The matrices 0(1,2) are large zero matrices, the

sizes of which are determined by the symbol synchronization parameter ∆.

Assume for the moment that no FEQ is used, so that we may replace the FEQ

output for tone i, zi(k), by the FFT output for tone i, ẑi(k). Consider a stochastic

gradient descent of the CM cost (5.2),

∂JPTCM

∂wl

= 2
N∑

i=1

βi

(
|ẑi(k)|2 − γi

)
· ∂ (ẑi(k)ẑ∗

i (k))

∂wl

. (5.5)

The gradient with respect to a complex vector is defined as

∂ (ẑi(k)ẑ∗
i (k))

∂wl

=
∂ (ẑi(k)ẑ∗

i (k))

∂wl,R

+ j
∂ (ẑi(k)ẑ∗

i (k))

∂wl,I

(5.6)

where the subscripts R and I refer to the real and imaginary components, and ∗
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denotes complex conjugation. After a modest amount of algebra, this yields

∂ (ẑi(k)ẑ∗
i (k))

∂wl

= 2 ẑi

(
N∑

j=1

FN(i, j)r(l + j − 1)

)∗

, (5.7)

where r(j) means the jth element of the vector r, as defined in (5.4). The resulting

stochastic gradient descent algorithm is

w(k + 1) = w(k) − µ
N∑

i=1

βiẑi

(
|ẑi(k)|2 − γi

)
∆∗

i , (5.8)

where the N different L̃w-vectors ∆i are obtained by a “sliding FFT,”




∆T
1

...

∆T
N




= FN ·




r(0) · · · r(Lw)

...
...

r(N − 1) · · · r(N − 1 + Lw)




. (5.9)

This “sliding FFT” can be implemented efficiently, using little more computational

power than a single FFT [104].

There are several problems with this approach. First of all, the sliding FFT

adds enough complexity to bring this approach on par with a per tone structure

(which ultimately has a higher performance bound), so it makes more sense to

pursue a per tone equalizer adapting via CMA. More importantly, once the FEQ

is added into the mix, there will be a TEQ and an FEQ in series. The FEQ

coefficients will be adapting on the CM (or DD) cost function for their respective

tones, and the TEQ will be adapting based on the sum of these cost functions. The

interaction between the adapting TEQ and the adapting FEQ is phenomenally

difficult to analyze. Also, the cost (5.2) will be very large unless all of the FEQs

are properly initialized and can successfully track the variation of the channel and

the adaptation of the TEQ. Instead, we will favor adaptive per tone equalizers, in

which the equalizer for each tone absorbs the FEQ for that tone.



71

5.2 Per tone LMS, DDLMS, and CMA

Van Acker et al. [104] have proposed an alternate equalization structure, called a

per tone equalizer (PTEQ), which accomplishes the same task as the TEQ/FEQ

structure in Figure 1.1, but with improved performance and comparable complex-

ity. A comparison of the block diagrams for the TEQ/FEQ structure and the per

tone equalizer structure is given in Figure 5.2, and the full details of the per tone

structure can be found in [104]. In a PTEQ structure, the single FIR filter (the

TEQ) is moved after the FFT and replaced by a bank of linear combiners, one for

each tone. For any given TEQ, there is a PTEQ that results in the same output,

but the converse is not true in general. Thus, the PTEQ is a generalization of the

TEQ.

Per tone equalization of bin i is accomplished by forming a linear combination

of the ith FFT output and Lv difference terms of the pre-FFT signal, r:

zi = vT
i ·




ILv
0 −ILv

0 FN(i, :)




︸ ︷︷ ︸
Fi

· r. (5.10)

The linear combiner (not a tapped delay line) vi is the equalizer for tone i; vi is

the time-reversal of vi, defined for convenience; and zi is the equalized data for

tone i. The notation in (5.4) and (5.10) was introduced in [104].

Determination of the per tone equalizer coefficients has been explored in [49],

[104], [103], [116], and [117]. In [104], the optimal coefficients (in terms of bit

rate) are calculated in a least-squares manner, based on knowledge of the trans-

mission channel, and the signal and noise statistics. In [103], the coefficients are

determined in a less computationally-intensive fashion through the use of recur-

sive least-squares (RLS), which requires training throughout the adaptation. In



72

S/PTEQ D1

D2

D3

D4

(a)

S/P

(b)

h

h w
x(k)

x(k)

n(k)

n(k)

1

2

3

4

2

1

3

4

1

2

3

4

v

v

v

v

FFT

FFT

r(k) y(k)

z

z

z

z

z

z

z

z
r(k)

FEQ

PSfrag replacements

c = H w

cwin = Hwin w

cwall = Hwall w

y(2) = c0x(2) + c1x(1) + c2x(0) + c3x(−1) + c4x(−2)

= c0x(10) + c1x(9) + [c2x(0) + c3x(−1) + c4x(−2)]

y(10) = c0x(10) + c1x(9) + [c2x(8) + c3x(7) + c4x(6)]
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= [c0x(3)] + c1x(10) + c2x(9) + [c3x(0) + c4x(−1)]
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Figure 5.1: Channel model and receiver diagrams for (a) the TEQ/FEQ structure,

and (b) the per tone equalizer structure. The transmitted data is x(k) and the

received data is r(k).

[117], an RLS-LMS combination was used for adapting the PTEQ. In [116], a time-

domain window was designed for use with a PTEQ. The PTEQ was generalized

to the MIMO case in [49]. These approaches are well-suited to a system that has

plentiful training and computational power. The algorithms discussed in this the-

sis are designed for situations in which neither condition is true, and in which the

environment is modestly time-varying.
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Per Tone Decision-Directed LMS (PT-DDLMS)

The PT-DDLMS algorithm is obtained by performing a stochastic gradient descent

of the decision-directed cost function for tone i,

JPTDD,i = E
[
|Q [zi(k)] − zi(k)|2

]
, (5.11)

where Q [·] is the quantization operator (decision device). The resulting algorithm

is:

PT-DDLMS:

For i =1, . . . , N and k = 1, 2, 3, . . .

zi(k) = vT
i (k) Fi r(k)

ei(k) = Q [zi(k)] − zi(k)

vi(k + 1) = vi(k) + µ ei(k) F∗
i r∗(k)

(5.12)

Per Tone CMA (PT-CMA)

The constant modulus algorithm (CMA) is a popular alternative to decision-

directed algorithms. A detailed review of its convergence behavior in single-carrier

systems can be found in [44]. CMA attempts to minimize the dispersion of the

equalized symbols by performing a stochastic gradient descent of

JPTCM,i = E
[(
|zi(k)|2 − γi

)2]
(5.13)

for each bin i. The resulting algorithm is:

PT-CMA:

For i =1, . . . , N and k = 1, 2, 3, . . .

zi(k) = vT
i (k) Fi r(k)

ei(k) = −zi(k) ·
(
|zi(k)|2 − γi

)

vi(k + 1) = vi(k) + µ ei(k) F∗
i r∗(k)

(5.14)
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Structurally, the only difference between CMA and the DD-LMS algorithm in this

application and single-carrier equalization is the presence of the F∗
i matrices. The

computation of Fi · r(k) is not actually implemented as a matrix-vector multiply.

Rather, the last element is obtained directly from the output of the FFT, and the

other Lv elements are computed via a single subtraction each (c.f. equation (5.10)).

A point to emphasize is that these single-carrier techniques and others are

readily applicable to the per tone structure, but not as easily to the TEQ/FEQ

structure, due to the coupling between the TEQ and FEQs. This is because for

per tone equalization, there are no separate FEQs.

5.3 Topography of the PT-CM cost surface

This section derives the CM cost function (5.13) as a function of the equalizer

parameters vi and the symbol synchronization parameter ∆, in a fashion similar

to that in [44]. Then a low-dimensional example is used to build intuition.

The first step is to decide on appropriate values for the dispersion constants γi.

Our approach is analogous to the approach taken by Godard [34], i.e. the dispersion

constant for tone i will be chosen such that when equalization is achieved, the

gradient of the cost function for tone i with respect to the equalizer will be zero.

This will lead to dispersion constants that can be independently chosen for each

subchannel. The gradient of (5.13) is

5vi
J = E

[
4zi

(
|zi|2 − γi

)
F∗

i r
∗] . (5.15)

To make this zero, we require that

γi E [ziF
∗
i r

∗] = E
[
zi |zi|2 F∗

i r
∗] . (5.16)

When equalization has been achieved, we will have zi
∼= Xi. We will use this
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assumption and (5.4) to get

γi F∗
i H

∗E [XiX
∗] = F∗

i H
∗E
[
Xi |Xi|2 X∗] . (5.17)

Denote ej as the vector of all zeros except for a 1 in position j. Assuming that the

input data is uncorrelated between symbols and between tones, (5.17) becomes

γi F∗
i H

∗E
[
|Xi|2

]
eN+i = F∗

i H
∗E
[
|Xi|4

]
eN+i. (5.18)

Thus, an appropriate choice for γi is

γi =
E
[
|Xi|4

]

E
[
|Xi|2

] (5.19)

This is the same as Godard’s choice for single carrier CMA, except that we are now

free to assign different statistics to each subchannel. This is necessary for trans-

mission schemes that use bit loading (such as DSL), since E
[
|Xi|4

]
will generally

vary with the bin number i, even if the power E
[
|Xi|2

]
is held constant.

Now we can discuss the CM cost function. Recall that r = HX + n and

zi = vT
i Fir. Thus,

zi =
(
HTFT

i vi

)T
X +

(
FT

i vi

)T
n

4
=
∑

j

cjXj +
∑

j

fjnj.
(5.20)

In the definitions of c and f , the subscript i has been dropped for simplicity. We

will make use of these definitions momentarily.

We can expand (5.13) to

JPTCM,i = E
(
|zi|4

)
− 2γiE

(
|zi|2

)
+ γ2

i , (5.21)

which requires a calculation of E
(
|zi|4

)
and E

(
|zi|2

)
. Assuming that the noise and

the data are uncorrelated and the noise is stationary,

E
(
|zi|2

)
=
∑

k

E
[
|Xk|2

]
· |ck|2 + σ2

n

∑

k

|fk|2 . (5.22)
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Determining E
(
|zi|4

)
is more complicated.

E
(
|zi|4

)
= E

(∑

k

ckXk +
∑

a

fana

)(∑

l

clXl +
∑

b

fbnb

)


∑

î

c∗
î
X∗

î
+
∑

c

f ∗
c n∗

c



(∑

j

c∗jX
∗
j +

∑

d

f ∗
d n∗

d

)
.

(5.23)

(The hat on the i is used to distinguish the summation index î from the tone

index i.) This will produce 16 cross-terms. The first cross-term corresponds to the

noiseless case, and the last term will have a similar structure. The 8 cross-terms

with an odd number of noise factors drop out. Of the remaining 6 terms, two are

such that the signal and noise are paired with their unconjugated counterparts, so

they also drop out (assuming that the source is QAM); and the remaining four of

these terms are identical. After an extensive amount of algebra, we arrive at the

following general form of the CM cost function,

JPTCM,i =
∑

k

[
E
(
|Xk|4

)
− 2E2

(
|Xk|2

)]
· |ck|4

+ 2

[∑

k

E
(
|Xk|2

)
· |ck|2

]2

− 2
E
[
|Xi|4

]

E
[
|Xi|2

]
∑

k

E
(
|Xk|2

)
· |ck|2

+

(
E
[
|Xi|4

]

E
[
|Xi|2

]
)2

+ 4

(∑

k

E
[
|Xk|2

]
· |ck|2

)(
σ2

n

∑

k

E |fk|2
)

+
[
E
(
|nk|4

)
− 2σ4

n

]∑

k

|fk|4 + 2

[
σ2

n

∑

k

E |fk|2
]2

− 2
E
[
|Xi|4

]

E
[
|Xi|2

]σ2
n

∑

k

E |fk|2

(5.24)

The subscripts on X are all tone indices, and the subscripts on c and f are tap

indices. If we were to remove these tone subscripts on X, this would simplify (5.24)

to the result in equation (61) in the appendix of [44]. Alternatively, (5.24) could

be simplified by assuming that at least the power E
[
|Xk|2

]
does not vary with the
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bin index k. That is valid in most applications. However, [3] and [18] have shown

that if the transmit power is optimized across the bins, then slight performance

gains can be achieved, so that assumption does entail a loss of generality.

The most important conclusion we can reach from our analysis of the CMA cost

function is that its similarity with the traditional CM cost function in [44] suggests

a similarity of behavior. Furthermore, the inputs to the IFFT are generally white

(across both symbols and frequency bins), which is analogous to the assumption

made in most single-carrier CMA papers, in which the source symbols are assumed

to be white. Assuming that the appropriate assumptions are verified for the mul-

ticarrier case (corresponding to the assumptions made in the single carrier case),

the rich literature for single-carrier CMA can be applied here. In particular, we

cannot obtain a closed form solution for the locations of the global minima.

In order to view this cost function, we consider low-order examples. Figure 5.3

shows the CM cost function (and the amalgamated MSE, which is a composition

of the MSE’s for different delays [44]) for tone 2. The plots for tone 1 are similar.

The variables were: a 3-tap channel, a cyclic prefix length of ν = 1, and a 2-tap

equalizer on each of the 2 tones. The three plots represent different values of the

symbol synchronization, and the axes on each of the plots represent the equalizer

taps for tone 2. The CM cost function is periodic in ∆, with period N + ν = 3 in

this case (hence only three plots are needed).

Figure 5.3 provides intuition regarding the effects of the symbol synchroniza-

tion. It is clear that the parameter ∆ drastically changes the shape of the cost

surface, the depth of the minima, and even the number of minima. For this reason,

it is expected that the performance of per tone CMA will vary significantly with

∆, so symbol synchronization must be done with care. However, if N = 8196, as

in the European HDTV standard [40], there might be a more gradual transition
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Figure 5.2: The CM (solid) and amalgamated MSE (dashed) cost functions as a

function of the equalizer taps for tone 2 (v1, v2) and the delay (∆).
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between the cost surfaces as ∆ varies, and we must be cautious when generalizing

from such a low order example.

5.4 Comparing PT-LMS and MERRY

There are interesting parallels between the cost function of an LMS-based per

tone equalizer for tone i with Lv + 1 taps and the combined cost functions of

a MERRY-based TEQ with Lv taps and the ith 1-tap FEQ, updated via LMS2.

Consider updating the PTEQ with LMS. Recall that the output of vi, the PTEQ

for tone i, is

zi = vT
i ·




ILv
0T −ILv

0T FN(i, :)




︸ ︷︷ ︸
Fi

·r(k) (5.25)

where FN(i, :) is the ith row of the N -point DFT matrix, r(k) is a vector of received

data samples, and vi is the time-reversed version of vi [104]. The error for the LMS

update is

ePTEQ
i (k) = Xi(k) − zi(k)

= Xi(k) − vT
i Fi r(k). (5.26)

To compare to the MERRY cost function, first partition the ith PTEQ into two

segments,

vi(k) =
[
wT (k), Di(k)

]T
, (5.27)

where w(k) has Lv taps and Di(k) is a scalar. Defining

G =

[
ILv

0Lv×(N−Lv) −ILv
,

]
(5.28)

2The updates can be made blind via decision direction without significantly
changing the dynamics of the updates, but for simplicity of notation we consider
LMS updates.
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then the error becomes

ePTEQ
i (k) = Xi(k) −

[
wT (k), Di(k)

]



G

0T , FN(i, :)


 · r(k)

= Xi(k) − wTG r(k) − Di(k)
[
0T , FN(i, :)

]
r(k)

= (Xi(k) − Di(k)ẑi(k)) − wTG r(k),

(5.29)

where ẑi(k) is the ith FFT output for symbol k. Now note that the error in the

MERRY update equation can be written as

eMERRY (k) = y(kM + ν + ∆) − y((k + 1)M + ∆)

= wT [r(kM + ν + ∆) − r(kM + ν + N + ∆)]

= wT G r(kM + ν + N + ∆). (5.30)

Also note that in the absence of a TEQ, the error for the LMS update of the FEQ

for tone i is the input minus the FEQ times the FFT output,

eFEQ
i = Xi(k) − Di(k)ẑi(k). (5.31)

(The absence of a TEQ simply means that ẑi(k) is the ith FFT coefficient of the

received data rather than of the TEQ output.) Thus, from (5.29),

ePTEQ
i (k) = eFEQ

i (k) − eMERRY (k) (5.32)

(The odd-looking minus sign can be negated by a redefinition of the MERRY error,

if desired.) In other words, if we adapt the TEQ and the FEQ for tone i over the

mean square of the PTEQ error of (5.32), then the amalgamation of the Lv-tap

TEQ and the 1-tap FEQ will be identical to the (Lv + 1)-tap PTEQ adapting over

the mean square PTEQ error for tone i. This is not to suggest actually modifying

the MERRY update in practice, but rather this suggests a similarity in the behavior

of a MERRY-based TEQ and an LMS-based PTEQ.
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Since the errors and corresponding updates are related, then when one algo-

rithm suffers from slow convergence, the other may as well. However, the actual

MERRY update evolves over the square of the second error term in (5.32) rather

than the square of the total error function of (5.32), so the analogy is only a rough

approximation.



Chapter 6

Symmetric Filters and Frequency Nulls
“What immortal hand or eye dare frame thy fearful symmetry?”

– William Blake, The Tiger.

This chapter1 discusses several properties of MMSE and MSSNR TEQ designs

that can prove useful in parameter selection and complexity reduction. Specifically,

we consider symmetry of the TEQ and TIR impulse responses, as well as the

locations of the roots of the TIR impulse response. These properties lead to design

guidelines and methods for reducing the computational complexity of the MMSE

and MSSNR TEQ design families, which include the MERRY algorithm. Since

this chapter deals heavily with the MMSE and MSSNR designs, it is assumed that

the reader is familiar with the relevant background material in Chapter 2.

6.1 Symmetry in eigenvectors

This section reviews well-known properties of the eigenvectors of symmetric cen-

trosymmetric matrices, and extends these properties to the case of generalized

eigenvectors of two such matrices. The following sections show the implications of

these properties on TEQ design.

Let J be the square matrix with ones on the cross diagonal, and zeros elsewhere.

Left-multiplication by J reverses the order of the rows of a matrix and right-

multiplication by J reverses the order of the columns. Symmetric centrosymmetric

1Some material in this chapter has been previously published. c© 2004 IEEE.
Reprinted, with permission, from [56], [60], and [61]. c© 2004 Hindawi Publishing
Corporation. Reprinted, with permission, from [55].
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matrices2 are defined as matrices in the set

C = {C : CT = C, JCJ = C}. (6.1)

Symmetric centrosymmetric matrices of size L × L have exactly dL/2e symmetric

eigenvectors and bL/2c skew-symmetric eigenvectors [12]. This property can be

applied directly to the MSSNR solution for w with a unit norm TEQ (UNT) con-

straint [55], and we will extend it to the generalized eigenvector MSSNR solution.

The results in [12] were developed for real matrices. To generalize their results,

we define the set of Hermitian centro-Hermitian matrices

C∗ = {C : CH = C, JCJ = C∗}. (6.2)

These matrices have the properties that (i) they are Hermitian, (ii) they are per-

symmetric (symmetric about the cross diagonal), and (iii) rotating the matrix by

180∗ is equivalent to conjugating the matrix. Any two of these properties together

imply the third.

Consider the (tall) Toeplitz channel convolution matrix H:

H =




h0, h1, h2, · · · , 0, 0, 0

0, h0, h1, · · · , 0, 0, 0

. . . ,
. . . ,

. . . ,
. . . ,

. . . ,
. . . ,

. . .

0, 0, 0, · · · , hLh−2, hLh−1, hLh




T

. (6.3)

Note that HHH is Hermitian and Toeplitz. Since Toeplitz implies persymmetric,

we have HHH ∈ C∗. The MSSNR design is a generalized eigenvector of the matrices

A = HH
wallHwall and B = HH

winHwin, where Hwin and Hwall partition H. This

2a.k.a. symmetric persymmetric matrices or doubly symmetric matrices, which
are symmetric about the main diagonal and the cross diagonal, and are unchanged
by rotation by 180o.
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partitioning and similarity of structure suggests that A and B may also be in C∗.

Unfortunately, A and B are not perfectly Hermitian centro-Hermitian, but they are

nearly so. Specifically, they are Hermitian and nearly Toeplitz, facts exploited in

[111]. For the moment, assume that A and B are approximately centro-Hermitian.

Numerical results that quantify this are presented later in this section.

The TEQ obtained by the MSSNR-UNT solution is the eigenvector correspond-

ing to the smallest eigenvalue of A. Since A has been observed to be nearly

centrosymmetric, its eigenvectors should be approximately symmetric or skew-

symmetric, and indeed that is the case. For the MSSNR and MMSE solutions, we

must consider the generalized eigenvectors of (B,A), where B = HH
winHwin, and

where A = HH
wallHwall for the MSSNR design and A = HH

wallHwall + Rn for the

MMSE design. However, if A or B is invertible, then the generalized eigenvalue

problem can be reduced to a traditional eigenvalue problem [109]. In some prac-

tical cases, B has been observed to be invertible [67]. However, when Lw > ν,

the matrix Hwin cannot have full column rank, and hence B will not be invertible

[113]. Furthermore, even when Lw ≤ ν, B may be singular. Fortunately, as will

be proved in Theorem 6.1.1, A is invertible for all channels longer than the CP.

Theorem 6.1.1 For an FIR channel h, if Lh > ν, then the matrices A1 =

HH
wallHwall and A2 = HH

wallHwall + Rn will be invertible.

Proof: For ease of notation, we assume that the first and last taps in the channel h

are non-zero. This entails no loss of generality, since leading zeros can be separated

into a bulk delay, and trailing zeros can be omitted. Thus, if the FIR channel has

length Lh +1, then its transfer function will have exactly Lh zeros. Convolving the

channel with an FIR TEQ of length Lw + 1 will add Lw zeros. Thus, the effective

channel impulse response will have Lh + Lw > ν zeros, since Lh > ν and Lw ≥ 0.
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Assume that A1 is singular. Then there exists wnull 6= 0 such that A1wnull = 0.

Then

‖cwall‖2
2 = cH

wallcwall = wH
nullA1wnull = 0. (6.4)

This implies that there exists a TEQ wnull that forces cwall = 0, which in turn

implies that the channel has been shortened to ν+1 taps or less. This requires that

the convolution of h and wnull has no more than ν zeros. However, we have already

shown that the effective channel will have more than ν zeros. This contradiction

invalidates the assumption that A1 is singular. Hence, A1 is invertible when Lh >

ν.

Since A1 = HH
wallHwall is invertible for Lh > ν, we have wHA1w > 0 for all

w 6= 0. Hence

wH (A1 + Rn)w = wHA1w + wHRnw

≥ wHA1w > 0, (6.5)

where we have made use of the fact that Rn is positive semi-definite. By (6.5),

A2 = A1 + Rn is invertible when Lh > ν.

(A more visual proof is possible by looking at the number of pivots in the

Hwall matrix, but that proof involves a large number of special cases regarding the

relative values of ν, Lh, Lw, and ∆.)

The MSSNR and MMSE TEQs must satisfy the generalized eigenvalue equation

Bw = λAw. (6.6)

Since A is invertible by Theorem 6.1.1, we can convert this into a traditional

eigenvalue problem,
(
A−1B

)
w = λw. (6.7)
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A and B are symmetric and approximately centrosymmetric, so JAJ ≈ A∗ and

JBJ ≈ B∗. The inverse of a centro-Hermitian matrix is also centro-Hermitian

(see [36] for the real case), and the product of centro-Hermitian matrices is centro-

Hermitian (see [10] for the real case), so (A−1B) is approximately centro-Hermitian.

Unfortunately, (A−1B) may not be Hermitian, even though A−1 and B are, so the

full range of results in [12] cannot be immediately applied. Even so, as will be

shown in Theorem 6.1.2, the eigenvectors of a centro-Hermitian matrix (A−1B)

can always be chosen to be conjugate symmetric or conjugate skew-symmetric.

Theorem 6.1.2 If A,B ∈ C∗ (so they are Hermitian centro-Hermitian) and A

is invertible, then the eigenvectors of (A−1B) can always be chosen to be con-

jugate symmetric or conjugate skew-symmetric. Furthermore, if the eigenvalues

of (A−1B) are distinct, then the eigenvectors will all be conjugate symmetric or

conjugate skew-symmetric.

Proof: Since (A−1B) is centro-Hermitian, J (A−1B)J = (A−1B)
∗
. Let w be an

eigenvector of A−1B, or equivalently a generalized eigenvector of (B,A). Since A

and B are Hermitian, the associated eigenvalue λ will be real. Thus, w satisfies

A−1B w = λ w,

(
A−1B

)∗
w∗ = λ w∗,

(
JA−1BJ

)
w∗ = λ w∗,

A−1B (Jw∗) = λ (Jw∗) ,

A−1B (−Jw∗) = λ (−Jw∗) (6.8)

where we have made use of JJ = I. Thus, if w is an eigenvector of (A−1B) with

eigenvalue λ, then Jw∗ and −Jw∗ are also eigenvectors with the same eigenvalue λ.

As a consequence, for a given eigenpair (λ,w), we can always force the eigenvector
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to be conjugate symmetric, wsym = 1
2
(w + Jw∗), or conjugate skew-symmetric,

wskew = 1
2
(w − Jw∗), without changing the eigenvalue. Note that if w itself

is already conjugate symmetric (skew-symmetric), then we cannot make it into a

conjugate skew-symmetric (symmetric) vector by this procedure because the result

yields wskew = 0 (wsym = 0).

If all of the eigenvalues of A−1B are distinct, then its eigenvectors are unique.

Thus, w, Jw∗, and −Jw∗ must all be identical (up to a scalar, e.g. ±1). The only

way for this to be satisfied is if each w is either conjugate symmetric or conjugate

skew-symmetric.

Theorem 6.1.2 has the condition that A ∈ C∗ and B ∈ C∗. In general, this

is only approximately true. Thus, the eigenvectors of A and of A−1B will all be

approximately conjugate symmetric or conjugate skew-symmetric. Oddly enough,

the MSSNR and MSSNR-UNT TEQs always seem to be nearly symmetric rather

than nearly skew-symmetric, and the point of symmetry need not be the center

of the TEQ, as can be seen by the example MSSNR TEQ in Figure 6.1. One

possible reason for this is that in some special cases (e.g. tridiagonal matrices), the

eigenvectors alternate between symmetric and skew-symmetric as the eigenvalues

decrease, and the eigenvectors corresponding to extreme eigenvalues will be sym-

metric [12]. It is difficult to prove that this is always the case here, but something

of this sort may be occuring.

Figure 6.1 shows a typical MSSNR TEQ with real coefficients, as well as its

symmetric part and a skew-symmetric perturbation. The symmetric part was

obtained by considering all possible points of symmetry, and choosing the one for

which the norm of the symmetric part divided by the norm of the perturbation

was maximized. For example, if the TEQ were w = [1, 2, 4, 2.2], then wsym =

[0, 2.1, 4, 2.1] and wskew = [1,−0.1, 0, 0.1]. In Figure 6.1, most of the energy is
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Figure 6.1: Top: MSSNR TEQ, middle: symmetric part, bottom: skew-symmetric

part. The channel was CSA test loop 1, the CP length was ν = 32, and the TEQ

had 20 taps.

in the symmetric part (middle plot), and there is a small skew-symmetric part

(bottom plot).

To quantify the symmetry of the MSSNR and MSSNR-UNT TEQ designs for

various parameter values, we computed both TEQs for 1 ≤ ν ≤ 120 and 3 ≤ L̃w ≤

40, for the eight carrier serving area (CSA) test loops [7], available at [6]. The CSA

loops are real channel models that are commonly used in ADSL simulations. For

each TEQ, we decomposed w into wsym and wskew, then computed the measure of

asymmetry

µasym (w) =
‖wskew‖2

‖wsym‖2
. (6.9)

A mesh plot of this ratio for the MSSNR TEQ is shown in Figure 6.2, and a similar

plot for the MSSNR-UNT TEQ is shown in Figure 6.3. A cross-section of these
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Figure 6.2: Energy in the skew-symmetric part of the TEQ over the energy in the

symmetric part of the TEQ, for the MSSNR solution, [67]. The data was optimized

for transmission delay ∆ and averaged over CSA test loops 1-8.

plots for ν = 32 (the value used in downstream ADSL) is shown in Figure 6.4. The

value of ∆ was determined via a global search for the MSSNR solution, and the

same ∆ was used for each corresponding MSSNR-UNT solution. The ratios were

computed for CSA test loops 1 through 8 and then averaged.

The MSSNR-UNT TEQ (Figure 6.3) becomes increasingly symmetric for large

CP and TEQ lengths, whereas the MSSNR TEQ (Figure 6.2) is highly symmetric

for all parameter values, but does not display any significant trends. For param-

eter values that lead to highly symmetric TEQs, the TEQ can be initialized by

only computing half of the TEQ coefficients. For MSSNR, MSSNR-UNT, and

MMSE solutions, this effectively reduces the problem from finding an eigenvector

(or generalized eigenvector) of an L̃w×L̃w matrix to finding an eigenvector (or gen-
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Figure 6.3: Energy in the skew-symmetric part of the TEQ over the energy in

the symmetric part of the TEQ, for the MSSNR solution with unit norm TEQ

constraint [55]. The data was optimized for transmission delay ∆ and averaged

over CSA test loops 1-8.

eralized eigenvector) of a
⌈
L̃w/2

⌉
×
⌈
L̃w/2

⌉
matrix, as shown in [12]. The MERRY

algorithm, which converges to the MSSNR TEQ in the absence of noise, can also

be made to compute a symmetric TEQ. This halves the number of multiplies in

the MERRY update equation. Such approaches lead to a significant reduction in

complexity, but with the cost of a possible performance loss. Reduced complex-

ity algorithms are discussed in Section 6.5. Performance and complexity of such

algorithms will be considered in Chapter 8.
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Figure 6.4: Energy in the skew-symmetric part of the TEQ over the energy in

the symmetric part of the TEQ, for ν = 32. The data was delay-optimized and

averaged over CSA test loops 1 - 8.

6.2 Infinite length MSSNR results

This section examines the limiting behavior of A and B, and the resulting limiting

behavior of their eigenvectors (i.e. the MSSNR and MSSNR-UNT TEQs). We will

show that

lim
Lw→∞

‖HHH − A‖F

‖A‖F

= 0, (6.10)

where ‖·‖F denotes the Frobenius norm [35]. Since HHH ∈ C∗, its eigenvectors are

symmetric or skew-symmetric. Thus, as Lw → ∞, we can expect the eigenvectors

of A to become conjugate symmetric or conjugate skew-symmetric. Although this

is a heuristic argument, the more rigorous sin(θ) theorem3 [22] is difficult to apply.

3The sin(θ) theorem is a commonly used bound on the angle between the eigen-
vector of a matrix and the corresponding eigenvector of the perturbed matrix.
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First, consider a TEQ that is finite, but very long. Specifically, we make the

following assumptions:

A1: ∆ > Lh > ν,

A2: Lw > ∆ + ν.

Such a large ∆ in A1 is reasonable when the TEQ length is large. Now we can

partition H as

PSfrag replacements
c = H w

cwin = Hwin w
cwall = Hwall w

y(2) = c0x(2) + c1x(1) + c2x(0) + c3x(−1) + c4x(−2)
= c0x(10) + c1x(9) + [c2x(0) + c3x(−1) + c4x(−2)]

y(10) = c0x(10) + c1x(9) + [c2x(8) + c3x(7) + c4x(6)]
y(3) = c0x(3) + c1x(2) + c2x(1) + c3x(0) + c4x(−1)
= [c0x(3)] + c1x(10) + c2x(9) + [c3x(0) + c4x(−1)]

y(11) = [c0x(11)] + c1x(10) + c2x(9) + [c3x(8) + c4x(7)]∑
x1(k)
xL(k)

h1,1
h1,L
hP,1
hP,L
w1wP

n1(k)
nP (k)
r1(k)
rP (k)
y1(k)
yP (k)
y(k)
y(k)
x(k)
n(k)
r(k)

hw
c = h ? w

H1 HL2 HL1

HU3 HM HL3

0︸︷︷︸
(∆−Lh)

0︸︷︷︸
ν

HU1︸︷︷︸
(Lh−ν)

HU2︸︷︷︸
ν

H2︸︷︷︸
(Lw−ν−∆)

00

00 }∆

}(ν + 1)

}(Lh + Lw − ν − ∆)

H =

(6.11)

where [HL2,HL1] and HL3 are both lower triangular and contain the “head” of the

channel, [HU1,HU2] and HU3 are both upper triangular and contain the “tail” of

the channel, H1 and H2 are tall channel convolution matrices, and HM is Toeplitz.

Then Hwin is simply the middle row (of blocks) of H, and Hwall is the concatenation

of the top and bottom rows.

Under the two assumptions above, HU3, HM , and HL3 will be constant for all

values of ∆ and Lw. As such, the limiting behavior of B = HH
winHwin is

B = [0,HU3,HM ,HL3,0]H [0,HU3,HM ,HL3,0]

4
=

[
0,H

T

3 ,0
]H [

0,H
T

3 ,0
]
. (6.12)

This bound is a function of the eigenvalue separation of the matrix, which is not
explicitly known in our problem; hence, the theorem cannot be directly applied.
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Note that H3 is a size (ν + L̃h)× (ν + 1) channel convolution matrix formed from

h, the time-reversed channel. Since B is a zero-padded version of H
∗
3H

T

3 , it has

the same Frobenius norm, which is a constant. Therefore,

‖B‖2
F = ‖H∗

3H
T

3 ‖2
F

4
= β, (6.13)

whenever our two initial assumptions A1 and A2 are met.

Now consider the limiting behavior for A, which equals

A =




HH
1 H1 HH

1 HL2 HH
1 HL1 0 0

HH
L2H1 HH

L2HL2 HH
L2HL1 0 0

HH
L1H1 HH

L1HL2 HH
L1HL1 + HH

U1HU1 HH
U1HU2 HH

U1H2

0 0 HH
U2HU1 HH

U2HU2 HH
U2H2

0 0 HH
2 HU1 HH

2 HU2 HH
2 H2




(6.14)

Thus, a lower bound on the Frobenius norm of A can be found as follows:

‖A‖2
F ≥ ‖HH

1 H1‖2
F + ‖HH

2 H2‖2
F

≥ ‖h‖4
2 · ((∆ − Lh) + (Lw − ν − ∆))

= ‖h‖4
2 · (Lw − Lh − ν) , (6.15)

which goes to infinity as Lw → ∞. In the second inequality, we have dropped all

of the terms in the Frobenius norms except for those due to the diagonal elements

of HH
1 H1 and HH

2 H2.

Now let C
4
= HHH, and note from (6.11) that C = A + B. Thus,

‖C − A‖2
F

‖A‖2
F

=
‖B‖2

F

‖A‖2
F

≤ β

‖h‖4
2 · (Lw − Lh − ν)

, (6.16)

which goes to zero as Lw → ∞. Thus, in the limit, A approaches C, which is

a Hermitian Toeplitz matrix, and hence is in C∗. Heuristically, this suggests that
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in the limit, the eigenvectors of A (including the MSSNR-UNT solution) will be

conjugate symmetric or conjugate skew-symmetric.

Note that in the limit, B does not become Hermitian centro-Hermitian (refer

to (6.12)), although it is approximately so. Thus, we cannot make as strong of a

limiting argument for the MSSNR solution as for the MSSNR-UNT solution.

6.3 Infinite length MMSE results

Now we consider the effects of an infinite length MMSE TEQ. Specifically, the goal

is to show that in the limit, the TIR becomes symmetric, although the TEQ may

or may not. In addition, a useful corollary arises concerning the zero locations of

the MMSE TIR. For simplicity, this section assumes a real TEQ and TIR.

Theorem 6.3.1 Assume the input signal is white, and the noise is non-zero (and

possibly non-white). If the TEQ w is an infinite length real discrete-time filter,

then the finite length real TIR b will become symmetric or skew-symmetric.

Remarks: The proof is given in Appendix B. An outline of the proof of a special

case of this theorem was given in [30], which required that the noise was white,

that ∆ = 0, and that w was a continuous-time filter. The fact that the TIR in

that case was either symmetric or skew-symmetric was pointed out separately in

[13].

The implications are that for long TEQs, the TIR design can be implemented

more efficiently when the symmetry is exploited. As shown by Theorem 6.3.1, the

TIR for an infinite length TEQ is an eigenvector of a symmetric centrosymmetric

matrix. The TIR for a finite length TEQ is thus expected to be an eigenvector of

a matrix that is approximately centrosymmetric. This is analogous to the approx-

imate symmetry of a finite length MSSNR TEQ shown in Figs. 6.2 and 6.3. Thus,
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using results in [12], the computation of b can be reduced from an eigendecompo-

sition of a matrix of size (ν + 1)× (ν + 1) to an eigendecomposition of a matrix of

size d(ν + 1)/2e × d(ν + 1)/2e.

A useful corollary of Theorem 6.3.1 explains why the MMSE and MSSNR based

TEQ design methods have nulls in their magnitude responses, a fact observed in

[31]. Recall that the MMSE TEQ design uses a target impulse response (TIR) b

that must satisfy the relation [4]

Rrx b = Rr w, (6.17)

where Rxr is the channel input-output cross-correlation matrix and Rr is the chan-

nel output autocorrelation matrix. Typically, b is computed first, and then (6.17)

is used to determine w. The goal is that h ? w approximates a delayed version of

b. As such, if b has nulls in its magnitude response, then w (and/or h) will have

them as well.

Recall that for an i.i.d. channel input sequence, the target impulse response is

the eigenvector corresponding to the minimum eigenvalue of [5], [30], [31]

R(∆) = Rx − RxrR
−1
r Rrx

= I(ν+1) − ΩH
(
HTH + Rn

)−1
HT ΩT , (6.18)

where H is the channel convolution matrix of size L̃c × L̃w, and

Ω =
[
0(ν+1)×∆, Iν+1, 0(ν+1)×(Lc−ν−∆)

]
. (6.19)

Robinson ([87], pp. 269–272) has shown that the eigenvector corresponding to the

largest eigenvalue of a symmetric Toeplitz matrix will have all of its zeros on the

unit circle, and Makhoul [51] has generalized this to show that the zeros of the

eigenvector corresponding to the smallest eigenvalue has all of its zeros on the unit
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circle. (The proofs rely on the assumption that the corresponding eigenvalue has

multiplicity 1.) Thus, we would like to show that R(∆) is approximately Toeplitz

(and it is clearly symmetric), which would imply that the MMSE TIR has its

zeros near the unit circle. Furthermore, if we remove the term Rn from (6.18)

and compute b, then we obtain a windowed version of the MSSNR TEQ. So, the

preceding approach could also be used to show that the MSSNR TEQ has its zeros

near the unit circle.

First consider a limiting case: an infinite length TEQ with a finite length TIR.

Corollary 6.3.1 Assume the input signal is white, and the noise is non-zero (and

possibly non-white). If the TEQ w is allowed to be any infinite length discrete-time

filter, and if the minimum eigenvalue of R(∆) has multiplicity 1, then the finite

length MMSE TIR b will have all ν of its zeros on the unit circle. As a consequence,

the effective channel impulse response will have ν zeros approximately on the unit

circle.

Proof: The proof of Theorem 6.3.1 has shown that for the conditions stated

above, the matrix R(∆) becomes a symmetric Toeplitz matrix. As discussed above,

Robinson [87] and Makhoul [51] have shown that the eigenvector corresponding to

the minimum eigenvalue of a symmetric Toeplitz matrix has all of its zeros on the

unit circle, so long as the eigenvalue has multiplicity 1. (In fact, any of the eigen-

vectors will have its zeros on the unit circle, so long as the corresponding eigenvalue

has multiplicity 1.) This implies that the TIR has ν zeros on the unit circle. Since

the TEQ has infinite length, the effective channel will be approximately a zero-

padded version of the TIR. Hence, the channel-TEQ frequency response will have

ν zeros approximately on the unit circle.
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Remarks: Daly, Heneghan, and Fagan [20] have shown that in the noiseless

case with a white input, the MMSE and MSSNR design methods produce identical

TEQs. Thus, we can infer that for a finite length MSSNR TEQ, the TEQ transfer

function will have ν zeros approximately on the unit circle.

For multicarrier systems, if a null lies at one of the subchannel carrier frequen-

cies, then no data can be transmitted in that subchannel. This is a severe problem

[31]. This result helps explain why the MMSE TEQ exhibits poor performance for

large TEQ lengths [7].

A practical design consideration is the question of how quickly the infinite

length results are approached as the TEQ length is increased. In this case, R(∆)

is symmetric, but not quite Toeplitz. Thus, the zeros of its eigenvector b will not

be precisely on the unit circle. Analytic results for this case are rather intractable,

so we will give empirical results. Figure 6.5 plots the average distance of the zeros

of the TIR to the unit circle. The distances were sorted (least to greatest) and

then averaged over CSA loops 1 through 8. There are 32 curves, one for each zero.

Observe that most of the zeros start out at a distance of about 0.2. For a length

32 TEQ, the zeros are clustered around a distance of 0.01 from the unit circle; and

for a length 100 TEQ, the zeros are clustered around a distance of 10−4 from the

unit circle. The asymptotic results agree with Corollary 6.3.1.

6.4 Linear phase and the FEQ

A symmetric TEQ can be classified as either a Type I or Type II FIR Linear

Phase System [77, pp. 298–299]. These forms generalize for complex filters that

are conjugate symmetric. A conjugate symmetric TEQ w with Lw + 1 taps obeys

w(k) = w∗ (Lw − k) . (6.20)
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Figure 6.5: Distance of the zeros of the MMSE TIR to the unit circle. The values

are averaged over CSA loops 1 through 8. Each curve represents the distance for

a single zero.

Let Lw + 1 be even for simplicity. Generally, Lw + 1 is a power of 2 in practice,

but in any case the results from (6.24) onwards also hold for the odd length case.

Applying (6.20),

W
(
ejω
)

=

(Lw−1)/2∑

k=0

(
w(k)e−jωk + w∗(k)e−jω(Lw−k)

)
(6.21)

= e−j 1

2
ωLw

(Lw−1)/2∑

k=0

(
w(k)e−jωkej 1

2
ωLw + w∗(k)e−jωke−j 1

2
ωLw

)
(6.22)

= e−j 1

2
ωLw

(Lw−1)/2∑

k=0

2 R
{

w(k)e−jωkej 1

2
ωLw

}

︸ ︷︷ ︸
M̂(ω)

. (6.23)
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The term M̂ (ω) is real, but not necessarily positive. To force a positive magnitude

response, we use the form

W
(
ejω
)

= M (ω) exp

(
−j

Lw

2
ω + jβ

)
, (6.24)

where M (ω) =
∣∣∣M̂ (ω)

∣∣∣ is the magnitude response and β ∈ {0, π}. We determine

β as follows. The DC response can be obtained by setting ω = 0 in (6.24) or by

setting ω = 0 in the standard form of the Fourier transform of w; equating these

two, we get

M(0) ejβ =
Lw∑

k=0

w(k). (6.25)

Then β is given by

β =





0,
∑

k w(k) > 0,

π,
∑

k w(k) < 0.
(6.26)

If
∑

k w(k) = 0, the DC response does not reveal the value of β. In this case, one

must determine the phase response at another frequency, which is more complicated

to compute. The response at ω = π is fairly easy to compute, and will also reveal

the value of β.

From (6.24) – (6.26), given the TEQ length, the phase response of a conjugate

symmetric TEQ is known up to the factor ejβ, even before the TEQ is designed.

The phases of the FEQs are then determined entirely by the channel phase re-

sponse. Thus, if a channel estimate is available, the two possible FEQ phase

responses could be determined in parallel with the TEQ design. If differential en-

coding is used, then the value of β can arbitrarily be set to either 0 or π, since a

rotation of exactly 180 degrees does not affect the output of a differential detector.

Furthermore, if 2-PAM or 4-QAM signaling is used on a subcarrier, the magnitude

of the FEQ does not matter, and the entire FEQ for that tone can be designed

without knowledge of the TEQ.
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For an ADSL system, 4-QAM signaling is used on all of the subcarriers during

training. Thus, the FEQ can be designed for the training phase by only setting its

phase response. The magnitude response can be set after the TEQ is designed. The

benefit here is that if the FEQ is designed all at once (both magnitude and phase),

then a division of complex numbers is required for each tone. However, if the phase

response is already known, determining the FEQ magnitude only requires a division

of real numbers for each tone. This can allow for a more efficient implementation.

6.5 Implications for receiver design

This section presents practical algorithms for designing a TEQ that is perfectly

symmetric or that arises from a TIR that is perfectly symmetric. For simplicity,

this section considers a real TEQ and a real TIR. The designs we will consider are

the Sym-MSSNR TEQ design, the Sym-MMSE TIR design, and the Sym-MERRY

adaptive TEQ design. The Sym-Min-ISI design, though not discussed here, is

discussed in [26]. Such designs reduce the complexity of computing the TEQ, and

they have the added benefit of allowing the exploitation of the phase properties

discussed in Section 6.4.

First, consider designing a perfectly symmetric MSSNR TEQ. In [85] and [86],

simulations were presented for forcing the MSSNR TEQ to be perfectly symmetric

or skew-symmetric, though no justification was provided for this approach. If the

TEQ length L̃w were even, then we could enforce the symmetry by

wT =
[
vT , (Jv)T

]
, (6.27)

and if L̃w were odd, we could enforce the symmetry by

wT =
[
vT , γ, (Jv)T

]
, (6.28)
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where in each case v has dimensions
⌊
L̃w/2

⌋
× 1. For the even-length case, the

generalized eigenvalue problem of (2.2) can be simplified via

[
vT ,vTJ

]


A11 A12

A21 A22







v

Jv


=vT [A11 + JA21 + A12J + JA22J]︸ ︷︷ ︸

Â

v, (6.29)

[
vT ,vTJ

]


B11 B12

B21 B22







v

Jv


=vT [B11 + JB21 + B12J + JB22J]︸ ︷︷ ︸

B̂

v. (6.30)

Then the MSSNR design problem becomes

min
v

(
vT Âv

)
subject to vT B̂v = 1. (6.31)

The solution for v is the generalized eigenvector of the matrix pair (Â, B̂) corre-

sponding to the minimum eigenvalue. Thus, an efficient implementation consists

of:

1. Compute A and B using the fast algorithms in [111] and Chapter 7.

2. Form Â and B̂ as in (6.29) and (6.30), requiring approximately 3
2

(
L̃w

2

)2

additions/subtractions each (but no multiplications).

3. Find the generalized eigenvector of (Â, B̂) corresponding to the minimum

eigenvalue using the methods surveyed in Chapter 2.

4. Repeat steps 1 – 3 for each value of ∆ (which changes A and B), then pick

the value of ∆ and corresponding solution that yields the smallest generalized

eigenvalue.

Remarks: First, step 2 requires only 3
2

(
L̃w

2

)2

additions each rather than 3
(

L̃w

2

)2

additions each, since Â and B̂ are symmetric. Second, the extra additions in

step 2 are negligible. Third, step 3 requires a generalized eigendecomposition of
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symmetric matrices of size 1
2
L̃w× 1

2
L̃w rather than a generalized eigendecomposition

of symmetric matrices of size L̃w × L̃w. This reducing the number of multiply-adds

by a factor of 4, since an eigendecomposition of an L̃w × L̃w symmetric matrix

requires O
(
L̃2

w

)
computations.

Similar results hold for the odd TEQ length case of (6.28), except now we have

[
vT , γ,vTJ

]




A11 A12 A13

A21 A22 A23

A31 A32 A33







v

γ

Jv




=
[
vT , γ

]



(A11 + A13J + JA31 + JA33J) (A12 + JA32)

(A21 + A23J) A22




︸ ︷︷ ︸
Â




v

γ


 ,

(6.32)

with an analogous definition of B̂ (replace each Aij with Bij). In this case, we

have reduced A (size L̃w × L̃w) to Â (size
⌈
L̃w/2

⌉
×
⌈
L̃w/2

⌉
). Note that this is a

generalization of the results in [12], in which A and B are exactly centrosymmetric.

For the MSSNR-UNT approach, we set B̂ = I. This leaves the norm constraint

on v rather than on w, which can be dealt with by renormalizing w after we

construct it from v. The MSSNR-UNT TEQ arises, for example, in the MERRY

algorithm [53], which is a blind, adaptive algorithm for computing the TEQ; or in

Nafie and Gatherer’s algorithm [75] (if the constraint used is a unit norm TEQ),

which is a trained, iterative algorithm for computing the TEQ. We focus next on

extending the MERRY algorithm to the symmetric case.

In practical applications, the TEQ length is often even (a power of two, in fact),

due to a desired efficient use of memory. A symmetric TEQ has the form (6.27),

though an odd-length symmetric TEQ could be accommodated using the form in
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(6.28). The TEQ output is

y(Mk + i) =
Lw∑

j=0

w(j) · r(Mk + i − j), (6.33)

which can be rewritten for a symmetric TEQ as

y(Mk + i) =

L̃w/2−1∑

j=0

v(j) · [r(Mk + i − j) + r(Mk + i − Lw + j)] (6.34)

= vT u(Mk + i), (6.35)

where

u(i) =

[
r(i) + r(i − Lw), · · · , r

(
i − L̃w

2
+ 1

)
+ r

(
i − L̃w

2

)]T

. (6.36)

The Sym-MERRY update is a stochastic gradient descent of the MERRY cost

function (3.4), but now with respect to the half-TEQ coefficients v. Again, a

renormalization can be used to avoid the trivial solution v = 0. Making use of

(6.34), the Sym-MERRY algorithm is

Sym-MERRY:

Given ∆, for symbol k = 0, 1, 2, . . . ,

ũ(k) = u(Mk + ν + ∆) − u(Mk + ν + N + ∆)

e(k) = vT (k) ũ(k)

v̂(k + 1) = v(k) − µ e(k) ũ∗(k)

v(k + 1) =
v̂(k + 1)

‖v̂(k + 1)‖

(6.37)

Compared to the regular MERRY algorithm in (3.5), the number of multiplications

has been cut in half for Sym-MERRY, though a few additional additions are needed

to compute ũ. A symmetric FRODO algorithm could be developed as well to

avoid the expensive renormalization. Simulations of Sym-MERRY are presented

in Chapter 8.
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Now consider designing the MMSE TEQ to have a perfectly symmetric TIR,

rather than a perfectly symmetric TEQ. This is useful because in the MMSE design,

far more computational power is devoted to computing the TIR than the TEQ.

The MSE (which we wish to minimize) is given by

E
[
e2
]

= bT R (∆) b. (6.38)

Typically, the CP length ν is a power of 2 (see Table 1.5), so the TIR length ν + 1

is odd. To force a symmetric odd-length TIR, partition the TIR as

bT =
[
vT , γ, (Jv)T

]
, (6.39)

where γ is a scalar and v is a real ν
2
× 1 vector. Now rewrite the MSE as

[
vT , γ,vTJ

]




R11 R12 R13

R21 R22 R23

R31 R32 R33







v

γ

Jv




=
[√

2vT , γ
]
R̂



√

2v

γ


 (6.40)

where

R̂ =




1
2
(R11 + R13J + JR31 + JR33J) 1√

2
(R12 + JR32)

1√
2
(R21 + R23J) R22


 (6.41)

For simplicity, let v̂T =
[√

2vT , γ
]
. In order to prevent the all-zero solution, the

non-symmetric TIR design uses the constraint ‖b‖ = 1. This is equivalent to the

constraint ‖v̂‖ = 1. Under this constraint, the TIR that minimizes the MSE must

satisfy

R̂ v̂ = λ v̂, (6.42)

where λ is the smallest eigenvalue of R̂. Since both R and R̂ are symmetric, solving

(6.42) requires 1
4

as many computations as solving the initial eigenvector problem.

However, the forced symmetry could, in principle, degrade the performance of
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the associated TEQ. Simulations of the Sym-MMSE algorithm are presented in

Chapter 8.



Chapter 7

Efficient Matrix Computation
“Be not ta’en tardy by unwise delay.”

– William Shakespeare, Richard III, Act IV, Scene i.

This chapter1 discusses efficient methods of computing the matrices needed for

MMSE, MSSNR, Min-IBI, and MDS channel shorteners. The focus is the re-use of

computations from one delay to the next. This chapter assumes a rough familiarity

with the material in Section 2.2.

The TEQs that will be discussed in Sections 7.1–7.4 can be considered to be

special cases of the general form proposed in [98]. Consider minimization of the

cost function [98]

J = αJshort + (1 − α)Jnoise (7.1)

=
α
∑Lc

n=0 f(n − ∆) |c(n)|2 + (1 − α)
σ2

q

σ2
x∑Lc

n=0 |c(n)|2
(7.2)

where σ2
q = wHRnw is the power of the filtered noise. The function f(·) in the

numerator is chosen to penalize channel taps in undesired locations, which are then

minimized with respect to the entire channel energy (via the denominator). The α

and 1 − α weights allow for variable suppression of the noise as well. Throughout

this chapter, we assume unit signal power, σ2
x = 1.

Eq. (7.2) can be rewritten as a generalized Rayleigh quotient, leading to

wopt = arg min
w

wHAw

wHCw
, (7.3)

1Some material in this chapter has been previously published. c© 2004 Hindawi
Publishing Corporation. Reprinted, with permission, from [55].
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where

A = αHHQH + (1 − α)Rn, (7.4)

C = HHH, (7.5)

and where Q(∆) is a diagonal matrix with nth diagonal element equal to f(n −

∆). Designs that fit into this framework include the maximum shortening SNR

(MSSNR) design [67], the minimum MSE (MMSE) design with a white input

[4], the Min-IBI design [15], and the MDS design [92]. This chapter addresses

complexity reduction of these designs.

7.1 Efficient MSSNR computation

There is a tremendous amount of redundancy involved in the brute force calculation

of the MSSNR design. Reusing some of this redundancy has been addressed in

[111]. This section discusses methods of reusing even more of the computations

to dramatically decrease the required complexity. Specifically, for a given delay

∆, A (∆) and B (∆ + 1) can both be computed from B (∆) almost for free, where

B = HH
winHwin is maintained solely for the purpose of updating A efficiently.

Computing A (∆) from B (∆)

Let α = 1 in (7.4) and let Q be a “wall” matrix,

Qssnr(∆) = diag[1, · · · , 1︸ ︷︷ ︸
∆

, 0, · · · , 0︸ ︷︷ ︸
ν+1

, 1, · · · , 1︸ ︷︷ ︸
Lc−ν−∆

], (7.6)

where “diag [·]” is a diagonal matrix with the elements of the argument along

the main diagonal. Then we have A = HH
wallHwall. For convenience, also define
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B = HH
winHwin. From (2.7) and (2.8) we can write

H =




H1

Hwin

H2




, Hwall =




H1

H2


 . (7.7)

Thus,

C = HH
1 H1 + HH

winHwin + HH
2 H2 (7.8)

=
(
HH

1 H1 + HH
2 H2

)
︸ ︷︷ ︸

A

+
(
HH

winHwin

)
︸ ︷︷ ︸

B

. (7.9)

To emphasize dependence on and independence of the delay ∆, we write

C = A (∆) + B (∆) (7.10)

Since C is Hermitian and Toeplitz, it is fully determined by its first row or

column:

C(0:Lw,0) = HH
[
hT ,0(1×Lw)

]T
=
(
H(0:Lh,0:Lw)

)H
h. (7.11)

C can be computed using less than L̃2
h multiply adds and its first column can be

stored using L̃w memory words2. Since C is independent of ∆, we only need to

compute it once. Then each time ∆ is incremented and the new B (∆) is computed,

A (∆) can be computed from A (∆) = C − B (∆) using only L̃2
w additions and

no multiplications. In constrast, the “brute force” method requires L̃2
w (Lh − ν)

multiply-adds per delay to compute A (∆), and Wu’s method [111] requires about

L̃w (Lw + Lh − ν) multiply-adds per delay.

2A memory word is defined as the amount of space needed to store one complex
number.
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Computing B (∆ + 1) from B (∆)

Recall that B (∆) = HH
win(∆)Hwin(∆), where

Hwin(∆) =



h(∆) h(∆ − 1) · · · h(∆ − L̃w + 1)

...
. . .

...

h(∆ + ν) h(∆ + ν − 1) · · · h(∆ + ν − L̃w + 1)




(7.12)

The key observation is that

[Hwin(∆ + 1)](0:ν,1:Lw) = [Hwin(∆)](0:ν,0:Lw−1) . (7.13)

This means that

[B (∆ + 1)](1:Lw,1:Lw) = [B (∆)](0:Lw−1,0:Lw−1) (7.14)

so most of B (∆ + 1) can be obtained without requiring any computations. Now

partition B (∆ + 1) as

B (∆ + 1) =




α gH

g B̂


 , (7.15)

where B̂ is obtained from (7.14). Since B (∆ + 1) is almost Toeplitz, α and all of

the elements of g save the last can be efficiently determined from the first column

of B̂ via [111]

[B (∆ + 1)](i,j) = [B (∆ + 1)](i+1,j+1) + h∗((∆ + 1) − i + ν) h((∆ + 1) − j + ν)

− h∗((∆ + 1) − i − 1) h((∆ + 1) − j − 1).

(7.16)

Computing each of these Lw elements requires two multiply-adds. Finally, to

compute the last element of g,

g(ν−1) =
(
[Hwin](0:ν,Lw)

)H

[Hwin](0:ν,0) , (7.17)
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1. Compute B = HH
win (∆min)Hwin (∆min).

2. C(0:Lw,0) =
(
H(0:Lh,0:Lw)

)H
h.

3. Fill in the rest of the Hermitian, Toeplitz matrix C.

4. A = C − B.

5. Solve Aw = λCw for the generalized eigenvector corresponding to the small-

est eigenvalue, as in [67].

6. For ∆ = ∆min + 1 : ∆max, do the following:

(a) [B](1:Lw,1:Lw) = [B](0:Lw−1,0:Lw−1)

(b)





[B](0:Lw−1,0) = [B](1:Lw,1)

+h(∆ + ν) · h∗(∆ + ν − [0 : Lw − 1])

−h(∆ − 1) · h∗(∆ − 1 − [0 : Lw − 1])

(c) [B](Lw,0) =
(
[Hwin](0:ν,Lw)

)H
[Hwin](0:ν,0)

(d) [B](0,1:Lw) = [B]H(1:Lw,0)

(e) A = C − B.

(f) Solve Aw = λCw for the generalized eigenvector corresponding to the

smallest eigenvalue.

(g) If this delay produces a smaller λ than the previous delay, save w.

Figure 7.1: Fast MSSNR TEQ design algorithm.

requiring ν + 1 multiply-adds.

The resulting fast MSSNR design algorithm is shown in Figure 7.1. Note that

in step (b), the indices may become negative, in which case the corresponding
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elements are zero. It should be stressed that the gains will not be as apparent in

an environment such as Matlab, since the brute force method is matrix based, and

the proposed approach is an element-by-element approach. Matlab is optimized

for the former, but embedded DSPs may not be.

Complexity comparison

Table 7.1 shows the (approximate) number of computations for each step of the

MSSNR method, using the “brute force” approach, the method in [111], and the

proposed approach. Note that N∆ refers to the number of values of the delay

that are possible (usually equal to the length of the effective channel minus the CP

length). For a typical downstream ADSL system, the parameters are L̃w = Lw+1 =

32, L̃h = Lh + 1 = 512, Lc = Lw + Lh = 542, ν = 32, and N∆ = L̃c − ν = 511.

The “example” lines in Table 7.1 show the required complexity for computing all

of the A’s and B’s for these parameters using each approach. Observe that [111]

beats the brute force method by a factor of 29, the proposed method beats [111]

by a factor of 140, and the proposed method beats the brute force method by a

factor of 4008.

7.2 Efficient Min-IBI computation

The Min-IBI design [14], [15] minimizes the IBI power subject to the constraint

that the desired signal energy is held constant. We briefly review the design, then

demonstrate how to simplify its computation.

Define the IBI weighting matrices as [15]

Qibi(∆) = diag[∆, · · · , 2, 1, 0, · · · , 0︸ ︷︷ ︸
ν+1

, 1, 2, · · · , Lc − ν − ∆], (7.18)
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Table 7.1: Computational complexity of various MSSNR implementations. MACs

are real multiply-and-accumulates and adds are real additions (or subtractions).

brute force Wu, et al. [111]

step MACs MACs

C 0 0

B (∆min) L̃2
w (ν + 1) L̃w (Lw + ν)

A (∆min) L̃2
w (Lh − ν) L̃w (Lc − ν)

Each B (∆) L̃2
w (ν + 1) L̃w (Lw + ν)

Each A (∆) L̃2
w (Lh − ν) L̃w (Lc − ν)

Total: L̃2
wL̃hN∆ L̃w (Lw + Lc) N∆

Example: 267,911,168 9,369,696

proposed

step MACs adds

C L̃hL̃w 0

B (∆min) L̃w (Lw + ν) 0

A (∆min) 0 L̃2
w

Each B (∆) 2Lw + ν + 1 0

Each A (∆) 0 L̃2
w

Total:
(
2L̃w + ν

)
(N∆ − 1) + L̃hL̃w L̃2

wN∆

Example: 66,850 523,264

Q̃ibi(∆) = diag [∆, · · · , 2, 1, 1, 2, · · · , Lc − ν − ∆] (7.19)

The Min-IBI design uses Q to suppress the taps of the effective channel outside of

the desired window, with linearly increasing weights at further distances from the
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edge of the window. Thus, in the formulation of (7.4),

A = αHHQibiH + (1 − α)Rn (7.20)

= αHH
wallQ̃ibiHwall + (1 − α)Rn.

The optimization problem is then given by3 (7.3), (7.5), (7.18), and (7.20). The

solution is the generalized eigenvector of (A,C) corresponding to the smallest

generalized eigenvalue [35].

The only differences between the MSSNR design [67] and the Min-IBI design

are that the MSSNR design sets Q̃ = I, the identity matrix, and the MSSNR design

assumes α = 1. The MSSNR design places equal weight on all taps in the channel

tails, even though the more distant taps contribute more to the IBI. However, with

Q̃ = I, the A matrix for delay ∆ + 1 can be obtained almost entirely from the A

matrix for delay ∆ [55], as discussed in Section 7.1. The method of performing

this feat for the Min-IBI matrix is not so apparent, and this is the focus of the

remainder of this section.

Define the error matrices

Ê(∆) = diag
[
11×∆,01×ν ,−11×(Lc+1−ν−∆)

]
(7.21)

E(∆) = HH Ê(∆) H (7.22)

= HH
wall,ν(∆) H̃wall,ν(∆)

where H̃wall,ν =
[
HT

1 ,−HT
2

]T
, and the subscript ν denotes the fact that these

particular matrices only eliminate ν rows from H rather than ν + 1. With this

3Celebi’s Min-IBI design [15] uses α = 1 and C = HH
winHwin rather than C =

HHH, but we prefer Tkacenko’s formulation [98].
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definition of the error matrix E, we have

Qibi(∆ + 1) = Qibi(∆) + Ê(∆ + 1), (7.23)

A(∆ + 1) = A(∆) + E(∆ + 1). (7.24)

where (7.24) follows from (7.23) by left- and right-multipliying (7.23) by HH and

H, respectively. The intuition behind (7.24) is that A(∆) linearly weights the

channel tails outside of a length-(ν +1) window, and A(∆) does the same thing for

a window that is shifted over by one sample. Thus, the effect of incrementing the

delay is to increment all of the weights on the channel “head” (up to tap ∆ + 1)

by one and to decrement the weights on the channel “tail” (starting at tap ∆ + ν)

by one.

The objective is to form an efficient update rule for E(∆), then use (7.24) to

update A. Since E(∆) is very similar to HH
wallHwall, we can use techniques similar

to those used for the MSSNR design [55], [111] in Section 7.1. For i ≥ j, element

(i, j) of E(∆) is given by

[E(∆)](i,j) =
∆−1−i∑

l=0

h∗
l h(l+i−j) −

Lh∑

l=∆+ν−j

h∗
(l+j−i)hl. (7.25)

Throughout, matrix and vector indexing starts at zero, rather than at one. By

incrementing ∆,

[E(∆ + 1)](i,j) =

∆−1−(i−1)∑

l=0

h∗
l h(l+(i−1)−(j−1)) −

Lh∑

l=∆+ν−(j−1)

h∗
(l+(j−1)−(i−1))hl

= [E(∆)](i−1,j−1) . (7.26)

In block form,

[E(∆ + 1)](1:Lw,1:Lw) = [E(∆)](0:Lw−1,0:Lw−1) (7.27)
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By keeping ∆ fixed and incrementing i and j instead,

[E(∆)](i+1,j+1) =
∆−1−i−1∑

l=0

h∗
l h(l+i−j) −

Lh∑

l=∆+ν−j−1

h∗
(l+j−i)hl

= [E(∆)](i,j) − h∗
(∆−1−i)h(∆−1−j) − h∗

(∆+ν−1−i)h(∆+ν−1−j) (7.28)

Or, equivalently,

[E(∆)](i,j) = [E(∆)](i+1,j+1) + h∗
(∆−1−i) h(∆−1−j) + h∗

(∆+ν−1−i) h(∆+ν−1−j) (7.29)

By using (7.27) we can obtain all of E(∆+1) except the first row and column from

E(∆). The first column of E(∆ + 1) can be efficiently obtained via (7.29), and

its first row can be obtained by symmetry. Finally, E(∆min) must be computed

explicitly, but this can also be done efficiently using (7.29). An outline of an

efficient Min-IBI algorithm is given in Figure 7.2.

Note that Qibi may assign very large weights to the extreme edges of the effective

channel impulse response. If the channel estimate is imperfect, these large weights

will amplify the errors. The solution proposed in [15] is to limit the maximum

weight value by redefinining the weighting matrix as

Qibi(∆) = min {Qibi(∆), γ}

= diag[ γ, γ, · · · , γ︸ ︷︷ ︸
∆−γ+1

, γ − 1, · · · , 2, 1, 0, · · · , 0︸ ︷︷ ︸
ν

, 1, 2, · · · , γ − 1, γ, γ, · · · , γ︸ ︷︷ ︸
Lc−ν−∆−γ+1

]

(7.30)

Then the error weighting matrix of (7.21) becomes

Ê(∆) = diag
[
01×(∆−γ),11×γ ,01×ν ,−11×γ ,01×(Lc−ν−∆−γ+1)

]
. (7.31)

In this case, (7.24) and (7.27) still hold, but (7.29) requires four update terms

rather than two.
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1. For ∆min, compute A, C (using the efficient methods of [111]), and E (using

(7.29)).

2. Solve Aw = λCw for the generalized eigenvector corresponding to the small-

est eigenvalue, as in [67].

3. For ∆ = ∆min + 1 : ∆max, do the following:

(a) [E](1:Lw,1:Lw) = [E](0:Lw−1,0:Lw−1)

(b) [E](0:Lw−1,0) = [E](1:Lw,1)

+ h(∆ − 1) · h(∆ − 1 − [0 : Lw − 1])∗

+ h(∆ + ν − 1) · h(∆ + ν − 1 − [0 : Lw − 1])∗

(c) Compute [E](Lw,0) from (7.22)

(d) [E](0,1:Lw) = [E]H(1:Lw,0)

(e) A = A + E

(f) Solve Aw = λCw for the generalized eigenvector corresponding to the

smallest eigenvalue.

(g) If this delay produces a smaller λ than the previous delay, save w.

Figure 7.2: Fast Min-IBI TEQ design algorithm.

7.3 Efficient MDS computation

The MDS design [92] is similar to the Min-IBI design in that is also uses a diagonal

weighting matrix. However, the main diagonal is quadratic rather than piecewise

linear. The result is that the delay spread of the effective channel is minimized,

though the size of the cyclic prefix is not explicitly taken into account.

To formally describe the MDS design, first define the weighting matrix Qmds
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as

Qmds(η) =
[
η2, (η − 1)2, · · · , 9, 4, 1, 0, 1, 4, 9, · · · , (Lc − η)2

]
. (7.32)

Then the MDS design is given by (7.3), (7.4), (7.5), and (7.32). The parameter η

is the desired centroid of the effective channel. It replaces the delay parameter ∆

as the parameter to be searched over.

Since C is not a function of η, it only has to be computed once. Moreover, it

is Hermitian and Toeplitz, and thus is easily computed. On the other hand, A(η)

must be computed once per value of η if a full search is made. We now propose an

efficient recursive method for computing A(η+1) from A(η). Define the first-order

error matrices

Ê1(η) = diag[(2η − 1), (2η − 3), · · · , 3, 1,−1,−3, · · · , (−2(Lc − η) − 1)], (7.33)

E1(η) = HH Ê1(η) H. (7.34)

The difference of two monic quadratic polynomials is a linear polynomial, so we

have

Q(η + 1) = Q(η) + Ê1(η + 1), (7.35)

A(η + 1) = A(η) + E1(η + 1), (7.36)

where (7.36) follows from (7.35) by left- and right-multiplying by HH and H,

respectively. As with the Min-IBI design, we would like to effciently update E1

and use it to update A. However, E1 is now linear rather than peicewise constant.

The procedure can be iterated by implicitly defining the second-order error matrices

Ê2 and E2 such that we will have

Ê1(η + 1) = Ê1(η) + Ê2(η + 1), (7.37)

E1(η + 1) = E1(η) + E2(η + 1). (7.38)
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1. For ηmin, compute A, C (exploiting the Hermitian Toeplitz structure), and

E1.

2. Solve Aw = λCw for the generalized eigenvector corresponding to the small-

est eigenvalue, as in [67].

3. For η = ηmin + 1 : ηmax, do the following:

(a) E1 = E1 + 2C (where multiplication by 2 is performed by a shift in

binary representation)

(b) A = A + E1

(c) Solve Aw = λCw for the generalized eigenvector corresponding to the

smallest eigenvalue.

(d) If this delay produces a smaller λ than the previous delay, save w.

Figure 7.3: Fast MDS TEQ design algorithm.

Inspection of (7.33) reveals that Ê2 = 2ILc+1 for all η, and thus

E2 = HH (2ILc+1)H = 2C. (7.39)

Note that C has already been computed, and multiplication by two is simply a shift

in binary representation. In summary, (7.38) is used to update E1, then (7.36) is

used to update A. This procedure only requires (Lw + 1)2 extra memory locations

and (Lw + 1)2 extra additions, with the savings of not having to recompute A at

all. For comparison, computing A normally takes O (L2
w(Lh − ν)) multiply-adds

for each of the Lc +1 possible values of η. An outline of an efficient MDS algorithm

is given in Figure 7.3.

The MDS penalty function leading to (7.32) is f(n) = n2. Tkacenko and
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Vaidyanathan [97] also considered a linear MDS penalty function, f(n) = |n|.

This leads to a Min-IBI design that uses ν = 0. In Chapter 8 we will refer to

the original MDS design with a quadratic penalty function as MDS-Q, and the

alternate MDS design with a linear penalty function as MDS-L.

7.4 Methods for arbitrary polynomial weighting functions

To generalize to arbitrary polynomial weighting functions, let the diagonal elements

of Q be defined by an M th order polynomial. The coefficients may be defined peice-

wise over the regions [0, ∆−1], [∆, ∆+ν], and [∆+ν+1, Lc], or a single polynomial

may be used. For example, the MSSNR TEQ uses three zeroth order (constant)

polynomials, the Min-IBI TEQ uses three first order (linear) polynomials, and the

MDS design uses a single second order (quadratic) polynomial.

To generalize (7.24), (7.36), and (7.38), up to M error matrices Em, 1 ≤ m ≤

M , may be needed for efficient updating of the A matrix. Each error matrix will

be of size (Lw + 1) × (Lw + 1), but it may turn out that some error matrices

are independent of the delay and/or already computed, as with E2 in the MDS

technique. Moreover, since A is Hermitian, so is each Em, and only half of the

coefficients must be stored. Thus, the additional memory requirements are at most

M
2

(Lw + 1)(Lw + 2) storage words. The computational savings of not recomputing

A are O (L2
w(Lh − ν)) per delay for up to Lc +1 delays, which more than balances

out the extra memory use for reasonably small values of M .

7.5 Efficient MMSE computation

When the input signal is white, the MMSE design can be written as the MSSNR

design, with the sole difference of the use of α = 1
2

rather than α = 1 in (7.4); c.f.
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(2.18). For general input signal statistics, the complexity reduction techniques are

somewhat different. However, the end result is similar: R (∆ + 1) can be computed

from R (∆) almost for free.

Computing R (∆ + 1) from R (∆)

Recall that for the MMSE design, we must compute

R (∆) = Rx − RxrR
−1
r Rrx, (7.40)

where

Rx = E
[
x∗

k xT
k

]
, (7.41)

Rrx = E
[
r∗k xT

k

]
, (7.42)

xk =

[
x(k − ∆), · · · , x(k − ∆ − ν)

]T

, (7.43)

rk =

[
r(k), · · · , x(k − Lw)

]T

. (7.44)

Note that Rx does not depend on ∆, and that it is Toeplitz. Thus,

[Rx(∆ + 1)](0:ν−1,0:ν−1) = [Rx(∆)](0:ν−1,0:ν−1)

= [Rx(∆)](1:ν,1:ν) . (7.45)

Let G(∆) = RxrR
−1
r Rrx. Observing that

[Rrx(∆ + 1)](0:Lw,0:ν−1) = [Rrx(∆)](0:Lw,1:ν) , (7.46)

and that Rxr = RH
rx, we see that

[G(∆ + 1)](0:ν−1,0:ν−1) = [G(∆)](1:ν,1:ν) . (7.47)

Combining (7.40), (7.45), and (7.47),

[R (∆ + 1)](0:ν−1,0:ν−1) = [R (∆)](1:ν,1:ν) (7.48)
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The matrix Rr is Hermitian and Toeplitz. However, the inverse of a Toeplitz matrix

is, in general, not Toeplitz [36]. This means that R (∆) has no further structure

that can be easily exploited, so the first row and column of R (∆ + 1) cannot be

obtained from the rest of R (∆ + 1) using the method in (7.16) [111]. Even so,

(7.48) allows us to obtain most of the elements of each R (∆) for free, so only ν +1

elements must be computed rather than (ν + 1) (ν + 2) /2 elements. In ADSL,

ν = 32; in VDSL, ν can range up to 512; and in DVB (2K mode), ν can range up

to 2048. Thus, the proposed method reduces the complexity of calculating R (∆)

by factors of 17, 257, and 1025 (respectively) for these standards.

Complexity comparison

Table 7.2 shows the (approximate) computational requirements of the “brute force”

approach and the proposed approach for computing the matrices R (∆) , ∆ ∈

{∆min, · · · , ∆max}. The “example” line shows the required complexity for com-

puting the R (∆) matrices using each method for the same parameter values as

the example in Table 7.1. The proposed method yields a decrease in complexity

by a factor of the channel shortener length over two, which in this case is a factor

of 16.

7.6 Intelligent eigensolver initialization

Let w (∆) be the TEQ for a given delay. If we were to increase the allowable filter

length by 1, then it follows that

ŵ (∆ + 1) = z−1w (∆) =
[
0,wT (∆)

]T
(7.49)
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Table 7.2: Computational complexity of various MMSE implementations. MACs

are real multiply-and-accumulates.

brute force proposed

step MACs MACs

R (∆min) L̃3
w L̃3

w

Each R (∆) L̃3
w 2L̃2

w

Total: N∆L̃3
w L̃2

w

(
2 (N∆ − 1) + L̃w

)

Example: 16,744,448 1,077,248

should be a near-optimum solution, since it produces the same value of the cost

function (SSNR, MSE, IBI, or delay spread) as for the previous delay. Experience

suggests that the TEQ coefficients are small near the edges, so the last tap can be

removed without drastically affecting the performance. Therefore,

ŵ (∆ + 1) =
[
0,
[
wT (∆)

]
(0:Lw−1)

]T
(7.50)

is a fairly good solution for the delay ∆ + 1, so this should be the initialization

for the generalized eigenvector solver for the next delay. Similarly, for the MMSE

TIR,

b̂ (∆ + 1) =
[[

bT (∆)
]
(1:ν)

, 0
]T

(7.51)

should be the initialization for the eigenvector solver for the next delay. These

initializations should decrease the number of iterations of the eigensolver that are

required for it to converge, though the amount of complexity reduction that is

achieved will depend greatly on the channel.



Chapter 8

Algorithm Comparisons and Simulations
“What! hast thou been long blind, and now restor’d?”

– William Shakespeare, Henry VI part 2, Act II, Scene i.

The goals of this chapter1 are twofold: first, to compare the complexity of the

different algorithms discussed in this thesis (both adaptive and non-adaptive) to

the algorithms in the literature; and second, to compare the convergence speeds

and asymptotic performance of these algorithms.

8.1 Complexity comparison

Complexity is in general difficult to measure exactly. Factors influencing the com-

plexity include how clever one is at reusing computations, how much extra memory

is available for storing previous computations rather than reusing them, whether

the processing is performed in fixed-point or floating-point arithmetic, and whether

or not certain operations (e.g. FFTs) can be done in dedicated hardware. Thus,

the complexity results shown here are at best approximate.

We assume that the channel shortening algorithms will usually be implemented

on a fixed-point DSP, and as such, the basic unit of complexity is the multiply and

accumulate (“MAC”). Divisions and square roots are far more costly and will be

listed separately. If the term “flops” (floating-point operations) is used, this means

a mix of divisions and multiplications. If extra FFTs are required (other than the

1Some material in this chapter has been previously published. c© 2004 IEEE.
Reprinted, with permission, from [8], [9], [54], [53], [60], [61], [56], [62], [63], [64],
and [65]. c© 2004 Hindawi Publishing Corporation. Reprinted, with permission,
from [55].
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Table 8.1: Adaptive TEQ/PTEQ algorithm complexity comparison.

algorithm MACs/ (÷,
√

) / FFTs/ updates/

update update update symbol

MERRY [53] 2L̃w 1 0 1

FRODO [64] 2 |Sf | L̃w 0 0 1

SAM [9] 4L̃w (Lc − ν) 1 0 N + ν

TOLKIEN 4L̃wν 1 0 1

PT-LMS [57] 2NcL̃w 0 0 1

PT-DDLMS [57] 2NcL̃w 0 0 1

PT-CMA [57] 2NcL̃w 0 0 1

MMSE [30] 3
(
L̃w + ν

)
1 0 N + ν

Chow [17] 6N 1 5 1

CNA [23], [88] N
(
Nz + L̃w

)
1 0 1

one used for demodulation), then they will be listed separately. The memory use

will be given in terms of “words,” with each filter tap or data sample counting as

one “word.”

Table 8.1 compares the computational complexity of various adaptive TEQ

and PTEQ algorithms, and Table 8.2 lists several qualitative properties of the same

algorithms. “Window size” indicates the length of the window of non-zero taps that

is sought by the algorithm, the property “symbol synch” refers to whether or not

symbol (block) synchronization must be performed before equalizer adaptation,

and “false minima” indicates whether or not there are local minima in the cost

function that the given algorithm descends.

The computational complexity for several MMSE and MSSNR designs is sum-



125

Table 8.2: Adaptive TEQ/PTEQ algorithm properties.

algorithm window trained symbol false

size or blind synch? minima?

MERRY [53] ν blind yes no

FRODO [64] ∈ {1, · · · , ν} blind yes no

SAM [9] ν + 1 blind no yes

TOLKIEN ν + 1 trained yes no

PT-LMS [57] ν + 1 trained yes no

PT-DDLMS [57] ν + 1 blind yes no

PT-CMA [57] ν + 1 blind yes yes

MMSE [30] ν + 1 trained yes no

Chow [17] ν + 1 trained no yes

CNA [23], [88] 1 blind yes no

marized in Table 8.3. It is assumed that the most eficient techniques are used in

all cases, such as applying (7.48) during matrix computations and not repeating

matrix inversions at each delay unless the matrix is delay-dependent. The MMSE,

MSSNR, Min-IBI, and MDS methods assume that the methods in Chapter 7 are

used. The Min-ISI design has a slightly different structure that cannot make use of

such tehniques, hence it has a higher complexity. Note that the complexity if the

iterative and adaptive designs is given per update, and the total complexity must

consider the number of iterations needed.
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Table 8.3: Complexity of MMSE and MSSNR implementations.

Optimal design Complexity per delay

MMSE, UTC on b [4] O
(

1
3
ν3 + ν2 + 2νLw + L2

w

)
MACs

MMSE, UTC on w [115] O
(

1
3
ν3 + ν2 + νLw

)
MACs

MMSE, UNC on b [30] O (ν2 + 2νLw + 2L2
w) MACs

MMSE, UNC on w [115] O (ν2 + νLw + L2
w) MACs

Sym-MMSE, UNC on b [55] O
(
ν2 + 3

2
νLw + 5

4
L2

w

)
MACs

MSSNR [67] O (L3
w) flops

Noise-limited MSSNR [98] O (L3
w) flops

Sym-MSSNR [60] O
(

1
4
L3

w

)
flops

Min-ISI [7] O ((5NLw + L3
w)) flops

Min-IBI [15] O ((L3
w)) flops

MDS [92] O ((L3
w)) flops

Iterative/adaptive design Complexity per update per delay

Adaptive MMSE [30] O (4ν + 2Lw) MACs + renormalization

MSSNR via power method (2.5) [35] O (3L2
w) MACs

MSSNR via iteration of (2.6) [16] O (2L2
w) MACs

MERRY/FRODO O (4Lw) MACs

Nafie & Gatherer [75] O (2Lw) MACs + renormalization

8.2 Simulations

This section simulates the blind, adaptive algorithms derived in this thesis, and

compares their asymptotic performance to the performance of popular trained, non-

adaptive algorithms. The simulations will be broken down into six self-contained

examples.
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• Example 1: a comparison of the effective channels after being shortened using

various TEQ algorithms.

• Example 2: a study of the convergence rates of MERRY, Sym-MERRY, and

FRODO.

• Example 3: a study of the convergence rate of SAM.

• Example 4: a study of the convergence rates of PT-CMA and PT-LMS.

• Example 5: a performance assessment of MIMO channel shortening.

• Example 6: a performance comparison of the reduced complexity symmetry-

based algorithms of Chapter 6 and their non-symmetric counterparts.

The simulation parameters will be drawn from two settings: (i) a downstream

ADSL setting, which is a pont-to-point baseband link; and (ii) a wireless broadcast

system with parameters similar to the IEEE 802.11a and HIPERLAN/2 wireless

LAN standards. Setting (i) will use an FFT size of N = 512, a CP of length

ν = 32, and the transmission channels will be the CSA test loops [7], available at

[6]. The CSA loops are synthetic models of twisted pair telephone lines. They are

real, with energy in about 200 taps. The DSL performance metric is the achievable

bit rate for a fixed probability of error,

R =
1

T

∑

i

log2

(
1 +

SNRi

Γ

)
, (8.1)

where SNRi is the signal to interference and noise ratio in frequency bin i, Γ is

the SNR gap, and T = 246.4µs is the symbol duration. We assume a 6 dB margin

and 4.2 dB coding gain. For more details on calculating the bit rate, refer to [7].

Setting (ii) will use an FFT size of N = 64 and a CP of length ν = 16. The

transmission channels will be modelled as consisting of three parts [81]: hlocal,1,
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Figure 8.1: Example 1: the plots show the shortened channel impulse response

magnitudes using (a) no TEQ, (b) an MMSE TEQ, (c) an MSSNR TEQ, and (d)

a (zero-forcing) MSSNR TEQ with a window of size 1. Here, ν = 16.

scatterers near the transmitter; hmid, remote scatterers; and hlocal,2, scatterers

near the receiver. The channel is then

h = hlocal,1 ? hmid ? hlocal,2, (8.2)

where ? denotes convolution. hmid consists of 32 uncorrelated Rayleigh fading

taps with an exponential delay profile, and hlocal,1 and hlocal,2 each consist of 6

uncorrelated Rayleigh fading taps with a uniform delay profile.

8.2.1 Example 1: comparison of optimal (non-adaptive)

designs

The purpose of this example is to compare the asymptotic (i.e. non-adaptive)

performance of MERRY and FRODO to other TEQ designs. The TEQs each
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Figure 8.2: Example 1: the plots show the shortened channel impulse response

magnitudes using (a) an MDS TEQ with linear weights, (b) a MERRY TEQ, (c)

a FRODO TEQ with two windows, and (d) a “full” FRODO TEQ with ν = 16

windows.

have 32 taps, the SNR is 20 dB (AWGN), the environment is setting (ii) described

above, and the channel is as in (8.2). Figs. 8.1 and 8.2 show the shortened channel

impulse responses magnitudes using various designs, for the channel realization

shown in Figure 8.1(a). The “full” FRODO impulse response is quite similar to

the linear MDS impulse response (rather than the zero-forcing impulse response),

FRODO with one window has characteristics like the MSSNR design, and FRODO

with two windows has similar characteristics but is slightly narrower. Figure 8.3

shows the shortening SNR [67], the inverse of the MSE [30], and the inverse of the

inter-block interference (IBI) [14], averaged over 10000 channel realizations and

normalized relative to the largest (i.e. best) value obtained from the 8 designs.

The FRODO cost function with 1 window (i.e. MERRY) performs much like the
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Figure 8.3: Performance of various shortened channels for example 1. The short-

ening SNR [67], the inverse of the MSE [30], and the inverse of the inter-block

interference [14] were averaged over 10000 channel realizations and normalized rel-

ative to the largest (i.e. best) value obtained from the 8 TEQ designs.

MMSE design. The use of two windows for FRODO only slightly degrades the

performance. Hence, we may use two windows in the adaptive version of FRODO

without fear of significantly affecting the asymptotic performance. However, the

use of all 16 windows causes the FRODO TEQ to achieve performance that is

slightly worse than the (linear) MDS TEQ. Thus, the number of windows for

FRODO should be relatively small, since we want to improve the convergence

speed without adversely affecting the asymptotic solution.

Another insight gained from this example is that if the blind, non-adaptive

FRODO initialization is used, then a performance comparable to the MMSE and

MSSNR designs can be achieved without the need for training.
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Figure 8.4: Example 2: performance vs. time for MERRY on CSA loop 4.

8.2.2 Example 2: convergence of the MERRY family

In this example, we simulate the MERRY and FRODO algorithms. First, we

simulate MERRY using CSA loops 1 and 4, for an ADSL setting. The TEQ had

16 taps, the SNR was 40 dB, and initialization was a single spike. For an ADSL

system, 40 dB is actually a low SNR. Figure 8.4 shows the MERRY cost and

the bit rate versus symbol number for CSA loop 4. MERRY rapidly approaches

the maximum SSNR solution and the optimal (closed-form, non-adaptive) MERRY

solution. The convergence time (to within 75% of the optimal bit rate) is about 800

symbols, or 50 updates per tap. The step size µ was reduced by a factor of 2 after

each 1000 iterations, leading to a decrease in misadjustment and an improvement

in both performance metrics. This suggests that the remaining gap between the

performance after 3000 iterations and the optimal MERRY performance is due in

part to the large step size and in part to slow modes of convergence.
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Figure 8.5: Example 2: achievable bit rate vs. SNR for MERRY on CSA loop 1.

Figure 8.5 shows a plot of the bit rate vs. SNR for CSA loop 1. The bit rate

for this plot was computed by running for 5000 symbols and halving the stepsize

after every 1000 symbols. At higher SNR values, midadjustment becomes more

significant than noise, hence the adaptive MERRY algorithm does not achieve the

optimal bit rate.

We now examine the convergence rate of FRODO using various numbers of

windows. Specifically, we will compare the use of one window (i.e. MERRY) to the

use of two windows. The environment is setting (ii) described above, hence the

channel model is as in (8.2). The TEQ has 16 taps and the SNR is 25 dB (AWGN).

For a fair comparison, both algorithms used the same step size, normalized by the

number of windows |Sf |. The synchronization was performed blindly using the

method of Section 3.8.

The performance of FRODO versus time is shown in Figure 8.6, in terms of the
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Figure 8.6: Performance metrics vs. time: SSNR (top left), MSE (top right), IBI

(bottom left), and MERRY cost (bottom right).

shortening SNR [67], the MSE [30], the IBI [15], and the MERRY cost (3.4). For

this example, FRODO takes about 5000 iterations to converge. This corresponds

to about 300 iterations per tap. By adding additional comparisons, the algorithm

converges slightly more quickly, but the quality of the final solution is not as

good. Ideally, one would choose the parameters such that the final performance

of the two algorithms were equal and then compare convergence rates, but that

is not possible here since the use of more comparisons changes the asymptotic

performance. The moral is that multiple comparisons should only be used to

speed convergence or tracking, but near convergence, the algorithm should drop

down to only one comparison.
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8.2.3 Example 3: convergence of SAM

This section provides a numerical performance assessment of SAM in an ADSL en-

vironment. Parameters were chosen to match the standard for ADSL downstream

transmission. The TEQ had 16 taps, and the channel was CSA test loop 1. The

SNR was 40 dB. 75 symbols were used (of 544 samples each), and SAM used the

auto-regressive implementation of (4.19) with α = 1/100 and with the unit norm

TEQ constraint. The initialization was a single spike, and the step size was 5 (such

a large step size can be used because the SAM cost is very small, so the update size

is still small). SAM is compared to the maximum shortening SNR solution [67],

obtained using the code at [6]; and the matched filter bound (MFB) on capacity,

which assumes no ICI.

Two types of noise are considered: AWGN and near-end cross-talk (NEXT)

[95], which is highly colored. The NEXT was generated by exciting a coupling

filter with spectrum |Hnext(f)|2 = Ho Hmask(f) f (3/2) with white noise [47]. The

constant Ho was chosen so that the variance of the NEXT was σ2
v , with σ2

v chosen

to achieve the desired SNR. The filter Hmask is an ADSL upstream spectral mask

that passes frequencies between 28 kHz and 138 kHz, since the upstream signal

is the source of the NEXT for the downstream signal. The code to generate the

NEXT was obtained from [6].

Figures 8.7 and 8.8 show the SAM cost and achievable bit rate versus the

iteration number. Since there are 544 iterations of SAM per sample, the time scale

here is different than in Figure 8.4, for example. The fact that the SAM cost is

not monotonically decreasing in the first few hundred samples is because of the

renormalization. After each iteration, the equalizer is divided by its norm, and

this projection causes the algorithm to no longer be a gradient descent algorithm
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Figure 8.7: Example 3: SAM cost vs. iteration (not symbol) number, for 40 dB

SNR.

(though it is approximately so). The bit rate is not monotonically increasing

because the SAM cost bears no direct relation to the bit rate. At 340 iterations,

SAM achieves 96% of the MFB, but then drops, and eventually rises again to 74%

of the bound. The fact that the SAM cost is steadily decreasing when the bit rate

decreases and then increases again indicates that the SAM minima and the bit rate

maxima are not in exactly the same location. Note that SAM performs similarly

for white noise and colored noise.

Figure 8.9 shows the achievable bit rate versus SNR for SAM and for the

maximum shortening SNR algorithm of [67], for white noise and for NEXT. The bit

rate was determined for the settings SAM arrived at after 75 DMT symbols (40800

samples). Observe that for low SNR, the performance of SAM and the MSSNR

method are comparable, and the performance of SAM degrades (relatively) for high

SNR. This is because when the noise is high, SAM only needs to reduce the inter-

channel interference (ICI) below the noise floor, but when the SNR is 60 dB, the



136

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6 bit rate vs. iteration number

sample number, n

bi
ts

 p
er

 s
ec

on
d

SAM (white noise)
SAM (NEXT noise)
MSSNR
MFB

PSfrag replacements

c = H w

cwin = Hwin w

cwall = Hwall w

y(2) = c0x(2) + c1x(1) + c2x(0) + c3x(−1) + c4x(−2)

= c0x(10) + c1x(9) + [c2x(0) + c3x(−1) + c4x(−2)]

y(10) = c0x(10) + c1x(9) + [c2x(8) + c3x(7) + c4x(6)]

y(3) = c0x(3) + c1x(2) + c2x(1) + c3x(0) + c4x(−1)

= [c0x(3)] + c1x(10) + c2x(9) + [c3x(0) + c4x(−1)]

y(11) = [c0x(11)] + c1x(10) + c2x(9) + [c3x(8) + c4x(7)]

∑

x1(k)

xL(k)

h1,1

h1,L

hP,1

hP,L

w1

wP

n1(k)

nP (k)

r1(k)

rP (k)

y1(k)

yP (k)

y(k)

y(k)

x(k)

n(k)

r(k)

h

w

c = h ? w

H1

HL2

HL1

HU3

HM

HL3
0︸︷︷︸

(∆−Lh)

0︸︷︷︸
ν

HU1︸︷︷︸
(Lh−ν)

HU2︸︷︷︸
ν

H2︸︷︷︸
(Lw−ν−∆)

0

}∆

}(ν + 1)

}(Lh + Lw − ν − ∆)

H =

Figure 8.8: Example 3: achievable bit rate vs. iteration number (not symbol

number), for 40 dB SNR. The dashed line and the diamonds correspond to the

maximum SSNR solution and the matched filter bound.

excess ICI becomes more noticeable. For very low SNR (less than 15 dB for white

noise, less than 25 dB for NEXT), the performance of SAM degrades, presumably

due to the noiseless assumption in the derivations. However, typical SNR values

for ADSL are 40 dB to 60 dB, and an SNR less than 25 dB is very unusual. Bit

error rate (BER) curves are not included because for ADSL, the bit allocation on

each tone is increased until the BER becomes 10−7, so a BER curve would be flat

as a function of SNR.

8.2.4 Example 4: convergence of PT-CMA & PT-DDLMS

This example compares the converges rates of PT-CMA and PT-DDLMS, and

also considers the effect of the synchronization parameter ∆ on their asymptotic

performance. The modulation parameters were as in setting (ii) for a wireless LAN
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Figure 8.9: Example 3: achievable bit rate vs. SNR for SAM and the maximum

SSNR algorithm for white noise and for colored noise (NEXT).

system. Since per tone algorithms do not require a white source signal, we changed

12 of the 64 carriers to be null carriers. The equalizer on each tone had 16 taps,

and the noise was AWGN with an SNR of 40 dB.

Figure 8.10 shows the SNR obtained at the output of the receiver for tone 2 (the

first tone that is not a null carrier), with the parameter ∆ on the horizontal axis.

The dashed line is the SNR of the equalizer settings determined in Section V.A in

[104], the dotted line is the SNR at initialization (corresponding to no equalizer),

and the solid line is the SNR of the CMA settings after convergence. The poor

performance for −40 ≤ ∆ ≤ 0 is not of importance because those values of ∆

corresponding to picking a symbol synchronization such that each received block

is a significant mixture of two trasnmitted blocks, so such values of ∆ would not

be used in any practical system. Figure 8.11 shows similar plots, but for the CM

cost rather than the SNR, and the same comments apply.
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Figure 8.10: Exmaple 4: SNR for PT-CMA and the optimal MMSE solution as a

function of delay.
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Figure 8.11: Example 4: PT-CM cost for PT-CMA and the optimal MMSE solution

as a function of delay.

There are several features to note from these results. First, for a reasonable

range of values of ∆ around the optimal value, the performance of per tone equal-

izers is relatively insensitive to the choice of ∆ (in our example, this is the region
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Figure 8.12: Example 4: SNR (for tone 2) over time, using PT-CMA.

4 ≤ ∆ ≤ 16 or 4 ≤ ∆ ≤ 35, depending on how much variation in the SNR is

considered acceptable). Second, note that the performance of CMA (after conver-

gence) closely matches the performance of the optimal settings [104], especially for

the “good” choices of ∆. Also note that the performance is periodic in ∆, with

period equal to the symbol size M = N + ν = 64 + 16 = 80.

Figure 8.12 shows the SNR for tone 2 as a function of time. The symbol

synchronization parameter ∆ was chosen to be within the range discussed above,

i.e. ∆ = 12. Observe that most of the convergence takes place within 1000 symbols,

and optimal performance is achieved asymptotically.

Figure 8.13 and Figure 8.14 show the same simulation as above, but performed

using DD-LMS as the adaptive algorithm. A different step size was used for DD-

LMS than for CMA under the same conditions. In each case, the stepsize was

chosen to be as large as possible without significant asymptotic performance degra-

dation. Observe that DD-LMS exhibits better convergence speed.

One might ask why PT-DDLMS would not always be favored over PT-CMA.
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Figure 8.13: Example 4: SNR for PT-DDLMS and the optimal MMSE solution as

a function of delay.
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Figure 8.14: Example 4: SNR (for tone 2) over time, using PT-DDLMS.

Conventional wisdom states that DDLMS can only converge to a good answer if

the initial decisions are fairly accurate. If the channel is severe enough, this may

not be the case. In such a situation, CMA should be used for the first stage of

adaptation, then a switch should be made to DDLMS [101].
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8.2.5 Example 5: MIMO channel shortening

We now consider the use of multiple transmit and/or receive antennas (or fractional

sampling at the receiver). First, we consider a MISO case, which demonstrates

MERRY’s ability to jointly shorten multiple channels blindly and adaptively using

a single filter. There are L = 2 transmitters and P = 1 receivers. The TEQ

has 64 taps, the SNR is 20 dB (AWGN), and the channel is as in (8.2). The two

input sequences and the noise sequence were independent. We assume that the

transmitted sequences are coarsely synchronized, i.e. that the two cyclic prefixes

arrive very roughly at the same time as each other, otherwise no joint channel

shortening algorithm will succeed.

The implementation of MERRY in this case is no different than for a single

channel. Figure 8.15 shows the two channel impulse responses and the two effective

channels shortened by MERRY after convergence. Figure 8.16 shows the joint

SSNR [67], [69] versus time. The joint SSNR, as defined in [67], is the total

window power in both channels divided by the total wall power in both channels.

The synchronization was performed blindly as in Section 3.8. The fact that the

joint SSNR increased from 6 to 32 is evidence that MERRY can jointly shorten

multiple channels, blindly and adaptively.

We now consider bit error rate (BER) as a performance metric. Figs. 8.17

and 8.18 show BER curves for the SISO and SIMO cases, respectively, using the

wireless channel model of (8.2), with L = 1 and P = 2. The BER values were

averaged over 200 independent runs for each SNR value. The frequency domain

signal was differentially encoded BPSK, so that no FEQ was needed. The blind,

non-adaptive MERRY TEQ was compared to the non-adaptive MMSE [4], [2]

and MSSNR [67] designs, all using delay optimization. The MIMO MSSNR de-
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Figure 8.15: Example 5: joint shortening of two Rayleigh fading channels. Top:

channel impulse responses magnitudes; bottom: impulse responses magnitudes of

the shortened channels. The “filled” stems in the channels indicate the window

of ν + 1 taps with largest energy (for the channel) or the window of ν + 1 taps

starting with the desired delay (for the shortened channel).

sign is simply the MMSE design with assumptions of white input and no noise.

The performance of MERRY with the heuristic delay choice of (3.49) is denoted

“MERRY-H.” For low SNRs, all TEQs have very little effect on the BER. For

larger SNRs, the three delay-optimized methods perform similarly, and MERRY

with a heuristic delay performs almost as well. The SISO curves level off for high

SNR because the channel cannot be perfectly shortened. The SIMO BER values

are much lower because the effective channel can be almost perfectly shortened.

Conditions on the feasibility of perfect channel shortening are given in [107].
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Figure 8.16: Example 5: the joint shortening SNR versus time as FRODO adapts

to jointly shorten two Rayleigh fading channels.
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Figure 8.17: Example 5: BER vs. SNR for the SISO case.
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Figure 8.18: Example 5: BER vs. SNR for the SIMO case.

8.2.6 Example 6: symmetric designs

We now simulate the algorithms with symmetric TEQ or TIR impulse responses,

as proposed in Chapter 6. The algorithms are the MSSNR design with symmetric

TEQ (Sym-MSSNR), the MMSE design with symmetric TIR (Sym-MMSE), and

the adaptive MERRY algorithm with a symmetric TEQ (Sym-MERRY).

A comparison of the basic MSSNR TEQ and the Sym-MSSNR TEQ is given

in Table 8.4. The TEQ had 32 taps. The channels were the eight standard CSA

test loops [93]. The noise was AWGN, with no crosstalk. For a 32-tap TEQ, the

performance loss for the symmetric algorithm ranges from 0.1% (loop 3) to 10%

(loop 1), with an average loss of 3%. For some channels and TEQ lengths, the

symmetric design actually has a higher bit rate. This is because maximizing the

SSNR does not necessarily maximize the bit rate. Even though the unconstrained

design will have a higher SSNR, it is not guaranteed to have a higher bit rate.

A comparison of the MMSE design and the MMSE design with symmetric TIR
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Table 8.4: Achievable bit rate (Mbps) for MSSNR and Sym-MSSNR, using 32-tap

TEQs. The last column is the performance of the Sym-MSSNR method relative

to the MSSNR method. The channel has AWGN but no crosstalk.

Loop # MSSNR Sym-MSSNR Relative

CSA1 12.187 10.921 89.61%

CSA2 13.016 12.493 95.98%

CSA3 11.543 11.529 99.88%

CSA4 11.696 11.431 97.73%

CSA5 12.120 11.800 97.36%

CSA6 10.995 10.798 98.21%

CSA7 10.978 10.880 99.11%

CSA8 10.294 9.956 96.72%

is given in Figure 8.19 and Table 8.5. The FFT size was N = 512, and the CP

length was ν = 32. The TEQ had L̃w = 20 taps in Table 8.5, and 3 ≤ L̃w ≤ 128

in Figure 8.19. The channels were the eight CSA test loops [93], available at [6].

In Figure 8.19, TEQs were designed for CSA loops 1–8, then the bit rates

were averaged. For TEQs with fewer than 20 taps, the bit rate performance of

the symmetric MMSE method is not as good as that of the unconstrained MMSE

method. However, asymptotically, the results of the two methods agree; and for

some parameters, the symmetric method achieves a higher bit rate. Table 8.5

shows the individual bit rates achieved on the 8 channels using 20 tap TEQs, which

is roughly the boundary between good and bad performance of the Sym-MMSE

design in Figure 8.19. On average, for a 20-tap TEQ, the Sym-MMSE method

achieves 89.5% of the bit rate of the MMSE method, with a significantly lower

computational cost, but the performance (at this filter length) varies significantly
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Figure 8.19: Achievable bit rate in Mbps of MMSE (solid) and Sym-MMSE

(dashed) designs vs. TEQ length, averaged over eight CSA test loops.

depending on the channel. Thus, it is suggested that the symmetric MMSE design

only be used for TEQs with at least 20 taps, and preferably more.

Figure 8.20 shows performance vs. time as the symmetric MERRY TEQ adapts.

Again, N = 512, and ν = 32. The TEQ had L̃w = 16 taps (8 taps get updated,

then mirrored), and the SNR was 40 dB (AWGN). The channel was CSA loop 4.

The dashed line in Figure 8.20 represents the solution obtained by a non-adaptive

solution to the MERRY cost (3.4), without imposing symmetry; and the dotted

line represents the performance of the MSSNR solution [67]. Sym-MERRY rapidly

obtains a near-optimal performance. The jittering around the asymptotic portion

of the curve is due to the choice of a large stepsize, as in Figure 8.4.
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Table 8.5: Achievable bit rate (Mbps) for MMSE and Sym-MMSE, using 20-tap

TEQs and 33-tap TIRs. The last column is the performance of the Sym-MMSE

method relative to the MMSE method. The channel has AWGN but no crosstalk.

Loop # MMSE Sym-MMSE Relative

CSA1 8.6323 7.9343 91.91%

CSA2 9.1396 9.1721 100.36%

CSA3 8.5877 8.3360 97.07%

CSA4 8.3157 5.6940 68.47%

CSA5 8.4821 6.3433 74.78%

CSA6 8.8515 9.0016 101.70%

CSA7 7.5244 5.8360 77.56%

CSA8 7.2037 7.4878 103.94%
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Figure 8.20: Performance of Sym-MERRY vs. time for CSA loop 4. Top: MERRY

cost. Bottom: achievable bit rate.



Chapter 9

Conclusions
“I charge thee, waft me safely cross the Channel.”

– William Shakespeare, Henry IV Part 2, Act IV, Scene i.

This thesis has presented several adaptive channel shortening algorithms based

on the “propery restoral” concept. The MERRY and FRODO algorithms blindly

and adaptively shorten the channel by attempting to restore the redundancy cre-

ated by the addition of the cyclic prefix. The SAM algorithm blindly and adaptively

shortens the channel by shortening the auto-correlation of the received data, and

the TOLKIEN algorithm uses training to perform a similar function by shortening

the cross-correlation of the transmitted and received data. The use of frequency

domain cost functions was also considered, leading to blind, adaptive per tone

equalization algorithms.

In addition, the impulses responses and frequency responses of MMSE and

MSSNR channel shortening designs were characterized. It was shown that the

impulse responses of MMSE and MSSNR TIRs and TEQs become increasingly

symmetric as the TEQ length goes to infinity, and the roots of the TIR approach

the unit circle as the TEQ length goes to infinity. The former property leads to

reduced-complexity implementations, and the latter property allows for a better

understanding of the poor performance of MMSE and MSSNR designs when the

TEQ length is unneccessarily long. Since the closed form optimal MERRY channel

shortener is related to these non-adaptive designs, it can be similarly understood,

and similar complexity reduction techniques were applied to the MERRY update

equation.
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Table 9.1: Correspondence between thesis chapters and journal paper submissions.

Chapter Journal paper submissions

2 “Multicarrier Unification and Evaluation. Part I: Optimal Designs” [62]

“Multicarrier Unification and Evaluation. Part II:

Implementation Issues and Performance Comparisons” [63]

3 “A Blind, Adaptive TEQ for Multicarrier Systems” [53],

“Low Complexity MIMO Blind, Adaptive Channel Shortening” [64]

4 “Blind, Adaptive Channel Shortening by Sum-squared Auto-correlation

Minimization (SAM)” [9]

6, 7 “Infinite Length Results and Design Implications for Time-Domain

Equalizers” [56],

“Efficient Channel Shortening Equalizer Design” [55]

The material in this thesis has appeared in the journal papers [9], [53], [55],

and [56]; the journal paper submissions (currently under review) [62], [63], and [64];

and the conference papers [8], [43], [54], [57], [58], [59], [60], [61], and [65]. The

correspondence between the chapters of this thesis and journal paper submissions

is given in Table 9.1. Material is c© 2004 IEEE and c© 2004 Hindawi Publishing

Corporation, reprinted with permission. Matlab code to reproduce the figures

corresponding to these papers is available at [52].



Appendix A

Proof of Theorem 3.3.1
“Well, sir, for want of other idleness, I’ll bide your proof.”

– William Shakespeare, Twelfth Night, Act I, Scene v.

This appendix1 proves Theorem 3.3.1, which gives a closed-form representation

of the FRODO cost function for a MIMO system, in terms of the channel, the

TEQ, and the input and noise statistics.

Proof: Consider the ith term in the cost function (3.7) for CP-OFDM,

Ji = E



∣∣∣∣∣
∑

p,l

cT
p,lx̃l,i+∆(k) +

P∑

p=1

wT
p ñp,i+∆(k)

∣∣∣∣∣

2

 , (A.1)

where

x̃l,i(k) = xl(Mk + i) − xl(Mk + i + N), (A.2)

xl(j) = [xl(j), xl(j − 1), · · · , xl(j − Lc)]
T , (A.3)

and similarly for ñ, but with length L̃w rather than L̃c. Using the definition of cl

from (3.11), making use of the fact that the noise and data are uncorrelated, and

then simplifying,

Ji = E



∣∣∣∣∣

L∑
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cT
l x̃l,i+∆(k)
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wT
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2

 . (A.4)

Now making use of assumptions A3 and A4,

Ji =
L∑

l=1

cH
l E

[
x̃∗

l,i+∆x̃T
l,i+∆

]
︸ ︷︷ ︸

A
i+∆

x,l

cl + 2
P∑

p=1

wH
p Rn,pwp, (A.5)

1Some material in this appendix has been previously published. c© 2004 IEEE.
Reprinted, with permission, from [53], [54], and [64].
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From (1.1), for a CP-OFDM system, x̃ has ν zeros in the middle, starting at

position i − ν + ∆ (with indexing starting at 0). Using assumptions A1 and A2,

this leads to

Ai+∆
x,l = 2 σ2

x,l diag
[
11×(i−ν+∆),01×ν ,11×(Lc+1−i−∆)

]
. (A.6)

Thus,

Ji = 2
L∑

l=1

σ2
x,l‖ci+∆

l,wall‖2 + 2
P∑

p=1

wH
p Rn,pwp, (A.7)

and the result follows by summing (A.7) over i ∈ Sf .

For TZ-OFDM systems, the ith term in the cost function (3.8) simplifies to

Ji,TZ(∆) = 2 E



∣∣∣∣∣
∑

p,l

cT
p,lxl(Mk + i + ∆) +

P∑

p=1

wT
p np(Mk + i + ∆)

∣∣∣∣∣

2



= 2 E



∣∣∣∣∣
∑

p,l

cT
p,lxl(Mk + i + ∆)

∣∣∣∣∣

2

+ 2 E



∣∣∣∣∣

P∑

p=1

wT
p np(Mk + i + ∆)

∣∣∣∣∣

2



= 2 E



∣∣∣∣∣

L∑

l=1

cT
p xl(Mk + i + ∆)

∣∣∣∣∣

2

+ 2 E



∣∣∣∣∣

P∑

p=1

wT
p np(Mk + i + ∆)

∣∣∣∣∣

2



(A.8)

In going to the second line, we have assumed that the noise and the data are

uncorrelated (assumption A4); and in going to the third line, we have made use of

the definition of cl from (3.11). Now making use of assumption A4,

Ji,TZ = 2
L∑

l=1

cH
l E

[
x∗

l (Mk + i + ∆)xT
l (Mk + i + ∆)

]
︸ ︷︷ ︸

A
i+∆

x,l,TZ

cl + 2
P∑

p=1

wH
p Rn,pwp,

(A.9)

Note that for TZ-OFDM, assumption A3 is not needed.

To simplify Ai+∆
x,l,TZ , observe that

xl(Mk+ i+∆) = [xl(Mk+ i+∆), xl(Mk+ i+∆−1), · · · , xl(Mk+ i+∆−Lc)]
T .

(A.10)
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If assumption A1 holds, then xl(Mk + i + ∆) contains less than one FFT length

of data, and Ai+∆
x,TZ will be diagonal. Moreover, the middle ν elements in (A.10)

are all zero, due to the zero-padding of the guard interval which is characteristic

of TZ-OFDM, i.e.

Ai+∆
x,l,TZ = σ2

x,l

[
diag

(
11×∆, 01×ν , 11×(Lc+1−ν−∆)

)]
. (A.11)

Substituting into (A.9) and summing over i, for TZ-OFDM we also get (3.9). This

completes the proof.



Appendix B

Proof of Theorem 6.3.1
“And this may help to thicken other proofs that do demonstrate thinly.”

– William Shakespeare, Othello, Act III, Scene iii.

This appendix1 proves Theorem 6.3.1, by loosely following the less general proof

in [30].

Proof: The MMSE solution requires that Rrrw = Rrxb [4]. For an uncorrelated

input signal, this simplifies to

Rnw = HT
winb − HTHw. (B.1)

Allowing −∞ < i < ∞, the ith component becomes

∑

j

Rn(i, j)w(j) =
ν∑

j=0

h(∆ + j − i)b(j) −
∑

j

∑

l

h(l − i)h(l − j)w(j)

=
ν∑

j=0

h(∆ + j − i)b(j) −
∑

j

φ(i − j)w(j), (B.2)

where φ(m) =
∑

l h(l)h(l+m) = h(m)?h(−m) is the channel covariance function.

In convolution notation,

w(i) ? Rn(i) = b(i) ? h(∆ − i) − w(i) ? φ(i), (B.3)

where Rn(m) is the noise autocorrelation function with z-transform Sn(z). Taking

z-transforms,

W (z)Sn(z) = B(z)z−∆H
(
z−1
)
− W (z)Φ(z). (B.4)

1Some material in this appendix has been previously published. c© 2004 IEEE.
Reprinted, with permission, from [60], [61], and [56].
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Solving for W (z),

W (z) =
z−∆B(z)H (z−1)

Sn(z) + Φ(z)
. (B.5)

We will make use of (B.5) shortly. The error sequence, measured between the TIR

and TEQ outputs, is

e(k) =
∑

l

b(l)x(k − ∆ − l) −
∑

l

w(l)r(k − l). (B.6)

Assuming x(k) is white with unit variance, the error covariance is

Em
4
= E [e(k)e(k + m)] =

∑

l

b(l)b(l + m) −
∑

l1,l2

w(l1)b(l2)h(∆ − m + l2 − l1)

−
∑

l1,l2

w(l1)b(l2)h(∆ + m + l2 − l1)

+
∑

l1,l2

w(l1)w(l2) [φ(m + l1 − l2) + Rn(m + l1 − l2)] .

(B.7)

In convolution notation,

Em = b(m) ? b(−m) − b(m − ∆) ? w(∆ − m) ? h(∆ − m)

− b(−m − ∆) ? w(∆ + m) ? h(∆ + m) + w(m) ? w(−m) ? [φ(m) + Rn(m)] .

(B.8)

Taking z-transforms,

E(z) = B(z)B(z−1) − z−∆B(z)W (z−1)H(z−1)

− z∆B(z−1)W (z)H(z) + W (z)W (z−1) [Φ(z) + Sn(z)] .

(B.9)

Now insert (B.5) into (B.9). Noting that Φ(z) = H(z)H(z−1), and simplifying

considerably,

E(z) = B(z)B(z−1)

[
Sn(z) − Φ(z)

Sn(z) + Φ(z)

]

︸ ︷︷ ︸
G(z)

. (B.10)
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To minimize the MSE, we must minimize E0. By setting z = ejω, taking the inverse

discrete time Fourier transform, and setting m = 0, we find that

E0 =
1

2π

∫ π

−π

E
(
ejω
)

dω

=
1

2π

∫ π

−π

B
(
ejω
)
B
(
e−jω

)
G
(
ejω
)

dω (B.11)

=
1

2π

∫ π

−π

‖b
(
ejω
)
‖2G

(
ejω
)

dω, (B.12)

where b (ejω) = bT [1, ejω, . . . , ejων ]
T
. This can be rewritten as

E0 = bTR∆b, [R∆]m,n =
1

2π

∫ π

−π

ejω(m−n)G
(
ejω
)

dω = g(m − n). (B.13)

Since Sn (ejω) and Φ (ejω) are even functions in ω, G (ejω) is as well. Thus,

[R∆]m,n = [R∆]n,m, so R∆ is a symmetric Toeplitz matrix, and the optimal b

is the eigenvector corresponding to the minimum eigenvalue of R∆. By the results

in [12], b will be symmetric or skew-symmetric.



Appendix C

Glossary of Acronyms
“Of this my letters before did satisfy you.”

– William Shakespeare, Antony and Cleopatra, Act II, Scene ii.

ADSL Asymmetric DSL, in which the downstream (phone company to user)

direction carries far more data than the upstream (user to phone company)

direction.

AWGN Additive white Gaussian noise.

CFO Carrier Frequency Offset. A mismatch between the actual and the esti-

mated carrier frequency.

CMA The Constant Modulus Algorithm [100], a commonly used blind, adaptive

equalization algorithm.

CNA The Carrier Nulling Algorithm [23]. A blind, adaptive equalization algo-

rithm for multicarrier systems.

CP Cylic Prefix. The guard interval between multicarrier symbols, consisting of

a copy of the end of the symbol which it precedes.

CSA loops Carrier Serving Area test loops, analytic models of transmission

channels in telephone networks [7].

DAB Digital Audio Broadcast. A European multicarrier-based radio broadcast

standard [41].
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DD Decision-directed. For example, DDLMS is the decision-directed form of

LMS in which training is replaced by the quantization of the filter output.

DFT Discrete Fourier Transform.

DMT Discrete Multitone. A form of multicarrier modulation used in wireline

systems such as DSL [95].

DS-CDMA Direct Sequence Code Division Multiple Access, a commonly used

single-carrier modulation standard for cell phones.

DSL Digital Subscriber Loop. An internet access technique deployed over twisted-

pair telephone lines [95].

DVB Digital Video Broadcast. A European multicarrier digital television stan-

dard [40].

FEQ Frequency-domain Equalizer. A bank of complex scalars that invert the

flat fades on the set of subchannels [95].

FEXT Far-end crosstalk. Interference from one copper wire to the next in a

cable bundle in a DSL system [95].

FFT Fast Fourier Transform. An efficient means of computing the DFT.

FIR Finite Impulse Response. A filter or system characterized only by zeros (i.e.

no poles), whose response to an impulse is finite in time.

FRODO Forced Redundancy with Optional Data Omission. A blind, adaptive

channel shortening algorithm. See Section 3.2.
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IBI Inter-block Interference, caused by a channel with a delay spread longer than

the cyclic prefix. It is qualitatively similar to ISI. It is defined explicitly in

[15].

ICI Inter-carrier Interference, caused by a channel with a delay spread longer

than the cyclic prefix.

IDFT Inverse Discrete Fourier Transform.

IFFT Inverse Fast Fourier Transform. An efficient means of computing the

IDFT.

IID Independent and Identically Distributed. A set of random variables is i.i.d.

if any two subsets of the group have statistically indpendent distributions

and any two random variables in the set have the same distribution.

ISI Inter-symbol Interference, caused by a channel with a delay spread longer

than the cyclic prefix.

LMS The Least Mean Squares adaptive algorithm [100]. A commonly used

trained, adaptive equalization algorithm.

MBR The Maximum Bit Rate channel shortener design [7].

MC-CDMA Multicarrier Code Division Multiple Access, a multiuser form of

multicarrier communications in which spreading codes are applied to the

input signal before multicarrier modulation.

MERRY Multicarrier Equalization by Restoration of Redundancy. A blind,

adaptive channel shortening algorithm. See Section 3.1.
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MGSNR The Maximum Geometric Signal-to-Noise Ratio channel shortener de-

sign [5].

MIMO A Multiple Input, Multiple Output system.

MISO A Multiple Input, Single Output system.

Min-IBI The Minimum Inter-block Interference channel shortener design [15].

Min-ISI The Minimum Inter-symbol Interference channel shortener design [7].

MMSE Minimum Mean Squared Error channel shortener design [30].

MSSNR Maximum Shortening Signal-to-Noise Ratio channel shortener design

[67].

MSSNR-UNT Maximum Shortening Signal-to-Noise Ratio channel shortener

design with a unit norm TEQ constraint rather than a unit energy constraint

on the window of the effective channel.

MDS Minimum Delay Spread channel shortener design [92]. MDS-L and MDS-

Q refer to the use of a linear or quadratic weighting function, respectively.

Refer to Section 2.2.

NEXT Near-end crosstalk. Interference from one copper wire to the next in a

cable bundle in a DSL system [95].

OFDM Orthogonal Frequency Division Multiplexing. A form of multicarrier

modulation used in wireless systems such as wireless local area networks

[76].

PLC Power Line Communications. A system employing multicarrier modulation

to transmit data over power lines, usually within a building.
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PT-xxx Per Tone algorithms or cost functions, e.g. PT-LMS, the per tone LMS

algorithm.

PTEQ Per Tone Equalizer. An equalizer structure for multicarrier systems

which suppresses the interference separately for each tone [104].

RLS The Recursive Least Squares adaptive algorithm [100].

SAM Sum-squared Auto-correlation Minimization. A blind, adaptive channel

shortening algorithm. See Section 4.1.

SISO A Single Input, Single Output system.

SIMO A Single Input, Multiple Output system.

SSNR Shortening Signal-to-Noise Ratio. The energy in a desired window of an

impulse response over the energy in the remainder of the impulse response.

TEQ A time-domain equalizer, sometimes called a channel shortening equalizer

(CSE).

TIR A short target impulse response, which the convolution of the channel and

TEQ is supposed to match. Generally used in the MMSE design [4], [30].

TOLKIEN Trained OFDM L2-norm Correlation-based Iterative Equalization

with Normalization. A trained, adaptive channel shortening algorithm. See

Section 4.3.

WSS Wide Sense Stationary. A random process is W.S.S. if its first and second

order statistics are time-invariant.

VDSL Very-high-speed DSL, an extension of ADSL allowing for higher data

rates over shorter distances.
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Alternate Usage

BDOA British Domesticated Ostrich Association. [Credit goes to Jai for this

one.]

BSE Bovine Spongiform Encephalopathy, more commonly known as mad cow

disease. See also FSE.

CMA Calcium Magnesium Acetate. “A low corrosion, environmental alternative

to road salt.” (www.cryotech.com/cma.htm) May also refer to the Christian

Motorcyclists’ Association or the Country Music Association.

DMT Dimethyltryptamine. A molecule that has strong effects on the pineal

gland. Reference: “DMT: The Spirit Molecule: A Doctor’s Revolutionary

Research into the Biology of Near-Death and Mystical Experiences,” by Rick

Strassman, MD.

DSL “DSL is the conceptual name of an advanced supersonic staging space trans-

portation system, which dates back to the year 1992. Today the name is

without any official meaning, but is still in use for historic reasons.”

(www.kp.dlr.de/DSL/DSL-WWW1.HTML)

FSE Feline Spongiform Encephalopathy. One variety of transmissible spongi-

form encephalopathies, a category of degenerative brain diseases. See also

BSE.

MBR Methyl Bromide. “A toxic pesticide that is injected into soil before plant-

ing. Because of its ability to cause poisonings, neurological damage and

reproductive harm, EPA classifies methyl bromide as a Toxicity Category I

compound, the most deadly category of substances. Methyl bromide is also
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a powerful ozone depleter. Ozone depletion is linked to raising rates of skin

cancer, eye cataracts and damage to key ecosystems.”

(www.panna.org/resources/documents/mbUseInCA.dv.html)

MMSE Mini Mental State Examination, a widely used test for assessing cogni-

tive mental status, developed by Dr. Marshal F. Folstein of the New England

Medical Center. (www.nemc.org/psych/mmse.asp)

RLS Restless Legs Syndrome. Can “cause creepy-crawly sensations in the limbs...”

(www.rls.org)

TEQ Toxicity Equivalent. “Contribution of a specified component (or compo-

nents) to the toxicity of a mixture of related substances. Toxicity equiv-

alent is most commonly used in relation to the reference toxicant 2,3,7,8-

tetrachlorodibenzo-p-dioxin, 2,3,7,8-TCDD.”

(www.iupac.org/reports/1993/6509duffus/t.html)
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