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To help meet the demand for ubiquitous wireless data services, national regula-

tory agencies worldwide have recently made available several gigahertz of contigu-

ous spectrum for unlicensed indoor use, notably the ultra-wideband and 60 GHz

bands. This is causing a paradigm shift in the design of wireless networks, as en-

ergy efficiency supplants spectral efficiency as the primary design concern. Energy

efficient modulations have existed for decades, but have only recently been con-

sidered for use in high-speed wireless networks where dispersive channels hinder

performance through multipath and intersymbol interference.

This dissertation presents the first investigation of equalization for a class of

energy efficient modulations that comprises orthogonal, biorthogonal, and tran-

sorthogonal modulation. We consider the use of a (possibly fractionally-spaced1)

finite-length decision-feedback equalizer (DFE), and begin by presenting a gener-

alized multirate system model that encapsulates all of these energy efficient modu-

lations, as well as some classical modulations such as pulse amplitude modulation.

The DFE structures we propose assume two forms: a chip-rate DFE very similar

to the classical DFE, and a block DFE implemented as a multirate filter bank that

operates symbol-by-symbol. We derive the minimum mean-squared error DFE tap

values for these two structures, which follow from straightforward application of

1A “fractionally-spaced DFE” has a fractionally-spaced forward filter, but a
chip-spaced feedback filter.



Wiener filter theory. However, we show that several modifications to the equalizer

enable us to exploit inherent signal properties of some of the modulation schemes;

these changes have the effect of permitting perfect equalization with a finite-length

equalizer in situations where perfect equalization would otherwise not have been

possible, and also permit a reduction in equalizer complexity.

Adaptive equalization of these modulations is the focus of the second half of

the dissertation. We briefly discuss the trained least mean square algorithm, and

demonstrate that its decision-directed counterpart is unsuitable for cold startup

of equalizers for these modulations. This leads us to consider the use of the two

most popular classical blind equalization algorithms – the Constant Modulus Al-

gorithm (CMA) and the Shalvi-Weinstein Algorithm (SWA) – both of which we

show to be similarly unsuitable in their pure form largely due to their reliance on

i.i.d. source statistics. With the lack of a suitable blind algorithm, we proceed

with a general discussion of blind algorithm development, including the desired

properties of blind algorithm cost functions, a methodology for algorithm assess-

ment, and guidelines for selecting cost functions. Finally, we present the first two

blind algorithms beyond decision direction for biorthogonal modulation, including

a discussion of their characteristics and convergence. The first algorithm, called

LTBOMB, is CMA-like in spirit, and we show that the zero-forcing solutions are

locally stable under ideal conditions. The second algorithm, called TROMBONE,

was designed with a SWA-like philosophy in mind, and thus relies on a spectral

prewhitener before equalization. We show that the ZF solutions are stationary

points of TROMBONE, and include simulations demonstrating the performance

of the two blind algorithms. We conclude with a summary of results and a listing

of some immediate open issues revealed by this dissertation.
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Chapter 1

Introduction

Increasing demand for ubiquitous wireless data services combined with recent leg-

islation in the way radio-frequency spectrum is allocated is causing a paradigm

shift in the design of wireless networks. Historically, available spectrum has been

scarce and wireless system designers have had to focus their efforts on design-

ing bandwidth efficient systems, with energy efficiency generally considered as an

afterthought. To help meet the demand for ubiquitous wireless data services, na-

tional regulatory agencies worldwide have recently opened up several gigahertz of

contiguous spectrum for unlicensed indoor use, notably the ultra-wideband (UWB)

and 60 GHz bands. The amount of available spectrum in these bands is enormous,

and short range systems expected to operate in these bands have the additional

benefit of large frequency reuse due to the low transmit power (in the case of

UWB) and oxygen absorption (in the 60 GHz band). The anticipated users of

these bands are expected to be consumer electronics devices, many of which may

be handheld and battery powered. Thus, wireless systems designers will increas-

ingly be required to focus their efforts on designing energy efficient systems, while

high spectral efficiency may receive less attention due to the relative abundance of

available bandwidth.

While energy efficient modulation schemes have existed for more than half

a century and have been used in countless applications, their use has tradition-

1
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ally been restricted to channels well-approximated by the additive white Gaussian

noise (AWGN) model. Energy efficient modulations have only recently garnered

attention for use in high data-rate applications with indoor communication chan-

nels that are expected to be non-line-of-sight (NLOS), and have been considered

for use in several consumer wireless standards, including the IEEE 802.11 WLAN

standard [46] and the ultra wideband IEEE 802.15.3a WPAN standard [9]. In such

dispersive environments, multipath and intersymbol interference (ISI) are known

to be major impairments to acceptable performance, and ISI compensation for

energy efficient modulation schemes has received little attention until now.

1.1 Motivation

The design of energy efficient modulations for transmission over AWGN channels

has been an active area of research for decades. We define energy efficient modula-

tions as those which, regardless of bandwidth or data rate, minimize the bit error

rate under an average power constraint. Surprisingly, the optimal selection of M

signal vectors corrupted by only AWGN is not known in general [37]. Historically,

a standard design criterion for constructing energy efficient modulations has been

to design waveforms such that their minimum Euclidean distance is maximized.

Indeed, this leads to the optimal signal set on the Gaussian channel when the SNR

is sufficiently high, though not when the SNR is very low [37]. Nevertheless, this

design criterion is often employed, for lack of a better approach, both on AWGN

channels and on channels that deviate little from the Gaussian model, e.g. those

with only a moderate amount of ISI.

Perhaps the three most popular energy efficient modulation schemes, originat-

ing from this design criterion, are orthogonal modulation, biorthogonal modula-
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tion, and transorthogonal modulation. These modulations all fall into a class that

is sometimes referred to as multipulse modulation or nonlinear modulation, since

the modulator output cannot be expressed as a simple scalar symbol multiplying a

single band-limited pulse shape. All of these modulations appeared in communica-

tions textbooks as early as the 1960’s [45], and persist in modern communication

texts [1][29].

Because traditional uses of energy efficient modulations have been in situa-

tions with little or no ISI, up to now there has been little motivation to explore

ISI compensation of such signals to the extent that ISI compensation has been

explored for linearly modulated signals. The optimum detector in ISI is the so-

called maximum-likelihood detector, but its complexity is usually far too high for

practical implementation, and thus practical suboptimal schemes are necessary.

One suboptimal scheme — the one most widely used in practice — is the channel

equalizer [25], which is the focus of this dissertation. In Table 1.1 we provide a

comprehensive list of the classical modulation techniques found in standard com-

munication textbooks [29]. In spite of the fact that such modulations are fairly

classical, there is a lack of practical techniques for ISI compensation for energy

efficient modulations. Market forces are causing system designers to give energy

efficient modulation schemes a fresh look for use in environments where the AWGN

channel assumption no longer holds. For their deployment in frequency selective

environments, some form of practical ISI compensation will be necessary.

While equalizers assume many forms, we will propose the first constrained

length linear and decision-feedback equalizers (DFE) suitable for use with energy

efficient modulations, and we will give particular attention to those that are adap-

tive and do not have knowledge of the channel (though, in practice, some knowledge
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Table 1.1: Adaptive Equalizers for Classical Modulation Schemes

Signaling Adaptive Equalizer Exists?

FM �[42]

VSB �[32]

bandwidth

efficient

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M -PAM �[13][42]

M -QAM, M -PSK �[13][42]

OFDM �[28]

orthogonal modulation ×
energy

efficient

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ biorthogonal modulation ×

transorthogonal modulation ×

of channel delay spread is helpful in choosing the required equalizer lengths). We

will focus on the minimum mean-squared error (MMSE) criterion, and stochastic

gradient-descent based algorithms that converge to (or near) the MMSE solution.

In addition, we will devote considerable attention to several novel blind equaliza-

tion algorithms which are useful when training data is unavailable or is insufficient.

1.2 Previous and Related Work

The first work to address (non-adaptive) equalization of orthogonal signals was [2],

wherein the author focused on the particular class of orthogonal modulation called

pulse position modulation (PPM). The zero-forcing (ZF) DFE was derived under

the following restrictive assumptions: the channel is known, the channel is monic

and minimum phase, the additive noise is ignored (i.e. since it is a ZF equalizer),

and the feedback portion of the equalizer is as long as the channel (and possibly
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infinite). In [44], the equalization of general orthogonal modulation was addressed,

wherein the author proposed a ZF DFE that employs an infinite impulse response

(IIR) feedforward filter under the assumption of a known channel. Equalization

of biorthogonal systems was considered in [39], wherein the authors conducted a

simulation study of a reduced state Viterbi equalizer. Again, however, the equal-

izer used in [39] requires perfect channel knowledge, and is quite complex since it

requires sequence estimation. To our knowledge, the equalization of systems em-

ploying transorthogonal modulation has never been studied. Nevertheless, we see

there have been a handful of previous investigations of equalization for orthogonal

and biorthogonal signaling, though they all suffer from shortcomings which raise

doubts about their use in practical systems:

• Non-adaptive equalizers that require perfect channel knowledge [2][39][44]

• Restrictive assumptions on channel (monic, minimum phase) [2]

• Inferior performance in noisy environments (due to ZF criterion) [2][44]

• No length constraint on equalizer [2][39][44]

• High complexity [39][44]

Because energy efficient modulations are non-i.i.d. at the chip level, the adap-

tive equalization of non-i.i.d. sources is a related area of research. However, the

majority of work on adaptive filtering of non-i.i.d. sources has been in the context

of blind source separation of convolutive mixtures [3][35]. In that application, the

mixing matrix is prescribed to be tall, and the goal is to adapt a multichannel filter

to recover the source data. The problem of interest here is fundamentally different

since the channel matrix may not be tall, and may be constrained to be Tœplitz.
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Lastly, we note that another related work is [23], where the effect of source

statistics on an adaptive algorithm is analyzed; however, the focus there is on

correlated sources rather than non-i.i.d. sources.

1.3 Description of Energy Efficient Modulations

An M -ary modulator in a digital communication system maps a sequence of bits

into a set of corresponding signal waveforms. The mapping is performed by taking

blocks of log2 M bits at a time and selecting one of M deterministic, finite energy

waveforms for transmission over the channel. In general, these waveform can differ

in amplitude, phase, frequency, or in some combination of these. In orthogonal

modulation, the M waveforms are chosen to be orthonormal. Biorthogonal modu-

lation uses M/2 orthonormal waveforms, and modulates them antipodally to make

M total waveforms. Transorthogonal modulation uses M equal energy waveforms

with power 1 − 1/M , and the waveforms have mutual correlation −1/M .

   map bits to 
selection vector

0110010100
x[n]

N K
S

a[n] ∈
{[

1
0
...
0

]
,

[
0
1
...
0

]
, . . . ,

[
0
0
...
1

]}

Figure 1.1: Modulator Block Diagram

To more easily accommodate all these classes of signal sets in the most gener-

ality, we break the modulator into two steps: the mapping of bits into a selection

vector which we call a[n], and the selection of the corresponding waveform in the

signal set matrix S. Below, we will specify a[n] and S explicitly for each modu-

lation. The selection vector a[n] will be a (possibly antipodally modulated) unit

canonical vector, and the columns of S will represent the chosen signal waveforms.
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The modulator is shown pictorially in Fig. 1.1 and allows us to write the symbol

at time n as

x[n] = Sa[n]. (1.1)

Note that we have assumed a digital baseband model, where we assume that each

symbol waveform consists of K samples or chips. We will specify the minimum

value of K necessary for representation of symbols from each M -ary modulation.

Because fractionally-sampled receivers can be modelled by zero-padding the source

sequence [18], our model is general enough to include fractional-sampling simply

by increasing the number of samples K per waveform and zero-padding rows of

S. We assume throughout the dissertation that all signals are real1, though the

extension to complex signals is fairly straightforward.

We now consider each of the three modulation scheme in turn, specifying explic-

itly the allowable choices of S and a[n] for each modulation scheme. To indicate

the modulation type, a signal with subscript o indicates orthogonal modulation,

b indicates biorthogonal modulation, and t indicates transorthogonal modulation.

If an equation applies to all modulation schemes, we omit the subscript.

1.3.1 Orthogonal Modulation

Orthogonal modulation, and its many variants including frequency shift keying

(FSK) and pulse position modulation (PPM), has been used in countless ap-

plications over many decades. However, its use has typically been restricted to

line-of-sight communication or low-data rate narrowband systems which are well

modelled by AWGN channels. This modulation scheme is often used with receivers

1with the exception of Appendix F, which demonstrates a complex implemen-
tation of a blind algorithm
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employing non-coherent detection, which results in an SNR penalty but permits

the receiver to be implemented very simply. In fact, it has been conjectured that

orthogonal modulation is the globally optimal modulation scheme for the AWGN

channel with noncoherent reception, and this has been shown to be the case at

high SNR [38]. The focus here, however, is on on high performance, high data-rate

systems, and so we only consider coherent detection.

A signal set for orthogonal modulation is constructed by selecting M equal

energy orthogonal waveforms. We let So ∈ R
K×M be the matrix of symbol wave-

forms, where K is the number of chips per symbol. The orthogonality of the signal

waveforms requires that So be chosen to satisfy

S�
o So = IM .

This condition implies that K ≥ M . We let the selection vector ao[n] ∈ R
M

be a unit canonical vector, where the position of the 1 in ao[n] indicates which

column of So will be selected, and so a symbol originating from a system employing

orthogonal modulation can be expressed as in (1.1).

1.3.2 Biorthogonal Modulation

Biorthogonal modulation, sometimes called M -ary biorthogonal keying (MBOK),

combines orthogonal modulation with antipodal modulation, giving up some of

the energy efficiency of orthogonal modulation in exchange for spectral efficiency.

This modulation has recently been considered for use in several consumer wire-

less standards, including the IEEE 802.11 WLAN standard [46] and the ultra

wideband IEEE 802.15.3a WPAN standard [9]. In biorthogonal modulation, the

M waveforms comprise M/2 orthonormal waveforms along with their antipodal
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counterparts. We let Sb ∈ R
K×M/2 represent the matrix of chosen orthonormal

waveforms, but now the selection vector ab[n] ∈ R
M/2 is an antipodally modulated

unit canonical vector, where the position of the ±1 in ab[n] indicates which column

of Sb is selected, as well as its sign. For orthonormality of the waveforms, we again

require

S�
b Sb = IM/2.

which in this case implies K ≥ M/2.

1.3.3 Transorthogonal Modulation

Transorthogonal modulation, also called simplex modulation, is one of the most

energy efficient modulation known for the AWGN channel. For decades it was

thought to be the optimal modulation for the AWGN channel with coherent recep-

tion [37], but this was recently discovered not to be the case in general, particularly

at low SNR.

Transorthogonal modulation improves upon the energy efficiency of orthogonal

modulation. Signals in systems employing orthogonal modulation are not zero-

mean, since it is impossible for M orthogonal vectors to sum to zero — and this is

wasteful of energy. By simple coordinate translation of an orthogonal signal set (i.e.

subtracting the DC component or mean of all M waveforms from each waveform),

we arrive at a new signal set with the same Euclidean distance properties as the

orthogonal signal set, but requires less transmission power to maintain the same

Euclidean distance. The resulting signals are equally correlated with the most

negative correlation that can be achieved with M equal energy signals [36].

The waveforms in the translated signal set correspond to the vertices of a

regular M -simplex, explaining why this modulation is sometimes called simplex
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modulation. Thus, given any M -ary orthogonal signal set So, we can construct a

transorthogonal signal set by subtracting the mean of its columns via

St = So − 1

M
So1M×M

= So

(
IM − 1

M
1M×M

)
︸ ︷︷ ︸

�JM

(1.2)

Lemma 1.1. Properties of JM

The matrix JM � IM − 1
M

1M×M is idempotent, symmetric, semi-positive defi-

nite, and has rank M − 1.

Proof. To see that JM is idempotent,

J2
M =

(
IM − 1

M
1M×M

)2

= IM − 2

M
1M×M +

1

M2
12

M×M

= IM − 1

M
1M×M

= JM

As for symmetry, it is easy to see that J = J�. It is well known that the eigenvalues

of an idempotent matrix can only assume values zero or one [17], thus the matrix

is semi-positive definite. The trace of a matrix equals the sum of its eigenvalues,

so the trace of J is M − 1. Thus, the matrix J has M − 1 eigenvalues that are 1,

one eigenvalue that is 0, and hence has rank M − 1. �

From (1.2), the matrix of transorthogonal signal waveforms St ∈ R
K×M satisfies

S�
t St = IM − 1

M
1M×M , (1.3)

and we see that the transorthogonal waveforms are equally correlated with cor-

relation −1/M . Furthermore, the transorthogonal signals require less energy, by
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Table 1.2: Conditions on S ∈ R
K×N for each M -ary modulation

modulation Kmin N S�S

orthogonal M M IN

biorthogonal M/2 M/2 IN

transorthogonal M − 1 M IN − 1
N
1N×N

the factor 1 − 1/M , than orthogonal modulation to maintain the same Euclidean

distance among signal waveforms. Note that a transorthogonal signal set need not

be constructed by translating an orthogonal signal set; a transorthogonal signal

set merely needs to satisfy (1.3). Thus, since the rank of JM is M − 1, we merely

need K ≥ M − 1.

1.3.4 Summary Of Modulations

Thus, symbols from each of these modulations can be expressed in the form of

(1.1). In Table 1.2, we summarize the specification of S for each of the modula-

tions. As we have seen, there is a minimum number of rows of S necessary for

representation of each of these modulations, and these values Kmin are summa-

rized in the table. In addition, we have seen that the number of columns in the

signal set matrix for orthogonal and transorthogonal modulations is M , while the

number of columns in the signal set matrix for biorthogonal modulation is M/2.

So, we define a new parameter N which is equal to the number of columns in S

for a particular modulation, and so we can always write S ∈ R
K×N . These values

are also summarized in Table 1.2.

Lastly in our summary of the modulations, we recall that for orthogonal and
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transorthogonal modulation,

ao[n],at[n] ∈
{[

1
0
...
0

]
,

[
0
1
...
0

]
, . . . ,

[
0
0
...
1

]}

while for biorthogonal modulation,

ab[n] ∈
{
±
[

1
0
...
0

]
,±

[
0
1
...
0

]
, . . . ,±

[
0
0
...
1

]}

We can plot a K-chip signal constellation by plotting the value of each chip

along an axis. For K = 2, we have plotted example constellations for each modula-

tion, along with the optimal (i.e. maximum likelihood) decision regions in Fig. 1.2.

We note that any rotation of these example constellations results in a permissible

signal set.

−1 0 1

−1

0

1

2−ary Orthogonal

−1 0 1

−1

0

1

4−ary Biorthogonal

−1 0 1

−1

0

1

3−ary Simplex

Figure 1.2: Example Constellations

In practice, the most popular choices of S for orthogonal modulation are:

So = I which corresponds to PPM, and the Hadamard matrix which is some-

times referred to as Walsh modulation [40]. The popularity of these choices is

partly due to their ease of implementation, since S only contains 0 and ±1 for

these choices of S. Another choice is the DFT matrix, which corresponds to FSK;

however, this involves complex values, which are not considered in this dissertation

(though, as mentioned, the extension is fairly straightforward). The identity and
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Hadamard matrices are also popular choices of S for biorthogonal modulation, as

these were the choices made in the standards proposals for IEEE 802.15.3a [9] and

IEEE 802.11 [46], respectively.

1.4 The Optimal Detector in the AWGN Channel

Applying our sampled baseband model to the AWGN channel, we can express the

received signal as

y[n] = x[n] + w[n]. (1.4)

The optimal (i.e. maximum likelihood) decision device for the AWGN channel is

the minimum distance detector, which amounts to choosing the maximum output

of M correlators matched to the M waveforms [29]. In the case of biorthogonal

modulation, the correlation can be accomplished with only M/2 correlators, but

the sign of the correlator output needs to be taken into account. We let Q(·)
denote the nonlinear operation that chooses the appropriate correlator output, so

that the decision device output for each modulation can be written

â[n] = Q(S�y[n]) (1.5)

For orthogonal and transorthogonal modulation, Q(·) is defined as

Qo(x) = Qt(x) = ei (1.6)

where i is the index of the largest element in x. For biorthogonal modulation,

Qb(x) = sgn(xi)ei (1.7)
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where i is the index of the largest element in |x|. To make this clear consider these

examples:

Qo

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0.2

0.8

−1.2

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

0

1

0

⎤
⎥⎥⎥⎥⎦ and Qb

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0.2

0.8

−1.2

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

0

0

−1

⎤
⎥⎥⎥⎥⎦

The decision regions for the minimum distance detector were included on the

example constellations plotted in Fig. 1.2. The error performance of the ML detec-

tor is well known [36] for each of these modulations, and all of these modulations

have the property that the bit error probability goes to zero as M grows large2.

In Fig. 1.3 we plot the bit error rate (BER) in AWGN as a function of the SNR

per bit when M = 8, and for comparison we include the BER of 8-PAM. Note

0 2 4 6 8 10 12 14 16 18

10
−4

10
−3

10
−2

10
−1

10
0

SNR per bit

B
E

R

simplex
orthogonal
biorthogonal
PAM

Figure 1.3: BER Comparison for 8-ary Modulations

that the BER depends on the chosen mapping of bits-to-waveforms; we have used

the choices made in [36] (i.e. complementary bit encoding for biorthogonal mod-

ulation, arbitrary mapping for orthogonal and transorthogonal modulations, and

2This can be shown via the union bound [29], and requires that the SNR satisfy
Eb/N0 > ln 2 ≈ −1.6dB which is precisely the Shannon limit.
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Gray encoding for PAM). We see that, in an uncoded system without consideration

for bandwidth, PAM is far less energy efficient than orthogonal, biorthogonal, and

transorthogonal modulations.

1.5 Comparison with PAM

Pulse-amplitude modulation (PAM), which is in the class of those that are spec-

trally efficient, is one of the most studied modulations. Because of this, it is useful

to point out several differences between M -ary PAM and the M -ary multipulse

modulations considered in this dissertation.

As mentioned, the energy efficient modulations considered in this dissertation

all attain zero probability of error as M grows large. This is not the case with

PAM, as increasing the alphabet size with PAM results in a worse bit-error-rate

as a function of the per-bit signal-to-noise ratio. However, for a fixed symbol rate,

the bandwidth of a PAM system stays constant despite changes in M , which is not

the case with orthogonal, biorthogonal, and transorthogonal modulations. Thus,

in choosing between PAM and the multipulse modulations considered here, we see

there is a tradeoff between energy efficiency and bandwidth efficiency. This tradeoff

can be further adjusted with source coding techniques, but in this dissertation we

only consider uncoded modulation.

PAM is a linear modulation where each symbol can be represented by a single

sample. Furthermore, a PAM receiver can generate sufficient statistics by sampling

only once every T seconds, where 1/T is the symbol rate. Often times, however,

digital PAM receivers will sample the symbol more than once, a situation which

is referred to as oversampling or fractional sampling, and the number of samples

per symbol is referred to as the oversampling rate. In contrast to PAM, the energy
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efficient multipulse modulations studied in this dissertation always require a vector

of samples to represent a symbol, where the minimal number of samples per symbol

Kmin relates to the dimensionality of the signal set, and was given in Table 1.2.

For energy efficient modulations, we say the receiver employs oversampling when

the number of samples per symbol K is larger than Kmin, and the oversampling

rate is given by the ratio K/Kmin.

1.6 Dissertation Organization

The dissertation is organized into six chapters. In Chapter 2, we present the

generalized multirate system model which encapsulates all of these energy effi-

cient modulations, and is general enough to accommodate both chip-spaced and

fractionally-chip-spaced implementations. We note that the model includes BPSK

as a special case, which is convenient because it provides us with a point of ref-

erence that allows us to make connections to known results and concepts. After

analyzing some statistical properties of signals originating from these energy effi-

cient modulations, we proceed to derive the MMSE settings for the first equalizer

structure under consideration: the scalar chip-rate DFE, which is very similar to

the classical DFE. For biorthogonal modulation, the MMSE settings follow di-

rectly from Wiener filter theory. However, for orthogonal modulation we propose

a modification to standard the MSE definition that exploits a property of or-

thogonal modulation. Next, we present the conditions for “perfect equalization”,

which impose constraints on the equalizer length, channel disparity, and the sig-

nal waveform. We conclude the chapter by deriving the equations for trained and

decision-directed LMS adaptation of the equalizer structure.

In Chapter 3, we derive the MMSE settings for the second equalizer struc-
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ture: the block DFE implemented as a multirate filter bank that operates symbol-

by-symbol. We mimic much of what was done in Chapter 2 for this new struc-

ture, again presenting several modulation-specific modifications to the equalization

structure. We again review the conditions for perfect equalization and find that

the block structure permits perfect equalization in a larger variety of situations.

We conclude with a comparison of computational complexity between the scalar

and block equalization structure, and show that the block structure permits a

reduction in complexity.

Adaptive linear equalization of these modulations is the focus of the second

half of the dissertation. We begin Chapter 4 by discussing the use of DD-LMS

for adapting equalizers for these energy efficient modulations, and discover that

it is unsuitable for cold startup (which agrees with conventional wisdom for, say,

pulse amplitude modulation). This leads us to consider the use of the two most

popular classical blind equalization algorithms – the Constant Modulus Algorithm

(CMA) and the Shalvi-Weinstein Algorithm (SWA) – both of which we show to be

similarly unsuitable in their pure form largely due to their reliance on i.i.d. source

statistics. With the lack of a suitable blind algorithm, we proceed with a general

discussion of blind algorithm development, including the desired properties of blind

algorithm cost functions, a methodology for algorithm assessment, and guidelines

for selecting cost functions.

In Chapter 5, we put to use the previous discussion of algorithm develop-

ment/assessment, and present the first two blind algorithms beyond decision di-

rection for biorthogonal modulation, which includes a discussion of their character-

istics and convergence. The first algorithm, called LTBOMB, is CMA-like in spirit,

and we show that the zero-forcing solutions are locally stable under ideal condi-
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tions. The second algorithm, called TROMBONE, was designed with a SWA-like

philosophy in mind, and thus relies on a spectral prewhitener before equalization.

We show that the ZF solutions are stationary points of TROMBONE, and include

simulations demonstrating the performance of the two blind algorithms. Finally,

Chapter 6 concludes the dissertation with a summary of results and a listing of

some immediate open issues revealed by this dissertation.



Chapter 2

Scalar Equalization of Energy Efficient

Modulations

This chapter introduces the multirate system model we will use throughout the

dissertation, investigates the first- and second-order statistics of sources driven

by these modulations, and describes the proposed scalar MMSE DFE. Since the

three modulation schemes under consideration are all in the class of multipulse

modulations, we are able to develop a single system model that encapsulates all

of these modulations at once. In addition, we present the conditions that permit

perfect linear equalization, and we provide the equations for LMS adaptation of

this structure.

2.1 System Model

We now consider the model shown in Fig. 2.1, and in particular we focus on the

design of the feedforward filter f and the feedback filter g. As described in

Section 1.3, the output of the M -ary modulator is product of the signal set matrix

S and the selection vector:

x[n] = Sa[n]. (2.1)

While up to now we have considered only a symbol-rate model, it will be convenient

at times to consider the chip-rate process, where we recall that there are K chips

19
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ε[n]

z[n]y[n]
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â[n]ã[n]
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Figure 2.1: Scalar Equalizer System Model

per symbol. For this we use a polyphase representation, letting x[Kn − k] denote

the kth chip from the nth symbol, where k ∈ {0, . . . , K−1}. In fact, this multirate

system has three rates: the symbol rate 1/T , the waveform chip rate K/T , and

the rate of the corresponding chips of the selection vectors N/T .

The waveform chips x[Kn − k] are transmitted through a causal linear time-

invariant channel with finite impulse response h = [h[0], h[1], . . . , h[Nh−1]]� (which

includes the transmit and receiver filters) and are further corrupted by additive

noise w[Kn − k]. While typically the noise will be modelled as AWGN, we only

make the assumption that the noise is zero-mean and originates from a wide-sense

stationary random process. We express the channel impulse response in matrix

form by defining H [n] ∈ R
K×K where [H [n]]i,j = h[Kn + j − i] are Tœplitz
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matrices, so

H [0] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h[0] h[1] · · · h[K − 1]

0 h[0]
...

...
. . . h[1]

0 · · · 0 h[0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

H [1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h[K] h[K + 1] · · · h[2K − 1]

h[K − 1] h[K]
...

...
. . . h[K + 1]

h[1] · · · h[K − 1] h[K]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

...

Then, the received symbol at time n is written

y[n] =
∑
m

H [m]x[n − m] + w[n]. (2.2)

The received chip stream y[Kn−k] is passed through a linear feedforward equalizer

with impulse response f = [f [0], f [1], . . . , f [Nf − 1]]�. Similar to the definition of

the channel matrix above, we express the feedforward equalizer impulse response

in matrix form by defining F [n] ∈ R
K×K where [F [n]]i,j = f [Kn + j − i]. Then,

the symbol output by the feedforward equalizer at time n is written

z[n] =
∑
m

F [m]y[n − m]. (2.3)

The output of the feedforward equalizer passes through the correlator which projects

the K-chip signal into the lower-dimensional N -chip space, to which we add

the contribution from the feedback equalizer which has impulse response g =

[g[0], g[1], . . . , g[Ng −1]]�. The feedback equalizer can be expressed in matrix form

by defining G[n] ∈ R
N×N where [G[n]]i,j = g[Nn + j − i]. Thus, after adding
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the contribution of the feedback equalizer we have a soft estimate of the selection

vector ã[n] given by

ã[n] = S�z[n] +
∑
m

G[m]â[n − m − 1] (2.4)

The decision device assumed throughout this dissertation is the näıve memoryless

Euclidean distance detector, which was described in Section 1.4. As mentioned

previously, we have broken the decision device into two operations: correlation and

the nonlinear decision function Q(·) defined in (1.6) and (1.7) for each modulation

type. We have chosen this detector for its simplicity and low latency. The estimate

of the selection vector is given by

â[n] = Q(ã[n]) (2.5)

As is typical of decision feedback equalizers, we have placed a one-symbol delay

in the feedback path, which is evident in (2.4). The delay needs to be a full

symbol since the decision device must wait until all K chips of the current symbol

have been received before making a decision. Note that we could make tentative

decisions as each chip is received, thereby reducing the feedback delay to a single

chip rather than a whole symbol [2]; however, this technique will not be investigated

here. When the equalizer is operating correctly, the decision device output is

â[n] ≈ a[n − ∆] where ∆ is the symbol delay through the combined channel and

equalizer.

At times, it will be more convenient to use a formulation based on Hankel

matrices that isolates the equalizer response vectors f and g. In this case, the

regressor matrix Y [n] ∈ R
Nf×K of received chips can be written

Y [n] = HX[n] + W [n] (2.6)
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where Nc � Nf + Nh − 1 is the combined length of the channel and feedforward

equalizer, X[n] ∈ R
Nc×K is the Hankel matrix of chips defined as [X[n]]i,j =

x[Kn − i − j], so

X[n] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[Kn] x[Kn − 1] · · · x[Kn − K + 1]

x[Kn − 1] x[Kn − 2]
...

...
. . . x[Kn − Nc − K + 3]

x[Kn − Nc + 1] · · · 0 x[Kn − Nc − K + 2]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, W [n] ∈ R
Nf×K is the Hankel matrix of noise samples which is defined

as [W [n]]i,j = w[Kn − i − j], and H ∈ R
Nf×Nc is the Tœplitz channel impulse

response matrix defined as [H]i,j = h[j − i]. Then, the symbol output by the

feedforward equalizer at time n can be written

z[n] = Y �[n]f . (2.7)

and the soft estimates of the selection vector can be written

ã[n] = S�z[n] + Â
�
[n − 1]g (2.8)

where the Hankel matrix of selection vector estimates Â[n] ∈ R
Ng×N is defined as

[Â[n]]i,j = â[Nn − i − j].

In the sequel, we will switch between the symbol-by-symbol model (2.2)-(2.4)

and the equivalent block matrix model (2.6)-(2.8) whenever convenient. From time

to time, we will also use the combined channel/feedforward equalizer response,

which can be equivalently written as

c � H�f

C[n] �
∑
m

F [m]H [n − m].
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Our sampled model assumes that carrier recovery has been dealt with before

equalization, and thus its effect is not considered in our model. The effects of

pulse shaping and imperfect chip sample timing acquisition can be lumped into the

channel h, however. In addition to chip timing, some means of symbol timing (i.e.

aligning the chips so the block decision device operates on the symbol boundary)

will be necessary. While our model does not assume that symbol timing has been

accounted for before equalization, knowledge of the appropriate symbol timing can

be incorporated into the equalizer by smart choice of combined channel/equalizer

delay.

Finally, we note that this structure is quite general in that it includes many

previously studied receivers as special cases. For example, the optimum receiver in

AWGN for energy efficient modulations discussed in Section 1.4 is a special case.

This can be seen by letting h = 1 (i.e. the AWGN channel), and choosing f = 1

and g = 0. In this case z[n] = y[n], and so equations for the AWGN channel

model (1.4) and (1.5) apply to this model.

Another special case is that of baud-spaced and fractionally-spaced equalization

of BPSK signals. As mentioned in Section 1.5, biorthogonal and transorthogonal

modulation can be exactly BPSK when M = 2. In particular, for the following

signal set matrices, our structure reduces to standard baud- and fractionally-spaced



25

equalization of BPSK:

biorthogonal

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sb = 1 → baud-spaced BPSK

Sb =

⎡
⎢⎣1

0

⎤
⎥⎦ → fractionally-spaced BPSK

transorthogonal

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

St = 1√
2

[
1 −1

]
→ baud-spaced BPSK

St = 1√
2

⎡
⎢⎣1 −1

0 0

⎤
⎥⎦ → fractionally-spaced BPSK

Fractionally-spaced DFEs typically have a downsampling operation following the

linear portion of the equalizer. Downsampling is accomplished in our receiver by

the correlator (i.e. multiplication with S�) which reduces the number of samples

per symbol from K to N . The correlator is a multirate block filter which can be

viewed in polyphase representation as shown in Fig. 2.2, where [S]i denotes the

ith column of S. Recall that our receiver is fractionally-spaced when K > Kmin.

= .
.
.

N

S/P S�

K

K

K

K

[S]0

[S]1

[S]N−1

Figure 2.2: Block Filtering as Multirate System

2.2 Statistical Properties of the Source Signal

Before discussing methods for choosing the equalizer tap settings, we first discuss

some of the statistical properties of signals originating from the modulations under
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study. Throughout this dissertation, we make the assumption that the symbols

are i.i.d. and equiprobable (note that, however, the chips within a symbol will not

be i.i.d.). The first-order moments become

E[xo[n]] = E[Sao[n]]

= SE[ao[n]]

=
1

N
S1N×1 (2.9)

E[xb[n]] = SE[ab[n]]

= 0K×1 (2.10)

E[xt[n]] = SE[at[n]]

=
1

N
S1N×1

= 0K×1 (2.11)

The last line (2.11) showing that transorthogonal modulation is zero-mean may

not be immediately obvious, but is due to the conditions on S for transorthogonal

modulation, and can be seen by first showing that ||E[xt[n]]||22 = 0, which implies

E[xt[n]] = 0. Thus, biorthogonal and transorthogonal modulations result in sym-

bol vectors that are zero-mean, whereas symbols from orthogonal modulation are

not zero-mean.
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We now consider the second-order moments. For n �= m, we have

E[xo[n]x�
o [m]] = E[xo[n]]E[x�

o [m]]

=
1

N2
S1N×NS�

E[xb[n]x�
b [m]] = E[xb[n]]E[x�

b [m]]

= 0

E[xt[n]x�
t [m]] = E[xt[n]]E[x�

t [m]]

= 0

where we have used the fact that the symbols are i.i.d. For all modulations,

E[x[n]x�[n]] = SE[a[n]a�[n]]S�

=
1

N
SS�

Thus, the second-order moments are given by

E[xo[n]x�
o [m]] =

⎧⎪⎨
⎪⎩

1
N

SS� n = m

1
N2 S1N×NS� n �= m

(2.12)

E[xb[n]x�
b [m]] =

⎧⎪⎨
⎪⎩

1
N

SS� n = m

0K×K n �= m
(2.13)

E[xt[n]x�
t [m]] =

⎧⎪⎨
⎪⎩

1
N

SS� n = m

0K×K n �= m
(2.14)

2.3 The MMSE Equalizer

We now present the design equations for the equalizer based on minimizing the

mean-squared error, which is a standard benchmark of equalizer performance.

We address each of the modulation types separately in turn, and we start with
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biorthogonal modulation since the others build upon ideas presented for biorthog-

onal modulation. The MMSE equalizer accepts one design parameter, ∆, which

represents the desired symbol delay through the channel/equalizer chain.

2.3.1 Biorthogonal Modulation

Following the standard approach to MMSE equalizer design, we first form the error

between the pre-decision device “soft-estimate” of the selection vector ã[n] and the

delayed transmitted selection vector a[n − ∆], which is indicated by ε[n] in Fig.

2.1. Since this error signal is a vector, the MSE metric we choose is the average of

the sum of the squared components of the error vector, or the mean-square of the

�2 norm of the error vector,

JMSE(f , g, ∆) = E
[||ã[n] − a[n − ∆]||22

]
. (2.15)
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Expanding (2.15) via (2.1), (2.6), and (2.7), we have

JMSE(f , g, ∆)=E
[
||S�Y �[n]f + Â

�
[n − 1]g − S�x[n − ∆]||22

]
=E

[
||S� (

X�[n]H� + W�[n]
)
f + Â

�
[n − 1]g

− S�X�[n]eK∆||22
]

=f�HE
[
X[n]SS�X�[n]

]H�f + f�HE
[
X[n]SS�W�[n]

]
f

+f�HE
[
X[n]SÂ

�
[n − 1]

]
g − f�HE

[
X[n]SS�X�[n]

]
eK∆

+f�E
[
W [n]SS�X�[n]

]H�f + f�E
[
W [n]SS�W�[n]

]
f

+f�E
[
W [n]SÂ

�
[n − 1]

]
g − f�E

[
W [n]SS�X�[n]

]
eK∆

+g�E
[
Â[n − 1]S�X�[n]

]
H�f + g�E

[
Â[n − 1]S�W�[n]

]
f

+g�E
[
Â[n − 1]Â

�
[n − 1]

]
g − g�E

[
Â[n − 1]S�X�[n]

]
eK∆

−e�
K∆E

[
X[n]SS�X�[n]

]H�f − e�
K∆E

[
X[n]SS�W�[n]

]
f

−e�
K∆E

[
X[n]SÂ

�
[n − 1]

]
g + e�

K∆E
[
X[n]SS�X�[n]

]
eK∆

=f�HRxxH�f + 2f�HRxâg − 2f�HRxxeK∆ − 2g�R�
xâeK∆

+f�Rwwf + g�Rââg + e�
K∆RxxeK∆ (2.16)

where we have assumed the noise and data are uncorrelated, and we define

Rxx � E
[
X[n]SS�X�[n]

]
(2.17)

Rââ � E
[
Â[n − 1]Â

�
[n − 1]

]
(2.18)

Rxâ � E
[
X[n]SÂ

�
[n − 1]

]
(2.19)

Rww � E
[
W [n]SS�W�[n]

]
. (2.20)
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Setting the gradient of JMSE(f , g, ∆) with respect to g to zero gives

1

2

J(f , g)

∂g
= R�

xâH�f − R�
xâeK∆ + Rââg

= 0

=⇒ g∗ = R−1
ââ R�

xâ

[
eK∆ − H�f

]
(2.21)

Setting the gradient of JMSE(f , g∗, ∆) with respect to f to zero gives

1

2

∂J(f , g∗)
∂f

= HRxxH�f + HRxâg
∗ − HRxxeK∆ + Rwwf

=
[H (

Rxx − RxâR
−1
ââ R�

xâ

)H� + Rww

]
f

+H (
RxâR

−1
ââ R�

xâ − Rxx

)
eK∆

= 0

=⇒ f ∗ =
[HRH� + Rww

]−1 HReK∆ (2.22)

where

R � Rxx − RxâR
−1
ââ R�

xâ (2.23)

We adopt the standard MMSE DFE assumption that the decisions â[n] in the

feedback path are correct, so that â[n] = a[n−∆]. The assumption of correct feed-

back is needed only in the calculation of Rxâ in (2.19). Unfortunately, the above

correlation matrices (2.17)-(2.20) do not lend themselves to compact closed-form

expressions, as expanding the expectations is rather tedious. However, under the

assumption of correct feedback, these matrices only involve second-order statistics

of the source sequence, so their calculation is straightforward if tedious, and the

details are provided in Appendix A.
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2.3.2 Orthogonal Modulation

At first glance it might seem like the previous development of the MMSE DFE

for biorthogonal modulation ought to be exactly the same for orthogonal modu-

lation, perhaps with minor changes to the correlation matrices. However, a slight

modification to the MSE definition enables us to reap a gain with orthogonal mod-

ulation, as we will describe below. Before deriving the MMSE DFE for orthogonal

modulation, we first prove two lemmas.

Lemma 2.1. Properties of Qo(·)
The orthogonal modulation decision device function Qo(·) defined in (1.6) sat-

isfies

Qo(ã[n]) = Qo (JN ã[n])

for JN � IN − 1/N1N×N and any ã[n] ∈ R
N×1.

Proof. The decision device amounts to simply choosing the index of the largest

element of the input vector. Consequently, the decision device is clearly unaffected

by the addition of a constant to all elements of the input vector. Thus, for any

scalar b,

Qo(ã[n]) = Qo(ã[n] + 1N×1b).

Note that this is true when b is any scalar — even one that is a function of ã[n].

Consider the particular choice b = −1/N1�
N×1ã[n], so that b equals the negated

average of the elements of ã[n]. For this choice,

Qo(ã[n]) = Qo

(
ã[n] − 1

M
1N×11

�
N×1ã[n]

)

= Qo

((
I − 1

M
1N×N

)
ã[n]

)
= Qo (JN ã[n]) .
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Thus, pre-multiplication of the decision-device input by JN has no effect on the

decision. Recall from Section 1.3.3 that multiplication by JN projects an orthog-

onal signal set into a transorthogonal signal set with identical Euclidean distance

properties. We also note that any scalar multiple of the vector 1N×1 describes the

nullspace of JN (and J�
N), since JN1N×1 = 0N×1. �

Lemma 2.2. Decomposition of JN

For any square symmetric semi-positive definite matrix JN ∈ R
N×N , there

exists a rectangular upper-triangular matrix UN ∈ R
r×N such that

U�
NUN = JN

where r ≤ N is the rank of JN .

Proof. While we will typically use this lemma with our particular choice of J from

Lemma 2.1, this lemma applies to any square symmetric semi-positive definite

matrix. The Cholesky decomposition is typically only defined for strictly positive

definite matrices [14], and here we extend the definition to semi-positive definite

matrices. Since JN is symmetric and semi-positive definite, the singular value

decomposition can be written as

JN = V �ΣV

where Σ is a diagonal matrix containing the non-negative singular values, assumed

to be in decreasing order. Then Σ can be written as Σ = Γ�Γ where Γ ∈ R
r×N

is the extraction of the first r rows of Σ(1/2). Note that the remaining N − r

rows of Σ(1/2) are all zeros, and are thrown out. Next, let Q and UN be the

QR-decomposition of ΓV defined as

QUN = ΓV (2.24)
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where Q ∈ R
r×r is orthogonal and UN ∈ R

r×N is upper triangular. Summarizing

this development, then,

JN = V �ΣV

= V �Γ�ΓV

= U�
NQ�QU

= U�
NUN

where UN is upper triangular and of appropriate dimension. �

Recall from Lemma 1.1 that our particular choice of JN = IN − 1/N1N×N has

rank N − 1, and can thus can expressed as JN = U�
NUN where UN ∈ R

N−1×N .

Lemma 2.3. More Properties of U

For UN ∈ R
N−1×N defined as the decomposition of

U�
NUN = JN

= IN − 1

N
1N×N

we have

UNU�
N = IN−1

and

UN1N×1 = 0N−1×1.

Proof. We know from Lemma 1.1 that JN has rank N − 1, with all but one of the

eigenvalues equal to 1. Thus, continuing with the notation from Lemma 2.2, we

know that JN can be decomposed as JN = (ΓV )�(ΓV ) with

Γ =

[
IN−1 0N−1×1

]
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for this particular choice of J . Clearly ΓΓ� = I. From (2.24) we can express UN

as

UN = Q�ΓV

so that

UNU�
N = Q�ΓV V �Γ�Q

= IN−1

due to the orthogonality of Q and V .

To prove the second statement, note that

||UN1N×1||22 = 11×NU�
NUN1N×1

= 11×NJN1N×1

= 11×N

(
IN − 1

N
1N×N

)
1N×1

= N − N

= 0

=⇒ UN1N×1 = 0N−1×1

�

Following from these lemmas, then, we can insert such a UN and U�
N before

the decision device as shown in Fig. 2.3. Though the path between ã[n] and â[n]

appears to have been modified, the input-output relationship of this new equalizer

structure is mathematically equivalent to the original equalizer structure shown in

Fig. 2.1, and all of the previous equations (2.1)-(2.5) describing the system model

still apply. By exploiting properties of the detector, we are able to reduce the
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K

ε[n]

z[n]y[n] â[n]ã[n]

z−1

Q(·)

a[n]

f

g

NN

N N N

NN

P/SS/P

S/P S�

N − 1

U

U U�

Figure 2.3: Equalizer with Modified Error Signal for Orthogonal Modulation

number of chips necessary to represent a symbol from N to N−1, and U effectively

performs further downsampling of the signal.

Now, rather than forming the mean-squared error between ã[n] and a[n − ∆],

we can form the error in a space of reduced dimension. It is pointless to account

for the error in the larger space when subsequent multiplication of ã[n] by U

will project the signal into the smaller (N − 1)-dimensional space. In analogy to

traditional fractionally-spaced equalization of BPSK, we know that it is senseless

to minimize the error between the upsampled, zero-padded transmit signal and the

equalizer output prior to downsampling; such a choice of error signal would render

useless the benefits of fractional-sampling. Thus, we use the MSE given by

JMSE(f , g, ∆) = E
[||U (ã[n] − a[n − ∆])||22

]
= E

[
||US� (

X�[n]H� + W�[n]
)
f

+UÂ
�
[n − 1]g − US�X�[n]eK∆||22

]
= f�HRxxH�f + 2f�HRxâg − 2f�HRxxeK∆ − 2g�R�

xâeK∆

+f�Rwwf + g�Rââg + e�
K∆RxxeK∆ (2.25)
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where we define

Rxx � E
[
X[n]SJS�X�[n]

]
(2.26)

Rââ � E
[
Â[n − 1]JÂ

�
[n − 1]

]
(2.27)

Rxâ � E
[
X[n]SJÂ

�
[n − 1]

]
(2.28)

Rww � E
[
W [n]SJS�W�[n]

]
. (2.29)

With the newly defined correlation matrices, we see the MSE (2.25) has the same

form as the MSE for the biorthogonal signal set in (2.15). Thus, the same design

equations for f and g apply, so

g∗ = R−1
ââ R�

xâ

[
eK∆ − H�f

]
f ∗ =

[HRH� + Rww

]−1 HReK∆

where, as before,

R � Rxx − RxâR
−1
ââ R�

xâ.

Again, calculation of the correlation matrices is rather tedious, and the procedure

is outlined in Appendix A.

Lastly, we reëmphasize that we have really not modified the structure of the

equalizer at all, though we have modified the definition of the error signal (i.e.

the MSE), which in turn causes the MMSE equalizer setting to change. Though

the equalizer in Fig. 2.3 differs from the original equalizer in Fig. 2.1 due to the

appearance of U�U in the signal path, we note that an actual implementation

could forego the use of U�U in the signal path. We have only included the U�U

in Fig. 2.3 to emphasize that this non-invertible transform can be inserted without

affecting the equalizer, and that it is therefore not unreasonable to use Uã[n] in

the construction of our error signal.
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By exploiting the invariance of the decision device to a DC value added to

all the chips of its input, we are able to project the orthogonal signal set into a

transorthogonal signal set of reduced dimension. With the “choose max” decision

device, there is no sense in penalizing DC offsets in the MSE since all that matters

in the end is the relative amplitudes of the decision device input. While up to

now our motivation for the addition of U to the MSE has been largely heuristic,

we will explore its benefits further in Section 2.4. There, we will see the amazing

result that inclusion of U in the MSE can in some cases allow for perfect linear

equalization in situations where perfect equalization would not be possible without

the redefined MSE.

2.3.3 Transorthogonal Modulation

As we saw in (1.6), transorthogonal modulation uses the same “choose max” deci-

sion device as orthogonal modulation. Thus, we can expect some benefit by using

the same trick we used for orthogonal modulation, i.e. by inserting U into the

MSE. The MMSE DFE design for transorthogonal modulation mimics the design

for orthogonal modulation quite closely, but there are a few caveats worth men-

tioning. In particular, the insertion of U in the MSE plays a slightly different role,

and it is interesting to point out some issues that would arise if we did not include

U in the MSE.

First, we observe that when the equalizer is operating correctly, all of the

modulations obey

ã[n] ≈ S�Sa[n − ∆]

where multiplication by S and S� represent the passage of the selection vector

a[n − ∆] through the modulator (at the transmitter) and the correlator (at the
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receiver), respectively. For orthogonal and biorthogonal modulation, S�
o So =

S�
b Sb = I, so ãb[n]−ab[n−∆] ≈ 0, which motivated a MSE based on the difference

ãb[n]−ab[n−∆] as in (2.16) and (2.25). However, for transorthogonal modulation

S�
t St = J and ãt[n] − Jat[n − ∆] ≈ 0. Thus, for transorthogonal modulation,

the ideal input to the decision device ãt[n] does not have the form of a selection

vector (as was the case with orthogonal and biorthogonal modulation) but instead

ãt[n] has the form of a column of J . This suggests that a MSE criterion based on

the difference ãb[n] − ab[n − ∆] may not be a suitable choice for transorthogonal

modulation, and that one based on ãt[n]−Jat[n−∆] might make a better choice.

By incorporating multiplication of U into the MSE, and noting that UJ = U

(due to the idempotency of J) the resulting MSE is

JMSE(f , g, ∆) = E
[||U (ã[n] − Ja[n − ∆])||22

]
= E

[||U (ã[n] − a[n − ∆])||22
]

(2.30)

where we see that the MSE simplifies to the expression for orthogonal modulation,

and so multiplication of a[n − ∆] by J is superfluous when making use of U in

the MSE expression.

Secondly, from Table 1.2 we note that transorthogonal modulation is the only

modulation of the three considered in this dissertation for which it is possible that

S is wide (i.e. K < N). Whereas correlation at the receiver accomplished via mul-

tiplication by S� typically performs an operation analogous to downsampling (by

projecting z[n] into lower dimensional signal ã[n], thereby reducing the number

of chips per symbol), it is possible with transorthogonal modulation that multipli-

cation by S� actually increases the number of chips per symbol. This effect only

occurs when K < N , and is seen best by looking at Fig. 2.3. With the use of U

before the decision device, however, the waveform is projected back into the M −1
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dimensional space as desired.

So, the use of U has several unforseen benefits that spare us from having to

make any changes to the development of the MMSE DFE for transorthogonal

modulation. The MMSE DFE design equations then follow automatically, with no

change from the previous section:

g∗ = R−1
ââ R�

xâ

[
eK∆ − H�f

]
f ∗ =

[HRH� + Rww

]−1 HReK∆

where, as before,

R � Rxx − RxâR
−1
ââ R�

xâ

Rxx � E
[
X[n]SJS�X�[n]

]
Rââ � E

[
Â[n − 1]JÂ

�
[n − 1]

]
Rxâ � E

[
X[n]SJÂ

�
[n − 1]

]
Rww � E

[
W [n]SJS�W�[n]

]
.

Again, calculation of the correlation matrices is rather tedious, and the procedure

is outlined in Appendix A.

2.4 Conditions for Perfect Linear Equalization

It is interesting to consider what conditions, if any, permit a feedforward equal-

izer to perfectly invert the channel for these modulations. It is well known for

equalization of PAM that a finite-length symbol-rate linear equalizer has no hope

of perfectly inverting the channel. On the other hand, a finite-length fractionally-

spaced linear equalizer for PAM can perfectly invert the channel in certain cases.

For example, with a PAM equalizer operating at twice the symbol rate, channel
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inversion is possible when the equalizer length satisfies Nf ≥ Nh − 1 and the ef-

fective channel matrix is full rank [18]. As we have mentioned, fractionally-spaced

equalization of BPSK is a special case of our equalizer structure, and so we expect

perfect channel invertibility for at least some situations. In a PAM system, perfect

equalization is attained when the effective combined channel/equalizer impulse

response is a single spike. For our equalizer with energy efficient modulations,

however, there may be other effective responses that result in perfect equalization

due to the correlation of the source data. Finding a set of invertibility conditions

is not quite as simple as it is for PAM systems.

Throughout this section, we assume that there is no feedback equalizer, and we

assume there is no noise. We define “perfect linear equalization” (or equivalently

“perfect channel inversion”) as the situation where, in the absence of noise, and

given any source sequence, the received soft-symbols at the input to the decision

device have exactly the desired value (i.e. no ISI). Equivalently, we have perfect

equalization when the MSE is zero in the absence of noise. The equalizer settings

for which perfect equalization occurs are called the zero-forcing (ZF) solutions.

With no noise and no feedback section, the MSE reduces to

JMSE(f , ∆) = f�HRxxH�f − 2f�HRxxeK∆ + e�
K∆RxxeK∆. (2.31)

From Lemma 2.2, we can decompose Rxx as

Rxx = Γ�
xxΓxx

where Γxx ∈ R
r×Nc and r ≤ Nc is the rank of Rxx. Defining Heff � (HΓ�

xx) ∈
R

Nf×r, (2.31) becomes

JMSE(f , ∆) = f�HeffH�
efff − 2f�HeffΓxxeK∆ + e�

K∆Γ�
xxΓxxeK∆.(2.32)
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So, for perfect equalization (i.e. to attain zero MSE), f must satisfy

H�
efff

∗ = ΓxxeK∆. (2.33)

In order for this expression to be solvable, we arrive at the following three related

conditions on the length of the equalizer, the source statistics, and the rank of the

effective channel matrix which guarantee perfect equalizability:

1. Length Condition: For f to satisfy (2.33) for arbitrary ∆, Heff must be

a tall matrix. Hence, it is required that Nf ≥ rank(Rxx).

2. Source Condition: In the length condition above, the rank of Rxx itself

depends on Nf . Since Nf + Nh − 1 = rank(Rxx) + nullity(Rxx), the length

condition can be written equivalently as Nh ≤ nullity(Rxx) − 1. Since Nh

itself must satisfy Nh ≥ 1, we see that a necessary condition for perfect

equalization is rank deficiency of Rxx, a condition which may be impossible

to satisfy for a given signal set.

3. Disparity Condition: For f to satisfy (2.33) for arbitrary ∆, Heff must

have full column rank.

In fractionally-spaced PAM equalization, the source condition is guaranteed,

the length condition is described by a simple inequality, and the disparity condition

amounts to the condition that there are no common subchannel roots. Such simple

and intuitive conditions are not possible in general here, since the conditions will

change with the chosen modulation and signal set. However, calculation of the

rank of Rxx for a particular modulation and signal set is fairly straightforward.

To illustrate, we will consider several examples.
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2.4.1 Example: Biorthogonal Modulation with S = [1, 0]�

As mentioned previously, biorthogonal modulation with S = [1, 0]� corresponds

to fractionally-spaced equalization of a BPSK signal. Thus, we expect the length

and disparity conditions for this case to coincide with the known result for BPSK.

We have

Rxx =

⎡
⎢⎢⎢⎣

1 0 0 0 ... 0 0
0 0 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 0 ... 0 0
...

. . .
...

0 0 0 0 ... 1 0
0 0 0 0 ... 0 0

⎤
⎥⎥⎥⎦ (2.34)

where the even elements of the diagonal equal 1 and the odd elements equal 0.

Consequently, the rank is simply equal to half the number of rows (or columns) of

Rxx, so

r = rank(Rxx)

=

⌈
Nf + Nh − 1

2

⌉

The length condition Nf ≥ r becomes

Nf ≥ Nh − 1

which indeed coincides with the known result for BPSK. In addition, Heff assumes

the form of a column-decimated version of H. This, too, coincides with the known

result for BPSK, requiring no common roots among the subchannels [18]. Lastly,

we note that transorthogonal modulation with

S =

⎡
⎢⎣1 −1

0 0

⎤
⎥⎦

also corresponds to fractionally-spaced BPSK, and leads to the same conditions.
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2.4.2 Example: Comparison of Two Biorthogonal Signal

Sets

Here, we consider biorthogonal with two very similar choices of S, where K = 4

and N = 2:

S1 =
1√
2

[
+1 +1
0 0

+1 −1
0 0

]
and S2 =

1√
2

[
+1 0
0 +1

+1 0
0 −1

]
.

Clearly both of these choices are valid biorthogonal constellations since S�S = I.

The first choice S1 corresponds to oversampled 4-ary biorthogonal Walsh modu-

lation. The second choice S2 is simply a modified version of S1 with the second

column shifted. Note that both signal sets effectively employ 2× oversampling (as

defined in Section 1.5) since K/N = 2. Thus, we might expect that both signal sets

permit perfect equalization. Alas, this is not the case. For S1, the corresponding

autocorrelation matrix Rxx is exactly as in (2.34) above for fractionally-spaced

BPSK, and therefore has identical conditions as BPSK for perfect equalization.

On the other hand, the autocorrelation matrix Rxx for S2 results in a matrix that

is always full-rank, and so perfect equalization is not possible with a finite-length

equalizer. Calculation of Rxx follows from use of (A.2) in Appendix A. However,

(A.2) shows that Rxx is completely specified by SS�. The gross difference in

equalizability in using S1 vs. S2 arises from the difference in SS�

S1S
�
1 =

[
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

]
and S2S

�
2 =

1

2

[
1 0 1 0
0 1 0 −1
1 0 1 0
0 −1 0 1

]
.

where the lack of nullity in using S2 arises from the non-zero off-diagonal elements

of S2S
�
2 and the lack of zeros along the diagonal.

In light of the fact that both of these examples are seen as oversampled (in

the sense that twice as many samples as necessary are used to represent each
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symbol) it may come as a surprise that perfect equalization is not possible when

employing S2. This is simply a consequence of the autocorrelation matrix Rxx. In

the next chapter, we will return to this example, and show that a modification to

the equalizer structure results in perfect equalization for both of these signal sets.

2.4.3 Example: Binary Pulse Position Modulation

The source condition demonstrates the desirability of having Rxx be rank deficient.

Obviously, Rxx can be made rank deficient through appropriate choice of signal

set, as the previous example showed. However, in looking at the definition of Rxx

for orthogonal modulation (2.26), we note the appearance of J which arose due

to our use of U in the formation of the MSE. Recall that J is not full rank, and

therefore serves to help reduce the rank of Rxx.

We now consider the case of orthogonal modulation with the choice S = I2,

which corresponds to binary PPM. The autocorrelation matrix, calculated via

(A.7) is

Rxx = E
[
X[n]SJS�X�[n]

]

=
1

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −2 0 0 · · ·
−2 2 −2 1 0 · · ·
0 −2 4 −2 0 0 · · ·
0 1 −2 2 −2 1 0 · · ·
... 0 0 −2 4 −2

. . .

... 0 1 −2
. . .

... 0
. . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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which has rank

r =

⌈
Nf + Nh

2

⌉

leading to the length condition Nf ≥ Nh. Thus, perfect equalization of binary PPM

is possible, in spite of the fact that there is no oversampling per se (since K = N).

We note that it is precisely the presence of J in the autocorrelation matrix which

causes Rxx to be rank deficient, thereby permitting perfect equalization. If, in the

equalizer for orthogonal modulation, we had instead formed the MSE between ã[n]

and a[n − ∆] (i.e. without inclusion of U , so that DC offsets were penalized), the

autocorrelation matrix would have been

E
[
X[n]SS�X�[n]

]
=

1

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 2 4 4 · · ·
2 8 2 4

4 2
. . .

. . .
. . .

4 4
. . .

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is full-rank, thus prohibiting perfect equalization under that definition of

MSE.
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2.4.4 Example: 3-ary Pulse Position Modulation

We now consider the case of orthogonal modulation with the choice S = I3,

corresponding to 3-ary PPM. The autocorrelation matrix is

Rxx = E
[
X[n]SJS�X�[n]

]

=
1

27

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

18 −6 −3 0 0 0 ···
−6 14 −8 −3 2 1 0 ···
−3 −8 14 −6 −2 2 0 0 ···
0 −3 −6 18 −6 −3 0 0 0 ···
0 2 −2 −6 14 −8 −3 2 1 0 ···
0 1 2 −3 −8 14 −6 −2 2

. . .
... 0 0 0 −3 −6 18 −6

. . .
... 0 0 2 −2 −6

. . .
... 0 1 2

. . .
... 0

. . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which has full rank r = Nf + Nh − 1, leading to the condition Nf ≥ Nf + Nh − 1

or Nh ≤ 1. Thus, perfect equalization of 3-ary PPM is not possible except in the

trivial case when the channel length is 1. We will revisit this example in the next

chapter.

2.5 LMS Adaptation

While we have assumed up to now that the channel H and noise statistics Rww are

known, this is not likely to be the case in practice, and thus an adaptive scheme

is desirable. Furthermore, direct computation of the equalizer coefficients may not

be feasible, requiring the use of iterative or adaptive solutions. Fortunately, the

mean-squared error is quadratic in the parameters f and g, so we can use the

LMS algorithm to calculate f ∗ and g∗ adaptively when training data is available.

The LMS algorithm is a stochastic gradient descent algorithm which uses the
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instantaneous gradient [16] of the mean-squared error as an estimate for the true

gradient (i.e. by ignoring the expectation operator).

For biorthogonal modulation, taking the instantaneous gradient of the MSE in

(2.15) gives

1

2
∇̂fJMSE = Y [n]S [ã[n] − a[n − ∆]]

1

2
∇̂gJMSE = Â[n − 1] [ã[n] − a[n − ∆]] .

This results in the LMS update equations for biorthogonal modulation as

εLMS[n] = ã[n] − a[n − ∆]

fLMS[n + 1] = fLMS[n] − µ1∇̂fJMSE

= fLMS[n] − µ1Y [n]SεLMS[n]

gLMS[n + 1] = gLMS[n] − µ2∇̂gJMSE

= gLMS[n] − µ2Â[n − 1]εLMS[n]

where µ1, µ2 are small positive step-sizes which serves to average out the noise in the

gradient estimate. With a small step-size, the algorithm exhibits mean transient

and steady-state behavior very close to that of the exact gradient descent [16].

Note that the presence of a[n − ∆] in the error term implies the availability of

training data. When training data is unavailable, we can feed back the output

of the decision device â[n] instead, arriving at the decision-directed (DD) LMS

update equations

εDD[n] = ã[n] − â[n]

fDD[n + 1] = fDD[n] − µ1Y [n]SεDD[n]

gDD[n + 1] = gDD[n] − µ2Â[n − 1]εDD[n]
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The update equations for orthogonal and transorthogonal modulation follow

similarly, though with the appearance of U in the update equations as

εLMS[n] = U [ã[n] − a[n − ∆]]

fLMS[n + 1] = fLMS[n] − µ1Y [n]SU�εLMS[n]

gLMS[n + 1] = gLMS[n] − µ2Â[n − 1]U�εLMS[n]

Similarly, in the absence of training, a[n − ∆] can be replaced with â[n] to arrive

at the DD-LMS equations.



Chapter 3

Block Equalization of Energy Efficient

Modulations

In this chapter, we present an improvement upon the previous chapter by extend-

ing the equalizer from simple scalar filters into block (polyphase) filters. This new

equalizer structure brings about several benefits, including: the ability to obtain

perfect linear equalization for a larger class of signal sets, a reduced effective de-

lay through the feedback equalizer, and a reduction in computational complexity.

Portions of this work appeared in [21][22].

3.1 Motivation for Block Structure

The scalar equalizer of the previous chapter has several shortcomings. First, as

demonstrated in Section 2.4.2, a linear equalizer is not able to perfectly equalize

the channel even when the oversampling factor K/Kmin is large. Secondly, the

operation of the feedback portion of the equalizer has a feature that is quite unde-

sirable. Upon reception of the symbol at time n, all of the chips from the symbol

at time n − 1 have been estimated and are available to the feedback equalizer.

However, the chips are fed serially into the feedback equalizer, which needlessly

introduces delay in the feedback path.

Also, as we have mentioned, the source sequence is not i.i.d. at the chip level.

49
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Furthermore, the chip process is not wide-sense-stationary (WSS) in general, since

the autocorrelation E [x[n]x[m]] �= E [x[n + p]x[m + p]] for all p. However, the chip

process is cyclostationary since E [x[n]x[m]] = E [x[n + Kp]x[m + Kp]]. These

properties follow directly from the second-order moments (2.12)-(2.14). Since the

autocorrelation is different for each of the K polyphases, we might expect improved

performance from an equalizer that exploited this fact that was ignored by the

scalar equalizer of the previous chapter.

3.2 System Model

We now consider a block equalizer, where the scalar chip-rate filters f and g of the

previous chapter are replaced with block filters F ∈ R
Nf×N and G ∈ R

Ng×N , using

polyphase representation. The scalar equalizer was a single equalizer operating on

a chip-by-chip basis, whereas the block equalizer here is a bank of N equalizers

operating on a symbol-by-symbol basis. These block filters can be expressed in

an equivalent multirate form as was shown in Fig. 2.2. The resulting equalizer

structure under consideration is shown in Fig. 3.1. The equations to describe

y[n] â[n]ã[n]

z−1

Q(·)

G�

N

N

N N N

NN

ε[n]
a[n]

S/P F�

K

Figure 3.1: Block Equalizer System Model

this system model are quite similar to those from Chapter 2, with a few minor

changes.



51

As before, we consider two models: a symbol-by-symbol model based on matrix

convolutions, and a block formulation that isolates the equalizer coefficients F and

G. The symbol-by-symbol model is largely unchanged from the previous section,

and is described by the following equations

x[n] = Sa[n] (3.1)

y[n] =
∑
m

H [m]x[n − m] + w[n] (3.2)

ã[n] =
∑
m

F [m]y[n − m] +
∑
m

G[m]â[n − m − 1] (3.3)

â[n] = Q(ã[n]). (3.4)

The receiver input y[n] is identical to that from the previous chapter, and as

before the Tœplitz channel impulse response matrices H [n] ∈ R
K×K are expressed

in terms of the channel coefficients as [H [n]]i,j = h[Kn + j − i]. In contrast

to the scalar model where F [n] and G[n] were Tœplitz, the block equalizer here

does not impose this requirement. In addition, we have absorbed the correlation

operation (multiplication with S�) into the feedforward equalizer. The set of

matrices F [n] ∈ R
N×K and G[n] ∈ R

N×N can be expressed in terms of F and G
via

[F [n]]i,j = [F ]Kn+j,i

[G[n]]i,j = [G]Nn+j,i

Again, we have a one-symbol delay in the feedback path, which is evident in

(3.3). However, as opposed to the scalar equalizer where the relative chip delay

through the feedback path was fixed at N chips, the relative chip delay through

the feedback path is now different for each polyphase. For example, consider the

equalization of the ith chip from the nth symbol, denoted ã[Nn− i]. At this time,
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the entire (n − 1)th symbol estimate (i.e. â[n − 1] = [â[Nn − N ], â[Nn − N −
1] . . . , â[Nn−2N +1]]�) is in the feedback path, with the most “recent” chip being

â[Nn−N ]. So, the feedback path chip delay for the ith chip from the nth symbol

is (Nn− i)− (Nn−N) = N − i, where 0 ≤ i ≤ N − 1. Hence, the feedback delay

can be as low as 1 chip (for the first received chip of a symbol, corresponding to

the (N − 1)th polyphase), to as large as N chips (for the last received chip of a

symbol, corresponding to the 0th polyphase). The reason for this reduction in delay

relative to the scalar equalizer relates to the serial operation of the scalar model

which imposed a Tœplitz structure on G[n]. The Tœplitz structure required the

lower triangular portion of G[0] to be zero which effectively introduced unnecessary

delay in the feedback path. Since G[n] is not required to be Tœplitz in the block

model, we are able to reduce the feedback path delay.

We note that the block equalizer is a generalization that includes the scalar

equalizer of the previous chapter as a special case. Specifically, consider some scalar

equalizer where F scalar[n] ∈ R
K×K and Gscalar[n] ∈ R

N×N are Tœplitz matrices

which were defined in Chapter 2 as [F scalar[n]]i,j = f [Kn+j−i] and [Gscalar[n]]i,j =

g[Nn + j − i]. The particular block equalizer with identical functionality to this

scalar equalizer is obtained when F [n] and G[n] for the block equalizer are set to

F [n] = S�F scalar[n] (3.5)

G[n] = Gscalar[n] (3.6)

Since the scalar equalizer is a special case of the block equalizer, we can be assured

that the block equalizer will as good or better than the scalar equalizer (in terms

of MSE).

At times, it will be more convenient to use a formulation that isolates the

equalizer response matrices F and G. In this case, the stacked regressor vector of
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transmitted symbols x̄[n] ∈ R
Nc can be written as

x̄[n] = (I Nc
K

⊗ S)ā[n] (3.7)

where ⊗ denotes the Kronecker product, Nc � Nf +Nh −1 is the combined length

of the channel and feedforward equalizer, and ā[n] ∈ R
NcN/K contains the stacked

selection vectors so that

ā[n] =

⎡
⎢⎢⎢⎢⎣

a[n]

a[n − 1]

...

⎤
⎥⎥⎥⎥⎦ .

Note that x̄[n] may include a partial symbol if Nc is not a multiple of K. For

simplicity, we will assume that Nc is always a multiple of K, which can be accom-

plished without loss of generality by appending zeros to h to sufficiently increase

Nc until it is a multiple of K. Next, the vector ȳ[n] ∈ R
Nf of received chips can

be written

ȳ[n] = Hx̄[n] + w̄[n] (3.8)

where w̄[n] ∈ R
Nf is the vector of noise samples defined as w̄[n] = [w[Kn], w[Kn−

1], . . .]�. Then, the the soft estimates of the selection vector output by the equalizer

at time n can be written

ã[n] = F�ȳ[n] + G�¯̂a[n − 1] (3.9)

where the regressor vector of stacked selection vector estimates ¯̂a[n] ∈ R
Ng is

defined as ¯̂a[n] = [â[n]�, â[n − 1]�, · · · ]�. In the sequel, we will switch between

the symbol-by-symbol model (3.1)-(3.3) and the equivalent block matrix model

(3.7)-(3.9) whenever convenient.

Lastly, to simplify expressions in the sequel, we make the following assumptions

about the sizes of the channel and equalizers:
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• Nc is a multiple of K.

• Ng ≤ N(Nc/K − ∆ − 1).

• Ng is a multiple of N .

By artificially appending zeros to h, thus increasing Nc, the first two assumptions

can be trivially satisfied without loss of generality for any set of system parameters.

The third assumption is reasonable since it effectively requires feedback of whole

symbols.

3.3 Block MMSE Equalizer

We now present the design equations for the block equalizer coefficients based

on minimizing the mean-squared error. Again, the MMSE equalizer accepts one

design parameter, ∆, which represents the desired symbol delay through the chan-

nel/equalizer chain. By defining

EN∆ �

⎡
⎢⎢⎢⎢⎣

0N∆×N

IN

0N(Nc/K−∆−1)×N

⎤
⎥⎥⎥⎥⎦

so that EN∆ ∈ R
NcN/K×N , we can express the delayed symbol vector as

a[n − ∆] = E�
N∆ā[n]. (3.10)

The block equalizer structure permits much less tedious calculation of the cor-

relation matrices, and allows us to express most formulae in terms of the selection

vectors (and not a mix of selection vectors a[n] and waveform chips x[n], as was the

case for the scalar equalizer). While the second-order statistics of the transmitted

chips x[n] were given in (2.12)-(2.12), here we will be primarily interested in the
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second-order statistics of the selection vectors a[n], which we recall are related to

the chips via the simple linear relation x[n] = Sa[n]. Recall that for orthogonal

and transorthogonal modulation,

ao[n],at[n] ∈
{[

1
0
...
0

]
,

[
0
1
...
0

]
, . . . ,

[
0
0
...
1

]}

while for biorthogonal modulation,

ab[n] ∈
{
±
[

1
0
...
0

]
,±

[
0
1
...
0

]
, . . . ,±

[
0
0
...
1

]}
.

Obviously, the second-order statistics of the selection vectors for orthogonal and

transorthogonal modulations will be identical. For n �= m, we have

E[ao[n]a�
o [m]] = E[at[n]a�

t [m]] = E[ao[n]]E[a�
o [m]]

=
1

N2
1N×N

E[ab[n]a�
b [m]] = E[ab[n]]E[a�

b [m]]

= 0

where we have used the fact that the symbols are i.i.d. For all modulations,

E[a[n]a�[n]] =
1

N
IN

Thus, the second-order moments are given by

E[ao[n]a�
o [m]] = E[at[n]a�

t [m]] =

⎧⎪⎨
⎪⎩

1
N

IN n = m

1
N21N×N n �= m

E[ab[n]a�
b [m]] =

⎧⎪⎨
⎪⎩

1
N

IN n = m

0N×N n �= m

from which is follows that the vectors of stacked selection vectors have second order
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moments

E[āo[n]ā�
o [m]] = E[āt[n]ā�

t [m]]

=
1

N2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

NIN 1N×N 1N×N · · ·
1N×N NIN 1N×N

1N×N 1N×N

. . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

N2

[
1NcN

K
×NcN

K
+ (I Nc

K
⊗ (NIN − 1N×N))

]
(3.11)

E[āb[n]ā�
b [m]] =

1

N
I NcN

K
(3.12)

We now prove a lemma that applies to E[āo[n]ā�
o [m]] (and E[āt[n]ā�

t [m]]).

Lemma 3.1. Properties of 1bN×bN + (Ib ⊗ (NIN − 1N×N))

For positive integers b and N , the symmetric matrix

1bN×bN + (Ib ⊗ (NIN − 1N×N))

has singular value decomposition given by V DV � where

V =

[
1√
bN

1bN×1 (Ib ⊗ U�
N) 1√

N
(U�

b ⊗ 1N×1)

]

and D = diag([bN, N, . . . , N︸ ︷︷ ︸
b(N−1)

, 0, . . . , 0︸ ︷︷ ︸
b−1

]).

Proof. Recall that UN ∈ R
N−1×N was defined in Lemmas 1.1 and 2.2 as the

decomposition of the matrix

U�
NUN = IN − 1

N
1N×N

and U b ∈ R
b−1×b is defined identically with appropriate size.

Clearly D is diagonal with non-negative entries. To complete the proof, we need

to show that V is orthogonal, and that 1bN×bN +(Ib⊗ (NIN −1N×N)) = V DV �.
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To show that V is orthogonal, we have

V V � =

[
1√
bN

1bN×1 (Ib ⊗ U�
N) 1√

N
(U�

b ⊗ 1N×1)

]
⎡
⎢⎢⎢⎢⎣

1√
bN

11×bN

(Ib ⊗ UN)

1√
N

(U b ⊗ 11×N)

⎤
⎥⎥⎥⎥⎦

=
1

bN
1bN×bN + (Ib ⊗ JN) + (J b ⊗ 1

N
1N×N)

= IbN

where the last line follows from substitution of the definition of J . Hence, V is

orthogonal. Now, partition D as

D =

[
D1 D2 D3

]

where

D1 = bN

⎡
⎢⎣ 1

0bN−1×1

⎤
⎥⎦ , D2 = N

⎡
⎢⎢⎢⎢⎣

01×b(N−1)

Ib(N−1)

0b−1×b(N−1)

⎤
⎥⎥⎥⎥⎦ , D3 = 0bN×b−1

Then we have

V DV � = V

(
1√
bN

D111×bN + D2(Ib ⊗ UN)

)
=

√
bN [ 1√

bN
1bN×1 (Ib⊗U�

N ) 1√
N

(U�
b ⊗1N×1) ]

[
1

0bN−1×1

]
11×bN

+N [ 1√
bN

1bN×1 (Ib⊗U�
N ) 1√

N
(U�

b ⊗1N×1) ]

[
01×b(N−1)

Ib(N−1)

0b−1×b(N−1)

]
(Ib ⊗ UN)

= 1bN×bN + N(Ib ⊗ U�
N)Ib(N−1)(Ib ⊗ UN)

= 1bN×bN + N(Ib ⊗ JN)

= 1bN×bN + (Ib ⊗ NIN − 1N×N).

�

We now present the MMSE DFE design equations for each of the modulation

types separately in turn.
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3.3.1 Biorthogonal Modulation

As before with the scalar equalizer, we again form the error between the pre-

decision device “soft-estimate” of the selection vector ã[n] and the delayed trans-

mitted selection vector a[n − ∆]. Expanding the MSE via (3.7)-(3.10) gives

JMSE(F ,G, ∆) = E
[||ã[n] − a[n − ∆]||22

]
(3.13)

= E
[∣∣∣∣∣∣F�

(
H(I Nc

K
⊗ S)ā[n] + w̄[n]

)
+ G�¯̂a[n − 1] − E�

N∆ā[n]
∣∣∣∣∣∣2

2

]
= tr

(
F�H(I Nc

K
⊗ S)E[ā[n]ā�[n]](I Nc

K
⊗ S)�H�F

+F�H(I Nc
K

⊗ S)E[ā[n]w̄�[n]]F

+F�H(I Nc
K

⊗ S)E[ā[n]¯̂a
�
[n]]G

−F�H(I Nc
K

⊗ S)E[ā[n]ā�[n]]EN∆

+F�E[w̄[n]ā�[n]](I Nc
K

⊗ S)�H�F

+F�E[w̄[n]w̄�[n]]F + F�E[w̄[n]¯̂a
�
[n]]G

−F�E[w̄[n]ā�[n]]EN∆ + G�E[¯̂a[n]ā�[n]](I Nc
K

⊗ S)�H�F

+G�E[¯̂a[n]w̄�[n]]F + G�E[¯̂a[n]¯̂a
�
[n]]G

−G�E[¯̂a[n]ā�[n]]EN∆ − E�
N∆E[ā[n]ā�[n]](I Nc

K
⊗ S)�H�F

−E�
N∆E[ā[n]w̄�[n]]F − E�

N∆E[ā[n]¯̂a
�
[n]]G

+E�
N∆E[ā[n]ā�[n]]EN∆

)
= tr

(
F�

[
H(I Nc

K
⊗ S)Raa(I Nc

K
⊗ S)�H� + Rww

]
F

+2F�H(I Nc
K

⊗ S)RaâG − 2F�H(I Nc
K

⊗ S)RaaEN∆

+G�RââG − 2G�R�
aâEN∆ + E�

N∆RaaEN∆

)
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where we have assumed the noise and data are uncorrelated, and we define

Raa � E[ā[n]ā�[n]] (3.14)

Raâ � E[ā[n]¯̂a
�
[n − 1]] (3.15)

Rââ � E[¯̂a[n − 1]¯̂a
�
[n − 1]] (3.16)

Rww � E[w̄[n]w̄�[n]]. (3.17)

To find the optimal feedback filter, we take the derivative with respect to G, set

to zero and solve for G, giving

1

2

∂JMSE(F ,G, ∆)

∂G = R�
aâ(I Nc

K
⊗ S)�H�F + RââG − R�

aâEN∆

= 0

=⇒ G∗ = R−1
ââ R�

aâ

[
EN∆ − (I Nc

K
⊗ S)�H�F

]
. (3.18)

Taking the derivative with respect to F , substituting G∗, and setting to zero gives

1

2

∂JMSE(F ,G∗, ∆)

∂F = H(I Nc
K

⊗ S)Raa(I Nc
K

⊗ S)�H�F + RwwF

+H(I Nc
K

⊗ S)RaâG∗ − H(I Nc
K

⊗ S)RaaEN∆

=
(
H(I Nc

K
⊗ S)R(I Nc

K
⊗ S)�H� + Rww

)
F

−H(I Nc
K

⊗ S)REN∆

= 0

=⇒ F∗ =
(
H(I Nc

K
⊗ S)R(I Nc

K
⊗ S)�H� + Rww

)−1

·H(I Nc
K

⊗ S)REN∆ (3.19)

where

R � Raa − RaâR
−1
ââ R�

aâ. (3.20)
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Under the assumption of correct feedback, â[n] = a[n − ∆], or

¯̂a[n − 1] =

[
0Ng×N(∆+1) INg 0Ng×N(Nc/K−∆−1)−Ng

]
︸ ︷︷ ︸

�ΣN∆∈R
Ng×NcN/K

ā[n] (3.21)

where ΣN∆ effectively selects the appropriate elements of ā[n] to construct ¯̂a[n−1].

We note that ΣN∆Σ�
N∆ = INg and ΣN∆EN∆ = 0Ng×N . It then follows that under

correct feedback

Raâ = E[ā[n]ā�[n]Σ�
N∆]

= RaaΣ
�
N∆ (3.22)

Rââ = E[ΣN∆ā[n]ā�[n]Σ�
N∆]

= ΣN∆RaaΣ
�
N∆. (3.23)

From the second-order moments of the selection vectors given in (3.12), we see

that Raa = I for biorthogonal modulation. Thus,

Raa = I

Raâ = Σ�
N∆

Rââ = I.

Substituting the correlation matrices into (3.18) and (3.19) gives the simplified

MMSE DFE design equations for biorthogonal modulation:

G∗ = −ΣN∆H�
effF (3.24)

F∗ =
(Heff (I − Σ�

N∆ΣN∆)H�
eff + Rww

)−1 HeffEN∆ (3.25)

where

Heff = H(I Nc
K

⊗ S). (3.26)
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We note that when the noise is AWGN with variance σ2
w, we have

Rww = σ2
wINc

We also note that in trivial case where there is no ISI (i.e. when H = I) but Gaus-

sian noise, the feedforward equalizer reduces to the ML detector for the AWGN

channel in the absence of a feedback section.

3.3.2 Orthogonal Modulation

As we saw in Section 2.3.2, the decision device for orthogonal modulation is invari-

ant to a DC component added to all chips in a symbol. For the scalar equalizer,

we redefined the MSE so that it did not penalize DC offsets, and this extra degree

of freedom permitted us to obtain perfect equalization in situations where it would

not have otherwise been possible. The same trick can be applied to the block

equalizer, and in fact the benefit is even greater here since we incur a computa-

tional savings. Recall from Lemma 2.1 that the decision device is unaffected when

the input signal is multiplied by JN . Since JN is rank deficient, we are able

y[n]

a[n]

â[n]ã[n]

z−1

Q(·)

G�

N

NN

N N N

NN

S/P F�

K

N − 1

N − 1

U

U U�

ε[n]

Figure 3.2: Equalizer with Modified Error Signal for Orthogonal Modulation

to decompose JN as JN = U�
NUN , thereby using U to map the N chips of the

estimated selection vector to a transorthogonal signal set with only N−1 chips per
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symbol. This is shown in Fig. 3.2, where the structure generates identical outputs

to the original block equalizer structure shown in Fig. 3.1.

However, in the block equalizer, we can absorb U into the feedforward and

feedback equalizers, thus eliminating one column from each block equalizer so that

the size of the equalizers is reduced to F ∈ R
Nf×N−1 and G ∈ R

Ng×N−1 (and,

similarly, F [n] ∈ R
N−1×K and G[n] ∈ R

N−1×N). The new structure, shown in Fig.

3.3, requires a slight modification to the equations that describe the system model

to account for the new sizes. In particular, the equation for the decision device

y[n]

a[n]

â[n]ã[n]

z−1

Q(·)

G�

N

N

N N

N
S/P F�

K

N − 1

N − 1

N − 1

N − 1

U

U�

ε[n]

Figure 3.3: Modified Equalizer with Absorption of U�

has changed to

â[n] = Q(U�ã[n]). (3.27)

Note that, with the scalar equalizer for orthogonal modulation, we did not make

any change to the equalizer structure — we simply modified the MSE metric. Here,

however, we have modified the structure since we have absorbed U into the block

equalizer. Also, we note that now ã[n] is a vector with only N −1 elements, and so

any comparison with the (delayed) transmitted selection vectors will require that

a[n − ∆] be mapped into the equivalent signal space via multiplication with U .

This is shown in the formation of the error signal in Fig. 3.3.
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The MSE is then

JMSE(F ,G, ∆) = E
[||ã[n] − Ua[n − ∆]||22

]
(3.28)

= E
[∣∣∣∣∣∣F�

(
H(I Nc

K
⊗ S)ā[n] + w̄[n]

)
+ G�¯̂a[n − 1] − UE�

N∆ā[n]
∣∣∣∣∣∣2

2

]
= tr

(
F�

[
H(I Nc

K
⊗ S)Raa(I Nc

K
⊗ S)�H� + Rww

]
F

+2F�H(I Nc
K

⊗ S)RaâG − 2F�H(I Nc
K

⊗ S)RaaEN∆U�

+G�RââG − 2G�R�
aâEN∆U� + UE�

N∆RaaEN∆U�
)

.

where as before,

Raa � E[ā[n]ā�[n]]

Raâ � E[ā[n]¯̂a
�
[n − 1]]

Rââ � E[¯̂a[n − 1]¯̂a
�
[n − 1]]

Rww � E[w̄[n]w̄�[n]]. (3.29)

Under the assumption of correct feedback, we substitute (3.11), (3.22), and (3.23)

to give

Raa =
1

N2

[
1NcN

K
×NcN

K
+ (I Nc

K
⊗ (NIN − 1N×N))

]
(3.30)

Raâ = RaaΣ
�
N∆ (3.31)

Rââ = ΣN∆RaaΣ
�
N∆ (3.32)

=
1

N2

[
1Ng×Ng + (I Ng

N

⊗ (NIN − 1N×N))
]
. (3.33)

where the definition of ΣN∆ was given in (3.21). To find the optimal feedback
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filter, we take the derivative with respect to G, set to zero and solve for G, giving

1

2

∂JMSE(F ,G, ∆)

∂G = R�
aâ(I Nc

K
⊗ S)�H�F + RââG − R�

aâEN∆U�

= 0

=⇒ RââG∗ = R�
aâ

[
EN∆U� − (I Nc

K
⊗ S)�H�F

]
. (3.34)

However, solving this expression for G∗ requires inversion of Rââ. The matrix

Rââ has exactly the form addressed by Lemma 3.1 (for b = Ng/N); thus, Rââ

has nullity Ng/N − 1. However, the linear system (3.34) is consistent since the

right side of the equation is in the column space of Rââ, which follows from the

definitions of the correlation matrices in (3.31) and (3.32). Thus, (3.34) is an

underdetermined system with an infinite number of solutions. Consequently, we

have flexibility in our a choice of G∗. We now consider two such choices, both of

which lend themselves to simple adaptive implementations.

One possibility is to find a solution that attempts to minimize the effects of

error propagation. As discussed in [19], large taps in the feedback portion of DFEs

have a tendency to enhance the effects of error propagation. A sensible approach,

then, is to use the minimum �2 norm solution of G∗, which is found easily by

multiplying both sides of (3.34) with the Moore-Penrose pseudo-inverse of Rââ.

This solution may give a small performance improvement in environments with

significant symbol errors.

Alternatively, we can make another choice of G∗ which incurs a computational

savings, by constraining entire rows of G∗ to be zero.

Lemma 3.2. Existence of G∗ with zeroed rows

For some G∗∗ ∈ R
Ng×N−1 satisfying (3.34), there exists another G∗ that also

satisfies (3.34), but where the Ng/N − 1 rows of G∗ with indices Ni for i ∈
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{1, 2, . . . , Ng/N − 1} are all zero.

Proof. We show a proof by construction. Consider constructing G∗ from G∗∗ via

the transformation

G∗ =
(
INg + A

)G∗∗

where A ∈ R
Ng×Ng is a matrix of all zeros with the exception of the columns

indexed by Ni, for i given above. These columns of A equal the vector

vNi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1N×1

0N(i−1)×1

−1N×1

0Ng−N(i+1)×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0i−1×1

−1

0Ng/N−i−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ 1N×1.

Under this construction, the Nith row of A is all zeros except for a −1 in the Nith

column. Thus, the rows of
(
INg + A

)
indexed by Ni are all zeros, and therefore

G∗ has zeros in the desired location under this transformation. Now, we only need

to show that G∗ still satisfies (3.34). Note that

RââvNi =
1

N2

[
1Ng×Ng + (I Ng

N

⊗ (NIN − 1N×N))
]
vNi

=
1

N2
(I Ng

N

⊗ (NIN − 1N×N))vNi

= 0Ng×1

so all the columns of A are in the nullspace of Rââ. Consequently,

RââG∗ = Rââ

(
INg + A

)G∗∗

= RââG∗∗.

�
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Thus, for any feedback equalizer of length Ng, only Ng − Ng/N + 1 of the

taps need to be in use. We note that any choice of G∗ satisfying (3.34) will have

the same performance (under the assumption of correct feedback), so constraining

some taps to zero as described by Lemma 3.2 seems the most sensible since it

incurs a reduction in complexity. To clarify, for a G∗ constructed this way, the

first row of each N × N − 1 sub-block will be all zero, with the exception of the

very first row of the matrix. Using × to indicated non-zero values, G∗ can then be

made to have the following form, where the partitions occur every N rows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × · · · ×
× × · · · ×
...

× × · · · ×
0 0 · · · 0

× × · · · ×
...

× × · · · ×
...

...

0 0 · · · 0

× × · · · ×
...

× × · · · ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that, rather than use a feedback filter with zeroed rows, a practical implemen-

tation could equivalently decimate the unneeded elements in the input regressor,

¯̂a[n − 1].
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We define R−
ââ to be the matrix 1-inverse1 of Rââ that results in the desired

rows of G∗ being zeroed, and this matrix can be found using the construction in

Lemma 3.2. Thus,

G∗ = R−
ââR

�
aâ

[
EN∆U� − (I Nc

K
⊗ S)�H�F

]
. (3.35)

Now, for the feedforward taps, we proceed by taking the derivative of the MSE

with respect to F , substituting G∗, and setting to zero to give

1

2

∂JMSE(F ,G∗, ∆)

∂F = H(I Nc
K

⊗ S)Raa(I Nc
K

⊗ S)�H�F + RwwF

+H(I Nc
K

⊗ S)RaâG∗ − H(I Nc
K

⊗ S)RaaEN∆U�

=
(
H(I Nc

K
⊗ S)R(I Nc

K
⊗ S)�H� + Rww

)
F

−H(I Nc
K

⊗ S)REN∆U�

= 0

=⇒ F∗ =
(
H(I Nc

K
⊗ S)R(I Nc

K
⊗ S)�H� + Rww

)−1

·H(I Nc
K

⊗ S)REN∆U� (3.36)

where

R � Raa − RaâR
−
ââR

�
aâ

3.3.3 Transorthogonal Modulation

For transorthogonal modulation, the selection vectors a[n] have identical statistics

to orthogonal modulation; the only difference is that now S�S �= IN , but instead

S�S = JN . However, this does not change the MMSE equalizer design equations

1An n×m matrix A− is a 1-inverse of a m×n matrix A for which AA−A = A.
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at all. For completeness, we repeat the DFE MMSE design equations:

G∗ = R−
ââR

�
ââ

[
EN∆U� − (I Nc

K
⊗ S)�H�F

]
(3.37)

F∗ =
(
H(I Nc

K
⊗ S)R(I Nc

K
⊗ S)�H� + Rww

)−1

·H(I Nc
K

⊗ S)REN∆U� (3.38)

where

R � Raa − RaâR
−
ââR

�
aâ

Raa =
1

N2

[
1NcN

K
×NcN

K
+ (I Nc

K
⊗ (NIN − 1N×N))

]
(3.39)

Raâ = RaaΣ
�
N∆ (3.40)

Rââ =
1

N2

[
1Ng×Ng + (I Ng

N

⊗ (NIN − 1N×N))
]

(3.41)

Rww � E[w̄[n]w̄�[n]] (3.42)

and R−
ââ is the 1-inverse of Rââ obtained via Lemma 3.2.

3.4 Conditions for Perfect Linear Equalization

For the block equalizer, we consider the conditions that permit a feedforward

equalizer to perfectly invert the channel for these modulations. As we did for the

scalar equalizer, we assume in this section that there is no feedback equalizer, no

noise, and therefore perfect equalization arises when the MSE is zero.

3.4.1 Biorthogonal Modulation

With no noise and no feedback section, the MSE reduces to

JMSE(f , ∆) = tr
(F�HeffH�

effF − 2F�HeffEN∆ + E�
N∆EN∆

)
= tr

([F�Heff − EN∆

] [F�Heff − EN∆

]�)
= ||F�Heff − EN∆||2fro
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where || · ||fro denotes the Frobenius matrix norm and

Heff = H(I Nc
K

⊗ S). (3.43)

For the MSE to be zero, then, we require

H�
effF = E�

N∆ (3.44)

and therefore Heff ∈ R
Nf×NcN/K must be tall and full rank, leading to the following

three conditions for perfect equalization:

1. Length Condition: For F to satisfy (3.44) for arbitrary ∆, Heff must be

a tall matrix. Hence, it is required that Nf ≥ (Nf + Nh − 1)N/K, or

Nf ≥ N

K − N
(Nh − 1). (3.45)

2. Source Condition: In the length condition above, we note the presence of

K − N in the denominator. For biorthogonal modulation, all of the signal

sets require K ≥ N (from Table 1.2). However, if a signal set is employed

where K = N , the length condition goes to infinity, and equalization with a

finite length linear equalizer is not possible. Thus, we require K > N .

3. Disparity Condition: For F to satisfy (3.44) for arbitrary ∆, Heff must

have full column rank.

3.4.2 Orthogonal and Transorthogonal Modulation

With no noise and no feedback section, the MSE reduces to

JMSE(f , ∆) = tr
(
F�

[
H(I Nc

K
⊗ S)Raa(I Nc

K
⊗ S)�H�

]
F

−2F�H(I Nc
K

⊗ S)RaaEN∆U� + UE�
N∆RaaEN∆U�

)
.
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From Lemma 3.1, the nullity of Raa ∈ R
NcN/K×NcN/K is Nc/K−1, and there exists

a decomposition Γ�
aaΓaa = Raa where Γ ∈ R

Nc(N−1)/K+1×NcN/K . Letting

Heff = H(I Nc
K

⊗ S)Γ�
aa

the MSE becomes

JMSE(f , ∆) = tr
(F�HeffH�

effF − 2F�HeffΓaaEN∆U�

+UE�
N∆Γ�

aaΓaaEN∆U�)
= tr

([F�Heff − UE�
N∆Γ�

aa

] [F�Heff − UE�
N∆Γ�

aa

]�)
=

∣∣∣∣F�Heff − UE�
N∆Γ�

aa

∣∣∣∣2
fro

yielding the condition for perfect equalization as

H�
effF = ΓaaEN∆U�. (3.46)

and therefore Heff ∈ R
Nf×Nc(N−1)/K+1 must be tall and full rank, leading to the

following three conditions for perfect equalization:

1. Length Condition: For F to satisfy (3.46) for arbitrary ∆, Heff must be

a tall matrix. Hence, it is required that

Nf ≥ Nh(N − 1)

K − N + 1
− 1 (3.47)

2. Source Condition (Transorthogonal Modulation only): In the length

condition above, we note the presence of K −N − 1 in the denominator. For

orthogonal modulation, all of the signal sets require K ≥ N (from Table 1.2),

so the denominator can never be zero, and perfect equalization is possible

with all orthogonal signal sets. For transorthogonal modulation, signal sets

require K ≥ N − 1, Thus, if a transorthogonal signal set is employed where
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K = N − 1, the length condition goes to infinity, and equalization with

a finite length linear equalizer is not possible. Hence, for transorthogonal

modulation, we require K ≥ N .

3. Disparity Condition: For F to satisfy (3.46) for arbitrary ∆, Heff must

have full column rank.

Interestingly, we need not impose a source condition on S for orthogonal modula-

tion. So long as the length and disparity conditions are satisfied, any orthogonal

signal set admits an F yielding perfect linear equalization.

3.4.3 Example: Biorthogonal Modulation

Here, we revisit the example presented in Section 2.4.2 where we saw that perfect

equalization was not possible with the scalar equalizer. We have

S =
1√
2

[
+1 0
0 +1

+1 0
0 −1

]
.

so that K = 4 and N = 2. This satisfies the source condition for block equalization

of biorthogonal modulation, i.e. K > N .

Thus, the block equalizer enables perfect equalization for a larger class of signal

sets. From (3.45), the equalizer length condition then becomes

Nf ≥ Nh − 1.

3.4.4 Example: 3-ary Pulse Position Modulation

Here, we revisit an example presented in Section 2.4.4 where perfect equalization

was not possible. We consider orthogonal modulation with S = I3, corresponding

to 3-ary PPM. As we have mentioned in Section 3.4.2, all orthogonal signal sets lead
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to perfect equalization, so long as the length and disparity conditions are satisfied.

While the disparity condition will be channel-dependent, the length condition from

(3.47) becomes, for N = K = 3,

Nf ≥ 2Nh − 1 (3.48)

thus requiring the equalizer to be twice as long as the channel. If 2× oversampling

were employed with 3-ary PPM, resulting in the zero-padded orthogonal signal set

S′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where K ′ = 6 and N ′ = 3, the feedforward equalizer length condition becomes

N ′
f ≥ N ′

h

2
− 1

effectively requiring the equalizer to be half the length of the fractionally spaced

channel of length N ′
h. However, to compare the two systems fairly on the same

bandlimited channel, it is important to note that the length of the fractionally

sampled channel N ′
h would be effectively twice the length of the chip-spaced channel

Nh. Thus, the use of a fractionally-spaced equalizer gives significant benefit since

it only needs to be roughly equal in length to the chip-spaced channel (i.e. N ′
f ≥

N ′
h/2−1 ≈ Nh−1), whereas the chip-spaced equalizer needs to be twice the length

(i.e. Nf ≥ 2Nh − 1).
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3.5 LMS Adaptation

Since the mean-squared error is again quadratic, we can use the LMS algorithm to

calculate the matrices F∗ and G∗ adaptively when training data is available. To

derive the update equation, we first take the instantaneous derivative of the MSE

as described in Section 2.5. For biorthogonal modulation, taking the instantaneous

derivative of (3.13) results in the matrices

1

2

∂ĴMSE

∂F = ȳ[n] [ã[n] − a[n − ∆]]�

1

2

∂ĴMSE

∂G = ¯̂a[n − 1] [ã[n] − a[n − ∆]]� .

This results in the LMS update equations for biorthogonal modulation as

εLMS[n] = ã[n] − a[n − ∆]

FLMS[n + 1] = FLMS[n] − µ1
∂ĴMSE

∂F
= FLMS[n] − µ1ȳ[n]ε�LMS[n]

GLMS[n + 1] = GLMS[n] − µ2
∂ĴMSE

∂G
= GLMS[n] − µ2

¯̂a[n − 1]ε�LMS[n]

where µ1, µ2 are small positive step-sizes which serves to average out the noise in

the gradient estimate. Again, the presence of a[n−∆] in the error term implies the

availability of training data. When training data is unavailable, we can feed back

the output of the decision device â[n] instead, arriving at the DD-LMS update

equations for the block equalizer,

εDD[n] = ã[n] − â[n]

FDD[n + 1] = FDD[n] − µ1ȳ[n]ε�DD[n]

GDD[n + 1] = GDD[n] − µ2
¯̂a[n − 1]ε�DD[n]



74

The LMS update equations for orthogonal and transorthogonal modulation

follow similarly, with a minor change to the error term:

εLMS[n] = ã[n] − Ua[n − ∆]

We recall that Rââ is non-invertible for orthogonal and transorthogonal modula-

tion, and consequently the the optimal feedback filter G can assume an infinite

number of possibilities. In Section 3.3.2, we presented a particular choice of G
that involved constraining some of the rows to zero (or, equivalently, decimating

the input to the feedback equalizer). During adaptation with LMS, this constraint

can be imposed, as well, to benefit from the computational savings it provides.

Without a constraint, the system is underdetermined and GLMS[n] may wander

through the subspace of allowable MMSE solutions.

From an error propagation perspective, however, it may be preferable not to

impose a constraint. While the choice of constraint has no affect on the perfor-

mance of the DFE in the absence of decision errors, some constraints may be

better than others in the presence of decision errors. It was reported in [12] that

the MMSE adaptation mechanism in the presence of error propagation may find a

better answer than the solution computed in the absence of decision errors.

3.6 Computational Complexity Comparison

We now compare the computational complexity of the scalar equalizer from Chap-

ter 2 to that of the block equalizer by evaluating the number of scalar multiply

operations required to equalize one symbol. We assume that the equalizer taps

have already been calculated, and focus our complexity comparison on the opera-

tion of the equalizer.
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To equalize one chip with the scalar equalizer, the feedforward section requires

Nf multiplies. Since there are K chips per symbol, the feedforward section requires

KNf multiplies per symbol. The feedback section of the scalar equalizer requires

Ng multiplies per selection vector chip. Since there are N chips per selection vector,

the feedback section requires NNg multiplies per symbol. The scalar equalizer also

needs to perform a correlation via multiplication with S�. In practice, S� will

likely contain only {−1, 0, 1}, and thus no multiplication is required. However, if

this is not the case, the correlation will require KN multiplies per symbol (since

there are KN elements in S). Thus, the total cost in multiply operations of

equalizing one symbol with the scalar equalizer is

scalar equalizer (all modulations) : KNf︸ ︷︷ ︸
feedforward

+ NNg︸ ︷︷ ︸
feedback

+ KN︸︷︷︸
correlation

.

The block equalizer structure is slightly different for biorthogonal modulation

vs. orthogonal and transorthogonal modulation. First, we consider the computa-

tion involved for block equalization of biorthogonal modulation. The feedforward

equalizer requires NNf multiplies per symbol, while the feedback equalizer re-

quires NNg multiplies per symbol. Hence, for block equalization of biorthogonal

modulation, the number of multiplies is

block equalizer (biorthogonal) : NNf︸ ︷︷ ︸
feedforward

+ NNg︸ ︷︷ ︸
feedback

.

Since we always have N ≤ K for biorthogonal modulation, the complexity of the

block equalizer is always less than or equal to the complexity of the scalar equalizer.

Now, we consider block equalization of orthogonal and transorthogonal modu-

lations. Due to the absorption of U into the equalizer for these modulations, F
and G each have one less column. In addition, we were able to constrain Ng/N −1
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rows of G to be zero. Hence, for orthogonal and transorthogonal modulation, the

number of multiplies is

block equalizer (orthogonal and
transorthogonal) : (N − 1)Nf︸ ︷︷ ︸

feedforward

+ (N − 1)(Ng − Ng/N + 1)︸ ︷︷ ︸
feedback

which is less than that for biorthogonal modulation.

3.7 Simulated Example

Here, we compare the performance of our equalizer to one proposed in [2]. We use

the same simulation setup used in [2], where orthogonal modulation is used with

S = I2, h = [1 −1 1]�/
√

3, and the noise is AWGN. For our MMSE equalizer,

we chose Nf = 5, Ng = 2, and ∆ = 1. The results are shown in Fig. 3.4, and the
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Figure 3.4: Comparison of ZF and MMSE bit error rate.

proposed MMSE equalizer demonstrates approximately a 3 dB performance gain

over the ZF scheme of [2], even at high SNR.

Typically ZF equalizers have similar performance to MMSE equalizers in an

ISI-dominated regime where the SNR is high. However, this is not the case here
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because our proposed structure is fundamentally different in the way we perform

the feedforward equalization. In the scheme of [2], the feedfoward equalizer F

will always be a square lower triangular Tœplitz matrix, so the (N − 1)-th chip of

each symbol effectively has no feedforward equalization – only a gain. Since our

proposed scheme does not impose this structure, it has a better ability to suppress

ISI in addition to having less noise enhancement. We note that the equalization

parameters were chosen so that the two schemes have equivalent computational

complexity.



Chapter 4

Blind Equalization of Energy Efficient

Modulations

The previous chapters largely assumed that the communication channel was known,

or that sufficient training data was available so that LMS could be used to adap-

tively determine the equalizer coefficients. The one exception was the decision-

directed LMS algorithm, which can be used in the absence of training data. How-

ever, decision-directed algorithms are notoriously sensitive to initialization [26]. In

this chapter, we demonstrate the unsuitability in using DD-LMS for cold startup

of the equalizer. We will highlight some specific examples where DD-LMS fails,

and will revisit these examples in the next chapter when we investigate new blind

algorithms. We then consider the use of existing stochastic blind algorithms with

these modulations, and show that they, too, are unsuitable for use with energy

efficient modulations. Finally, we provide a general discussion of blind algorithm

development, including the desired properties of blind algorithm cost functions, a

methodology for algorithm assessment, and guidelines for selecting cost functions.

4.1 Preliminaries

In this chapter, we focus on the use of stochastic gradient-descent algorithms for

use in situations where the channel is unknown and training data is not available

78
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(or is insufficient). There has been a flurry of research activity in the related area of

subspace algorithms based on second-order statistics. However, such algorithms are

known to suffer from robustness problems [7] and require multiple receive antennas,

oversampling, or some other technique to make the effective channel matrix be

tall,; consequently, we restrict our attention to stochastic gradient descent-based

schemes.

We focus on the scalar equalizer of Chapter 2, and consider blind adaptation

of the linear feedforward portion of the equalizer only. Though the performance of

the scalar equalizer is inferior to the block equalizer in some situations, the scalar

equalizer is simpler since there is only a single filter to adapt rather than a bank

of filters. Removing the feedback filter simplifies the system considerably, as well,

since we do not need to be concerned with the effects of error propagation1. If we

find a blind algorithm that succeeds in opening the eye with the scalar equalizer,

we could reap the additional benefits of the block equalizer by using the scalar-

to-block mapping (3.5)-(3.6), and then continuing adaptation with DD-LMS. The

system model is shown in Fig. 4.1. The equations to described the system model

z[n]y[n]

w[n]

â[n]ã[n]

decision device

channeltransmitter equalizer

x[n]

Q(·)
a[n]

h f
NNN

P/S S/PS S�

KK

Figure 4.1: System Model for Blind Adaptation

1Though we focus on linear equalizers for the remained of the dissertation, Ap-
pendix F contains an extension of an algorithm studied in Chapter 5 that includes
a decision feedback equalizer.
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are identical to those in Chapter 2, but with the removal of the feedback filter,

giving

Y [n] = HX[n] + W [n] (4.1)

z[n] = Y �[n]f (4.2)

ã[n] = S�z[n]. (4.3)

We recall that X[n] and Y [n] are Hankel matrices containing the transmitted and

received waveform chips, respectively. Thus, we are only concerned with blind

adaptation of a single filter, f .

In blind equalization, we assume that the receiver has no knowledge of the

channel taps. We do assume, however, that the receiver has knowledge of the

modulation scheme and signal set S in use. Consequently, the receiver must adapt

the equalizer based only on the received signal, Y [n].

We note that blind equalizers have several inherent ambiguities:

• Sign Ambiguity (biorthogonal modulation only): Consider two chan-

nels H1 and H2 where H2 = −H1. Next, consider a sequence of biorthogo-

nal chips generated at the transmitter, denoted X1[n], and another sequence

X2[n] constructed as X2[n] = −X1[n]. If X1[n] is a valid biorthogonal

chip sequence, then so is X2[n]. In the absence of noise, the corresponding

received signals are

Y 1[n] = H1X1[n]

Y 2[n] = H2X2[n]

= (−H1)(−X1[n])

= Y 1[n].
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Clearly, then, two different sequences passing through two different chan-

nels can generate the same received signal. Thus, there is no hope that a

blind equalizer will be able to recover the sign information when it only has

knowledge of Y [n].

• Whole Symbol Delay Ambiguity: Consider two chips steams, X1[n]

and X2[n] where X2[n] = X1[n+∆] is an advanced version of X1[n]. Next,

consider two channels H1 and H2 where H2 is a delayed version of H1,

where the delay is K∆ chips (i.e. ∆ symbols). Subsequently, Y 1[n] = Y 2[n],

so again two different sequences passing through two different channels can

generate the same received signal, thus implying the inability of a blind

equalizer to recover the channel delay.

• Partial Symbol Delay Ambiguity (biorthogonal modulation only):

To construct the whole symbol delay above, we chose the chip delay to be a

multiple of K. However, depending on the choice of S, some signal sets will

exhibit a partial symbol delay ambiguity. Consider, for example, biorthogo-

nal modulation where S is the 2 × 2 Hadamard matrix,

S =
1√
2

⎡
⎢⎣1 1

1 −1

⎤
⎥⎦ .

The possible symbols are then

√
2x[n] ∈

⎧⎪⎨
⎪⎩
⎡
⎢⎣1

1

⎤
⎥⎦ ,

⎡
⎢⎣ 1

−1

⎤
⎥⎦ ,

⎡
⎢⎣−1

1

⎤
⎥⎦ ,

⎡
⎢⎣−1

−1

⎤
⎥⎦
⎫⎪⎬
⎪⎭

which comprise all possible combinations of ±1, so that a chip stream orig-

inating from this signal set can contain any sequence of ±1. Thus, for any

signal originating from this signal set, a 1-chip delay is also a valid biorthogo-

nal signal for the same choice of S. For example, the following two sequences
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are both valid, where the second is a 1-chip delay of the first and signal

boundaries are indicated by |:

+1,−1
∣∣∣ + 1, +1

∣∣∣ − 1, +1
∣∣∣ − 1,−1

∣∣∣ − 1, +1
∣∣∣ − 1, +1

∣∣∣ + 1

+1
∣∣∣ − 1, +1

∣∣∣ + 1,−1
∣∣∣ + 1,−1

∣∣∣ − 1,−1
∣∣∣ + 1,−1

∣∣∣ + 1 + 1

Thus, we see there are several ambiguities which we cannot expect the blind equal-

izer to recover.

On a related note, we point out the decision device can make two types of

errors:

• Type I error: This error occurs when the decision device decides that the

wrong waveform (i.e. wrong column of S) was transmitted.

• Type II error: This error occurs when the decision chooses the correct

waveform, but chooses the wrong sign. This can only happen with biorthog-

onal modulation.

Consequently, in a blind scenario, we must accept the situation where the decision

device consistently makes Type II errors (due to the sign ambiguity). However, such

a situation is not serious since it can be overcome through a variety of techniques,

such as differential encoding.

4.2 Unsuitability of DD-LMS for Cold Startup

4.2.1 Biorthogonal Modulation

Decision directed adaptive equalizers are notoriously sensitive to initialization [26],

and generally require a nearly open eye initialization to ensure a sufficiently low
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symbol error rate. An open eye condition is the situation where the decision device

makes no errors in the absence of noise. Unfortunately, the open eye regime for

energy efficient modulations can be smaller than the open eye regime for traditional

BPSK. The open eye condition for BPSK requires the channel coefficients satisfy

|h[n]| >
∑

m�=n |h[m]| where h[n] is the dominant tap. The open eye condition

for the energy efficient modulations depends on the underlying orthonormal basis

vectors S, and therefore a simple inequality is not possible. However, we consider

several examples.

For the particular choice of parameters S = I2 and Nh = 3, the open eye

conditions can be found by considering all of the possible channel outputs. For an

open eye, one of the following 3 conditions must be satisfied (depending on which

tap is the dominant tap):⎧⎪⎨
⎪⎩

|h[0]| > 2|h[1]| − h[2] sgn(h[0])

|h[0]| > |h[1]| + |h[2]|

or

⎧⎪⎨
⎪⎩

|h[1]| > 2|h[0]| + |h[2]|
|h[1]| > |h[0]| + 2|h[2]|

(4.4)

or

⎧⎪⎨
⎪⎩

|h[2]| > −h[0] sgn(h[2]) + 2|h[1]|
|h[2]| > |h[0]| + |h[1]|

where sgn is the signum function. A 2-D slice of the open eye region for both

BPSK and biorthogonal modulation when h[0] is the dominant tap is compared

in Fig. 4.2. As shown, the open eye region for biorthogonal modulation is

smaller than that for BPSK. Intuition as to why the open eye regime is smaller in

general for biorthogonal modulation comes about by considering that biorthogonal

modulation can make both Type I and Type II errors, whereas BPSK can only

make Type II errors. In order to prevent both types of errors, the allowable channel
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h[2]h[2]

h[1]h[1]

|h[0]||h[0]|

−|h[0]|−|h[0]|

BPSK biorth

Figure 4.2: Example Open Eye Regions for BPSK and Biorthogonal Modu-
lation

coefficients for an open eye in BOM have to satisfy a greater number of inequalities

to ensure that K adjacent chips are relatively ISI-free. Decision directed adaptation

is generally not a good choice for cold startup of BPSK equalizers [26], and the

situation may only be worse for biorthogonal signals.

To further illustrate the fact that DD-LMS is indeed sensitive to initialization,

we consider a specific low-dimensional example which permits an exact expression

of the cost in terms of c, the combined channel/equalizer coefficients. Recall the

DD-LMS update equation from Section 2.5,

fDD[n + 1] = fDD[n] − µ1Y [n]S(ã[n] − â[n]).

While the trained LMS algorithm was obtained by taking the instantaneous gra-

dient of the MSE, we note the interesting fact that the cost function

JDD(f) = E
[||S�z[n]||22 − 2||S�z[n]||∞ + 1

]
(4.5)

has instantaneous gradient that coincides exactly with decision directed LMS when

using the Euclidean distance detector.

For our example, we ignore the AWGN, we let S = I2, and we consider only

two taps (i.e. Nc = 2) so that we can visualize the cost surface. Though this choice
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of system parameters may seem too simplistic to be practical, analysis of decision-

directed equalizers is particularly difficult due to the presence of discontinuous

functions (i.e. the decision device) [26], and this example is only meant to demon-

strate that the DD-LMS algorithm has false local minima even in low-dimensional

noiseless scenarios.

For this choice of system parameters, the cost (4.5) becomes

JDD(c) = −1

8

(
4|c[0] + c[1]| + 4|c[0] − c[1]| + |c[0] + 2c[1]|

+6|c[0]| + |c[0] − 2c[1]|) + c[0]2 + c[1]2 + 1

which is plotted in the combined channel/equalizer space in Fig. 4.3, with the

minima indicated by asterisks. Ideally, this cost function would only have minima

−1 0 1

−1

0

1

c[0]

c[
1]

S=Identity

Figure 4.3: Example cost surface for DD-LMS

at single spike solutions; indeed, we note the appearance of local minima at the

desired location c = ±[1, 0]�. However, we also note that there are false minima at

c = ±[3/8, 3/4]� and c = ±[3/8, −3/4]�. This verifies our claim that DD-LMS is
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sensitive to initialization. As the length of the channel/equalizer space is increased,

the number of false local minima of the highly faceted DD-LMS cost surface only

grows. This motivates the search for blind methods of equalizer adaptation for

biorthogonal modulation other than decision direction.

The ideal blind algorithm would be globally convergent, so that all local minima

of the multimodal cost surface achieve the same globally optimized performance

cost. If such an ideal algorithm cannot be found, however, we would settle for

an algorithm with some false minima so long as the regions of attraction of the

desirable local minima were larger than for DD-LMS.

4.2.2 Orthogonal and Transorthogonal Modulation

As we have mentioned, we must accept a sign ambiguity for biorthogonal modu-

lation, and in some sense a simple sign flip is “okay” because the decision device

makes consistent Type II errors. Signals from orthogonal and transorthogonal

modulation do not exhibit sign ambiguities, and Type II errors have no meaning.

Consequently, an uncorrected sign flip causes the decision device for orthogonal

and transorthogonal modulation to always make (inconsistent) Type I errors.

To see this, consider the example of 3-ary PPM, which arises when S = I3.

Let the channel be a simple phase change so that h = −1. An example received

signal is then

transmitted: x[n] =

⎡
⎢⎢⎢⎢⎣

0

1

0

⎤
⎥⎥⎥⎥⎦ received: y[n] =

⎡
⎢⎢⎢⎢⎣

0

−1

0

⎤
⎥⎥⎥⎥⎦

However, if the sign is not corrected, the “choose max” decision device will clearly

make a wrong decision, by deciding that either [1, 0, 0]� or [0, 0, 1]� was sent with
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equal probability. Continuing with this 3-ary PPM example, we now consider a

channel of length Nh = 3. The open-eye region for this case becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h[0] > |h[1] − h[2]|
h[0] > h[1]

h[0] > h[2]

or

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h[1] > |h[0] − h[2]|
h[1] > |h[0]|
h[1] > |h[2]|
h[1] > h[0] + h[2]

(4.6)

or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h[2] > |h[0] − h[2]|
h[2] > h[0]

h[2] > h[1]

As opposed to the open eye region for biorthogonal modulation (4.4), we note that

here the dominant tap must be positive. Thus, the region is considerably smaller

since the eye is always closed when the dominant tap is negative. Since the decision

device always makes errors in cases when the dominant tap is negative, decision

directed LMS is highly sensitive to initialization when used with orthogonal and

biorthogonal modulations.

To verify the poor performance of DD-LMS in the presence of a negative tap, we

ran a simulation of the 3-ary PPM setup with a simple phase-change channel where

h = −1. We set the number of equalizer taps to Nf = 3 with the initialization

f = [1, 0, 0]�. Thus, at the initialization, the combined channel/equalizer response

is a simple phase-change with no ISI. The desired equalizer setting (resulting in

zero errors and zero MSE) is given by f ∗ = [−1, 0, 0]�, which inverts the phase

change introduced by the channel. We ran the simulation in the absence of noise,
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and the equalizer converged to f = [0.4724, 0.6175,−0.3885]� as shown in Fig.

4.4. This equalizer setting results in ISI enhancement, and so DD-LMS is quite

useless in this case.
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Figure 4.4: Convergence of DD-LMS to False Minima

4.3 Unsuitability in Using Classical Blind Approaches

When faced with the task of designing a blind adaptive equalization algorithm

for a new modulation scheme, a natural path is to consider the use of classical

approaches to blind equalization. In the realm of stochastic gradient descent-

based blind algorithms, two most common algorithms are the constant modulus

algorithm (CMA) [13][42] and the Shalvi-Weinstein algorithm (SWA) [33].

As mentioned in Section 1.5, binary biorthogonal and binary transorthogonal

modulation reduce to BPSK. Likewise, in biorthogonal modulation when K = 2

and S is chosen to be the Hadamard matrix (as was considered when addressing

partial symbol delays in Section 4.1), the chips have statistics identical to a BPSK
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source. Thus, we can expect the classical blind algorithms to work fine for some

very particular choices of K and S. However, the classical blind algorithms will

not work in general, as we now explain with several examples.

4.3.1 The Constant Modulus Algorithm

The CMA performs gradient descent of the cost

JCMA(f) = E
[
(z2[Kn − k] − 1)2

]
(4.7)

where the underlying random source x[Kn− k] is assumed to be i.i.d. As we have

mentioned, the i.i.d. assumption does not hold in general for (bi/trans)orthogonal

modulation, and so standard convergence analyses of the CMA are not applicable.

However, we overlook this detail for now. The fourth-order cumulant (or kurtosis)

of a zero-mean real-valued random process, defined as

C4(x[Kn − k]) � E[x4[Kn − k]] − 3E[x2[Kn − k]]2

is a frequently encountered quantity in the analysis of blind algorithms. First,

considering a biorthogonal system with S = I, we have C4(x[Kn − k]) = 1/K −
3/K2, which is leptokurtic (i.e. greater than zero) for K > 3. It is well known

[18][23] that for leptokurtic sources, the CMA results in ISI enhancement. Thus,

due to the non-i.i.d. and leptokurtic nature of the biorthogonal signal, the CMA is

not a suitable choice as for blind equalization of biorthogonal signals. Orthogonal

and transorthogonal signals, in addition to not satisfying the i.i.d. requirement,

have correlation among adjacent chips. Thus, since the CMA suffers from spurious

local minima when used with correlated sources [23], the CMA is not suitable for

these modulations, either.
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4.3.2 The Shalvi-Weinstein Algorithm

The SWA, on the other hand, maximizes the magnitude of the kurtosis of the

equalizer output,

JSWA(f) = |C4(z[Kn − k])| (4.8)

with a unit-norm constraint on the equalizer taps, and is suitable for use on sources

that are leptokurtic. Note that the SWA is a constrained algorithm and has the

additional requirement that pre-whitening be performed before equalization so that

the effective channel is white. The rationale for this criterion (4.8) is based on the

fact (see theorem in [33]) that when the equalizer output power equals the power

of the source process, the magnitude of the channel/equalizer output kurtosis is

less than or equal to the magnitude of the source kurtosis, or |C4(z[Kn − k])| ≤
|C4(x[Kn−k])|. Equality occurs when ISI has been eliminated, and so constrained

maximization of (4.8) seems like a sensible approach. As is the case with the

CMA, however, the standard analysis [33] of the SWA also assumes that the source

is i.i.d. Again using biorthogonal modulation for illustration with S = I but

K = 2, we have source kurtosis |C4(x[Kn − k])| = 1/4. Up to now all kurtosis

values have not depended on a time index due to coincidental choice of system

parameters, but in general the kurtosis of a non-i.i.d. random process is time-

varying. In the case of a biorthogonal signal, the kurtosis is periodically time-

varying and is generally different for each of the K polyphases. Let the combined

channel/equalizer response be c = [1, 1]�/
√

2, giving z[Kn − k] = (x[Kn − k] +

x[Kn−k−1])/
√

2 where we have satisfied the condition that the equalizer output
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power equals the power of the source process. After some algebra, we then have

|C4(z[Kn − k])| =

⎧⎪⎨
⎪⎩

1/2 k = 0

1/8 k = 1
,

giving |C4(z[Kn − 1])| < |C4(x[Kn − k])| < |C4(z[Kn])| which violates the fact

upon which the motivation for SWA was based. Thus, the non-i.i.d. nature of

the biorthogonal signal renders the SWA unsuitable as a candidate algorithm.

Transorthogonal and orthogonal modulation fail for the same reasons – the lack of

an i.i.d. source, and the time-varying nature of the kurtosis.

While these two algorithms are both unsuitable for BOM signals, it is worth

pointing out that conventional use of both of these algorithms (say, with BPSK)

results in global convergence under the assumptions of an infinite length equalizer

and the absence of noise, which is a desirable feature of any candidate algorithm.

Furthermore, while these two algorithms are unsuitable in their pure form for

use with energy efficient modulations, we will investigate similar algorithms that

use the same underlying approach in Chapter 5. These new algorithms may ap-

pear quite similar to the conventional CMA and SWA, but are not the same in a

substantial, structural sense.

4.4 Desirable Properties of Blind Equalization Algorithms

In the search for blind algorithms that are suitable for use with (bi/trans)orthogonal

modulation, it is worthwhile to consider the desirable properties of such algorithms.

A first step in algorithm development is the selection of a cost function. Guide-

lines for selecting such cost functions, as well as a methodology for evaluating cost

functions will be addressed in subsequent sections. Here, we simply consider the

desirable properties of such cost functions. Along with each property, we review



92

the related known results of blind equalization algorithms for M -PAM. This com-

parison is useful because it serves as a historical reference point to help shape our

expectations for any potential blind algorithm.

In this list of desired cost function (and resulting algorithm) properties, we

note that the items on this list are more-or-less incompatible with one another:

satisfaction of one property may preclude the other properties from making sense.

However, we have placed the most desirable (if unreasonable) properties at the top

of the list. We generally adopt the MSE as the performance metric.

• Convex cost function whose single minimum occurs at minf,∆ JMSE(f , ∆).

While this is the holy grail of equalizer algorithm design, it is highly doubtful

that such a cost function exists (except perhaps in trivial cases with no noise,

unity channel, and single tap equalizer). No such blind algorithm has been

found for M -PAM.

• Multimodal cost function where all local minima of the cost surface achieve

the same globally optimized performance cost. Ideally, the locations of the

minima would coincide with (or be near) the MMSE solutions. Blind equal-

ization of M -PAM (and M -QAM) via the CMA has this property in the

absence of noise under the following two scenarios:

– Doubly infinite length equalizer [11]

– Finite-length fractionally-spaced equalizer with no noise or common

subchannel roots[24]

We note that the multiple minima in CMA correspond to different delays ∆.

• Multimodal cost function where all local minima yield acceptable performance,

though some minima have better performance. Again, the locations of the
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minima would ideally coincide with (or be near) the MMSE solutions. The

CMA exhibits this property when used for fractionally-spaced equalization of

M -PAM when modest noise is present (and there are no common subchan-

nel roots). For finite-length equalizers in the presence of noise, the MMSE

equalizer does not have the same cost at each delay, so it is reasonable to

expect the CMA to have different cost at each local minimum (i.e. delay),

too. Additionally, we note that the CMA minima do indeed stay near the

MMSE solutions [8][48] for moderate noise levels.

• Multimodal cost function with the presence of spurious local minima that

can often be avoided in practice. While this is certainly the least desired

property, it is perhaps the most common situation. False local minima can

often be avoided in practice, particularly if they have shallow regions of

attraction. Often times, the techniques for avoiding (or escaping) such false

minima are rather ad hoc and difficult to analyze. Finite-length baud-spaced

equalization of M -PAM with CMA has this property, for example, where

the spurious local minima arise because of “end effects” when significant tap

energy is clustered toward one end of the equalizer [6]. Nevertheless, these

spurious local minima have not stopped practitioners from embracing CMA

for baud-spaced equalization. Several techniques for avoiding the spurious

minima have been proposed, for example the tap-centering technique in [11].

So that our blind algorithm works in the widest range of scenarios, we also

desire the algorithm to have some level of robustness to such non-idealities as

channel noise, “bad” or peculiar channels impulse responses, and equalizers length

effects. Additionally, we desire the algorithm to converge to the desired solutions

in a reasonable amount of time.
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4.5 Methodology for Assessment of Blind Algorithms

We now describe a general strategy for the value assessment of blind adaptive

equalization algorithms based on gradient descent of multimodal cost functions.

Blind algorithms of this kind typically rely on some form of property restoral [43],

by attempting to recover properties of the original source signal that are altered

or destroyed by the communication channel. Thus, a candidate cost function is

chosen to penalize deviation from these desired properties. However, there is no

guarantee that arbitrary cost functions chosen in this way will exhibit acceptable

performance. And while algorithm performance can be verified with simulation to

some degree, a purely simulation-based value assessment provides little generaliz-

able knowledge of algorithm behavior.

Analysis of the candidate cost function in the most ideal situations is a typical

first step, since any resulting algorithm that performs poorly in the most idealized

scenarios would not generally be expected to perform any better in more practical

scenarios. Thus, in the early stages of algorithm analysis, it is reasonable to

ignore the effects of AWGN. In addition, another reasonable assumption is that

the equalizer is sufficiently long so that the desired points in the channel/equalizer

space are reachable with arbitrary precision. In most cases, the desired points

in the absence of noise amount to single-spike impulse responses, which we have

previously labelled the zero-forcing (ZF) solutions. Yet another assumption is that

the algorithm step-size is sufficiently small so that the stochastic gradient descent

algorithm exhibits mean transient and steady-state behavior very close to that of

the exact gradient descent.

Under these ideal assumptions, then, the first stage of the algorithm assessment

is concerned with whether the ZF solutions are indeed stationary points of the
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candidate cost function. For gradient descent algorithms, this amounts to verifying

that the gradient of the cost function with respect to the equalizer coefficients is

indeed zero at the ZF solutions. After demonstrating that the ZF solutions are

stationary points, the next stage of algorithm assessment is to confirm that these

stationary points are locally stable. For unconstrained gradient descent algorithms,

this amounts to verifying that the Hessian of the cost function is positive definite

at the ZF solutions. For constrained algorithms, the classification of the stationary

points can be considerably more involved since it requires perturbation analysis

or re-parameterization of the constrained cost function as an unconstrained cost

function (see, for example, [30]). At this point in the assessment, any candidate

algorithm that does not exhibit local stability around the desired solutions should

be modified or discarded.

The next phase of algorithm assessment evaluates the existence of other station-

ary points, particularly those that are false local minima. Typically, such a search

for stationary points of the algorithm is conducted under the assumption of an

infinitely long equalizer [11], so that we can invoke the assumption of an invertible

relationship between the combined channel/equalizer response and the equalizer

coefficients. Unfortunately, identification of all classes of stationary points of ar-

bitrary length is not always tractable. When such intractability persists, we are

forced to resort to searching for classes of stationary points that occur as impulse

responses with finite time support, i.e. with some finite number of contiguous

non-zero taps. Under this approach, we still assume that the equalizer has infinite

length, but we set all but a finite number Nc of combined taps in the gradient to

be zero; this allows us to work with systems of polynomials with a finite number

of terms. One technique that is indispensable in finding the stationary points of
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such systems of polynomials is the method of Gröbner bases [4], a powerful device

that generalizes Gaussian elimination to polynomial elimination, resulting in the

exact location of all stationary points.

We thus start by considering the class of all channel/equalizer combinations

with, say, Nc = 2 non-zero coefficients. The resulting gradient has only 2 vari-

ables, so we can quite easily calculate the location of all stationary points using

Gröbner bases, and can then classify them as maxima, minima, or saddle points

by examining the eigenvalues of the Hessian (with required re-parameterization

in the case of constrained algorithms). Assuming no false minima are found for

this low-dimensional example, we proceed by successively increasing the number

of non-zero taps in the channel/equalizer combination, and continue categorizing

the stationary points. The standard algorithm for computing Gröbner bases is

known as Buchberger’s Algorithm [4]; the algorithm requires significant compu-

tational power even for low-dimensional examples, and at some point Nc will be

too large to expect Buchberger’s Algorithm to converge in a reasonable amount of

time. Thus, once we grow Nc beyond a certain point, we will be forced to use a

numerical search for stationary points.

In general, stationary points found in low-dimensional examples will persist into

higher dimensions, and additionally, delayed versions obtained by adding zeros to

the front of such impulse responses will generally be stationary points, as well. That

stationary points found in low-dimensional examples persist into higher dimensions

is fairly obvious, since any finite length impulse response can be made into a longer

response by simply appending zeros to the end. To show that shifts obtained by

adding zeros to the front of causal impulse responses corresponding to stationary

points are also stationary points requires more careful examination of the gradient
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of the particular cost function under study. Assume the length Nc impulse response

c∗ is a stationary point, and that c∗[n] = 0 for n < 0 or n ≥ Nc. If it can be shown,

for some cost function J(c), that a delayed version of the impulse response results

in a simple shift of the elements of the gradient vector, i.e. for some Nz,

∂J(c)

∂c[n]

∣∣∣∣
c[n]=c∗[n]

=
∂J(c)

∂c[n + Nz]

∣∣∣∣
c[n]=c∗[n−Nz ]

(4.9)

then indeed shifted versions of stationary points will persist in higher dimensions.

The examination of finite-length channel/equalizer combined responses may not

directly lead to a statement about global convergence behavior. However, in lieu of

a global convergence proof, the technique can be used to build some confidence that

the algorithm exhibits good behavior. If, in the search for stationary points, we

observe the appearance of false local minima, we can possibly use their character

to propose a fix to the algorithm.

If false local minima are observed, we would like have some idea about their

regions of attraction in comparison to other candidate algorithms. One technique

for comparing algorithms’ regions of attraction is to initialize the algorithms to the

ZF solution, and then gradually expand the initializations in a sphere around the

ZF solution. The superior algorithm will be the one that succeeds in converging

to the ZF solution when the sphere of possible initializations is largest.

After assessing the location and character of algorithm stationary points, the

next stage of algorithm assessment is simulation in a practical scenario — on

practical channels with AWGN. Further assessment of the candidate algorithm

would include the effects of different levels AWGN, the end effects caused by using

a finite-length equalizer, and studies of the regions of attraction of false minima.
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4.6 Cost Function Selection and Property Restoral

Historically, most gradient descent-based blind equalization algorithms have been

designed to restore some property of the original signal that was destroyed by the

channel. For example, the CMA was originally developed to restore the constant

modulus of such signals [42]. Similarly, the SWA was designed to restore the

kurtosis of the source signal. Yet another example is MERRY, which attempts to

restore the redundancy of the cyclic prefix in the multicarrier context [27]. Since

the notion of property restoral has been used frequently in the development of

blind algorithms in other applications, it is worthwhile to consider what features

we observe in the energy efficient modulations considered in this dissertation.

In the following list, we use b,o, t to denote properties belonging to biorthog-

onal, orthogonal, and transorthogonal modulations, respectively:

• x[n] is zero mean (b,t)

• Ua[n] is zero mean (o,t)

• All symbols have equal power (b,o,t)*

• Chips are decorrelated when K = N (b)

• Chips within a symbol are not correlated, but chips from different symbols

are correlated (o)

• Ideal correlator outputs are (possibly negated) canonical unit vectors (b,o,t)*

This is certainly not an exhaustive list, and perhaps some properties are more

suitable than others to use in a candidate property-restoral algorithm. While most

of the properties in this list describe features of the first- and second-order statis-

tics, properties of higher-order statistics could be used in a candidate algorithm, as
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well. In fact, most stochastic gradient descent-based blind algorithms (including

CMA and SWA) are based on higher order statistics. Consequently, it is likely

to be the case that blind equalization algorithms for energy efficient modulations

would also involve higher-order statistics. In the next chapter, we will consider

two algorithms that make use of the properties indicated by a * above, and due

to the construction of the cost function these algorithms will involve higher order

statistics.



Chapter 5

Two Blind Equalization Algorithms for

Biorthogonal Modulation

In applying the property restoral-based algorithm development methodology from

the previous chapter, we had limited success in developing blind stochastic gradient

decent algorithms for orthogonal and transorthogonal modulation1. Fortunately,

we had more success in developing blind equalization algorithms for biorthogonal

modulation. In this chapter, we consider the development and analysis of two

algorithms for biorthogonal modulation. The first algorithm, called LTBOMB, is

CMA-like in spirit, and we show that the zero-forcing solutions are locally stable

under ideal conditions. The second algorithm, called TROMBONE, was designed

with a SWA-like philosophy in mind, and thus relies on a spectral prewhitener be-

fore equalization. We show that the ZF solutions are stationary points of TROM-

BONE.

5.1 Preliminaries

We continue using the system model from the previous chapter, shown in Fig. 4.1

with corresponding equations (4.1)-(4.3). Throughout this chapter, we assume the

modulation is biorthogonal, and in addition we make the simplifying assumption

1Several such attempts are provided in Appendix E.

100
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that K = N so that S is square. When S is square and orthogonal, we note

that S�S = SS� = I. From the second-order moments in (2.13), we see that by

picking S to be square, the chips effectively become decorrelated so that

E[XX�] = I. (5.1)

As discussed in Section 3.1, the chip-level random process for biorthogonal

modulation is in general a cyclostationary process, which results in the relation

E [x[n]x[m]] = E [x[n + Kp]x[m + Kp]] for all p. In this special situation where

the chips are decorrelated, however, the process becomes wide-sense stationary

since now E [x[n]x[m]] = E [x[n + p]x[m + p]] = δ[n − m]. Consequently, with

decorrelated chip statistics and no feedback equalizer, the block (polyphase) equal-

izer of Chapter 3 provides no advantage over the scalar equalizer of Chapter 2 for

biorthogonal modulation since the second-order statistics are the same for each

polyphase. In addition, we note that with K = N , perfect linear equalization is

not possible without resorting to an arbitrarily long equalizer.

Throughout this chapter, we use the abbreviation “BOM” for the special case

of biorthogonal modulation when K = N .

5.2 The LTBOMB Algorithm

5.2.1 Algorithm Description

Here, we propose the first of two gradient descent-based blind algorithms2. Most

blind algorithms inherently depend on higher order statistics, and this will be the

case for our algorithms. As shown in (5.1), the second order statistics and hence

2Portions of this work appeared in [20]
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the MMSE equalizer for a BOM signal are independent of S. However, the fourth-

order statistics of x[Kn− i] will not be independent of S, and thus we expect the

shape of the cost surface of any candidate algorithm to depend on S. For now,

we will consider the case of general S, but will later consider the specific choice

S = I. This choice of S is of interest because it was also the choice considered in

the recent UWB proposal [9].

While the samples of the chip process x[Kn− i] could assume a range of values

that are disperse (depending on the choice of S), the power of the BOM sym-

bols is a constant — a property that was mentioned in the list in Section 4.6.

Thus, as the cost function for the first blind algorithm, termed “LTBOMB” (for

Linear Transveral equalizer adaptation for BiOrthogonal Modulation, Blindly),

we choose to penalize the dispersion of the symbol power at the equalizer output,

JLTB(f) = E
[
(||z[n]||22 − 1)2

]
. (5.2)

Due to the invariance of the �2 norm to orthogonal transforms, we could equiva-

lently penalize the dispersion of the correlator output power (i.e. since ||S�z[n]||2 =

||z[n]||2). Taking the instantaneous gradient of (5.2) gives the update equation

fLTB[n + 1] = fLTB[n] − µY [n](||z[n]||22 − 1)z[n].

While at first glance this simple cost function seems to ignore a lot (and possible

too much) of the structure which is present in the BOM signal, we show that this

is not the case and we draw connections to several other blind algorithms. The

form of (5.2) looks much like the CMA, and not surprisingly reduces to the CMA

when K = 1 since the vectors become scalars. However, we note that in general

the algorithm is structurally different from CMA, due to the appearance of cross

terms upon expansion of the �2 norm which we will see in (5.3) below.
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The LTBOMB cost function shares even more similarity with the Vector CMA

[47], though it is distinct in that our algorithm is driven by data that is not i.i.d.,

and it operates only once every K chips. Because of these two facts, the cost

surface and algorithm performance will be quite different from the Vector CMA.

Borrowing an idea from [41], and noting that z[n] = [z[Kn] . . . z[Kn − K + 1]]�,

we see that the cost function can be expanded as

JLTB(f) = (1 − K) +
K−1∑
i=0

E
[
(z2[Kn − i] − 1)2

]

+
K−1∑
i=0

K−1∑
j=0,j �=i

E[z2[Kn − i]z2[Kn − j]]. (5.3)

This gives an interesting interpretation since the second term is exactly the CMA

cost (4.7) when operating chip-by-chip, while the third term represents a penalty of

the cross-correlation of the squared equalizer output. Again, due to the invariance

of the �2 norm to orthogonal transforms, we can equivalently replace z[Kn − i]

with the ith correlator output at time n, yielding the interpretation that the third

term effectively penalizes the lack of biorthogonality in the signal.

5.2.2 Fourth-Order Cumulant Tensor of Received Signal

As mentioned in Section 4.3, much of the unsuitability in applying classical blind

algorithms to BOM stems from the fact that the chip-level random process in a

BOM system is not i.i.d. The symbols are i.i.d. however, which motivates an

analysis comprised of symbol vectors. Cumulants can be described for a vector

random process in an analogous way to those for scalar random processes [5] (see

Appendix B for more details). For a vector x, the fourth-order cumulant is a super-

symmetric fourth-order tensor. From Appendix B, we can express the fourth-order
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cumulant tensor for the BOM symbol x[n] in terms of its corresponding chips as

[C4(x[n])]i1,i2,i3,i4 � E[x[Kn − i1]x[Kn − i2]x[Kn − i3]x[Kn − i4]] (5.4)

−E[x[Kn − i1]x[Kn − i2]]E[x[Kn − i3]x[Kn − i4]]

−E[x[Kn − i1]x[Kn − i3]]E[x[Kn − i2]x[Kn − i4]]

−E[x[Kn − i1]x[Kn − i4]]E[x[Kn − i3]x[Kn − i2]].

Note that we can drop the dependence on n since the vectors are i.i.d. As

with cumulants for scalar random processes, cumulants for vector random pro-

cesses obey a linearity property [5]. For an i.i.d vector process x[n] with y[n] =∑
m H [m]x[n − m], we have

C4 (y) = C4

(∑
m

H [m]x[n − m]

)

=
∑
m

[C4 (x) ×1 H [m] ×2 H [m] ×3 H [m] ×4 H [m]]

where the symbol ×k denotes the k-mode tensor product [5]. Expanding the tensor

product and substituting the channel impulse response gives the individual tensor

elements

[C4 (y)]i1,i2,i3,i4
=

∑
j1,j2,j3,j4

[C4 (x)]j1,j2,j3,j4

∑
m

h[Km − i1 + j1]h[Km − i2 + j2]

·h[Km − i3 + j3]h[Km − i4 + j4].

In Appendix C, we express the fourth-order cumulant tensor of a BOM source

sequence explicitly in terms of S. These formulas will be used in the behavioral

analysis of the following section.

5.2.3 Stability of Zero-Forcing Solutions

To investigate the ZF solutions, we first assume that there is no AWGN, so σ2
w = 0.

Recalling that c � H�f and E[XX�] = I, we can expand the cost function (5.2)
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in terms of cumulants giving

JLTB(f) =
∑
i,j

[C4(z)]i,i,j,j + 2
∑
i,j

[C2(z)]2i,j +

[(∑
i

[C2(z)]i,i

)
− 1

]2

=
∑

i1,i2,i3,i4

[C4 (x)]i1,i2,i3,i4

∑
j1,j2

∑
p

c[Kp − j1 + i1]

·c[Kp − j1 + i2]c[Kp − j2 + i3]c[Kp − j2 + i4]

+
2

K2

∑
j1,j2

(∑
p

c[p − j1]c[p − j2]

)2

+

[(∑
p

c2[p]

)
− 1

]2

(5.5)

where i1, i2, i3, i4, j1, j2 ∈ {0, . . . , K − 1}. Taking the derivative of (5.5) gives

1

4

∂JLTB(f)

∂f [n]
=

∑
m

h[m − n]Λ[m] (5.6)

where

Λ[m] �
∑

i1,i2,i3,i4

[C4 (x)]i1,i2,i3,i4

∑
j1,j2

∑
p

δ[m − Kp + j1 − i1]c[Kp − j1 + i2]

·c[Kp − j2 + i3]c[Kp − j2 + i4]

+
2

K2

∑
j1,j2

c[m + j1 − j2]

(∑
p

c[p − j1]c[p − j2]

)

+c[m]

[(∑
p

c2[p]

)
− 1

]
(5.7)

and we have used the super-symmetry of the cumulant in the simplification. We

can then write the gradient compactly from (5.6) and (5.7) as ∇JLTB(f) = 4HΛ

where Λ = [Λ[0], . . . , Λ[Nc − 1]]�. Continuing with the second derivative, we have

1

4

∂2JLTB(f)

∂f [n1]∂f [n2]
=

∑
m1,m2

h[m1 − n1]h[m2 − n2][Ψ]m1,m2 (5.8)
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where

[Ψ]m1,m2 �
∑

i1,i2,i3,i4

[C4 (x)]i1,i2,i3,i4

∑
j1,j2

∑
p

[
δ[Kp − j1 + i1 − m1]c[Kp − j2 + i4]

· (δ[Kp − j1 + i2 − m2]c[Kp − j2 + i3]

+2δ[Kp − j2 + i2 − m2]c[Kp − j1 + i3])
]

+
2

K2

∑
j1,j2

δ[j1 − j2 + m1 − m2]

(∑
p

c[p − j1]c[p − j2]

)

+
2

K2

∑
j1,j2

c[m2 + j1 − j2] (c[m1 + j1 − j2] + c[m1 − j1 + j2])

+2c[m1]c[m2] + δ[m1 − m2]

[(∑
p

c2[p]

)
− 1

]
(5.9)

which allows us to write the Hessian matrix as 4HΨH�.

Before demonstrating that the ZF solutions are minima from these formulas

for the first and second derivatives (5.6)-(5.9), we first prove two Lemmas.

Lemma 5.1 (Property of Cumulants of Biorthogonal Signals). For a ran-

dom vector process x ∈ R
K where the vectors are drawn i.i.d. from a complete

biorthogonal set, and some i1, i2 ∈ {0, . . . , K − 1},

K−1∑
j=0

[C4 (x)]i1,i2,j,j =

⎧⎪⎨
⎪⎩

− 2
K2 for i1 = i2

0 otherwise

Proof. Let the underlying orthogonal basis be described by the columns of the

square matrix S. From the cumulant definition (5.4) and the decorrelatedness of
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the chip statistics we have

K−1∑
j=0

[C4 (x)]i1,i2,j,j =
K−1∑
j=0

(
E[x[−i1]x[−i2]x

2[−j]] − E[x[−i1]x[−i2]]E[x2[−j]]

−2E[x[−i1]x[−j]]E[x[−i2]x[−j]])

= −
(

2

K2
+

1

K

)
δ[i1 − i2] +

1

K

K−1∑
j,k=0

[S]i1,k[S]i2,k[S]2j,k

= − 2

K2
δ[i1 − i2]

where the last line uses the orthonormality of columns of S. �

Lemma 5.2 (Positive definiteness of block diagonal matrix). The block

diagonal matrix

Ψ =

⎡
⎢⎢⎢⎢⎣
Ψ1 0 0

0 Ψ2 0

0 0 Ψ3

⎤
⎥⎥⎥⎥⎦

is positive definite if and only if Ψ1, Ψ2, and Ψ3 are positive definite.

Proof. If Ψ1, Ψ2, and Ψ3 are positive definite, then x�
1 Ψ1x1 > 0, x�

2 Ψ2x2 > 0,

and x�
3 Ψ3x3 > 0 for all x1,x2,x3. Letting x � [x�

1 x�
2 x�

3 ], we have

x�Ψx = x�
1 Ψ1x1 + x�

2 Ψ2x2 + x�
3 Ψ3x3 (5.10)

> 0

for all x, and hence Ψ is positive definite.

To prove the only if, we simply set x2 and x3 to zero in (5.10) to show that

positive definiteness of Ψ implies positive definiteness of Ψ1. Similarly, Ψ2 and

Ψ3 can each shown to be positive definite. �
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We define the ZF solutions as those where the combined channel/equalizer

response c = ±eK∆, though we only consider positive choices due to symmetry

arguments. Note that, unlike more traditional equalization problems, our definition

of the ZF solutions only includes responses with delays that are a multiple of K.

In situations where the delay is not a multiple of K, the decision device will not

be operating on the symbol boundary, and these points are not generally stable

points of the algorithm. As we will discuss later in Section 5.2.6, the issues of

equalization and symbol timing are tightly intertwined.

Theorem 5.1. The ZF solutions c = eK∆ are stationary points of the LTBOMB

cost function (5.2).

Proof. Substituting c = eK∆ into (5.6) gives the gradient at the ZF solutions as

1

4

∂JLTB(f)

∂f [n]

∣∣∣∣
c=eK∆

=
2

K
h[K∆ − n] +

∑
i1,i2,i3

[C4 (x)]i1,i2,i3,i3
h[K∆ − i2 + i1 − n]

= 0

where the last line follows from Lemma 5.1. �

Theorem 5.2. For any choice of S satisfying positive definiteness of the symmet-

ric matrix Ψ2 defined for m1, m2 ∈ {0, . . . , 2K − 2} as

[Ψ2]m1,m2 =
2

K

∑
i1,i2,i3,i4

∑
�

[
[S]i1,� [S]i2,� [S]i3,� [S]i4,�

· δ[K − 1 + i1 − i2 − m1]δ[K − 1 + i3 − i4 − m2]
]

+
2

K
δ[m1 − m2]

[
1 − 1

K

∑
i1,i2

δ[K − 1 + i1 − i2 − m1]

]
, (5.11)

the ZF solutions are minima.
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Proof. To show that the ZF solutions are minima, we need to consider the defi-

niteness of the Hessian matrix 4HΨH�. Since H is full rank, we only need to

consider the positive definiteness of Ψ. Substituting c = eK∆ into (5.9) gives

[Ψ]m1,m2

∣∣
c=eK∆

= 2
∑

i1,i2,i3,i4

[
[C4 (x)]i1,i2,i3,i4

· δ[K∆ + i1 − i2 − m1]δ[K∆ + i3 − i4 − m2]
]

+
2

K2

∑
j1,j2

δ[K∆ + j1 − j2 − m1]δ[K∆ − j1 + j2 − m2]

+2δ[m1 − m2]

[
1

K
+ δ[K∆ − m1]

]
(5.12)

Note that Ψ is a symmetric matrix. For either of

m1, m2 /∈ {K∆ − K + 1, . . . , K∆, . . . , K∆ + K − 1},

the Kronecker delta functions in (5.12) with arguments containing K∆ go to zero

yielding

[Ψ]m1,m2

∣∣
c=eK∆

=
2

K
δ[m1 − m2]. (5.13)

Thus, Ψ has the form used in Lemma 5.2, where Ψ1 is the extraction of Ψ for

m1, m2 ∈ {0, . . . , K∆ − K}, Ψ2 is the extraction for m1, m2 ∈ {K∆ − K +

1, . . . , K∆ + K − 1}, and Ψ3 is the extraction for m1, m2 ∈ {K∆ + K, . . . , Nc}.
From (5.13), we see that Ψ1 and Ψ3 are diagonal matrices with positive entries

along the diagonal, and hence they are positive definite. From the assumption in

the theorem statement (5.12), which was obtained by expanding the cumulant in

(5.12) via (C.2), Ψ2 is positive definite. Finally, from Lemma 5.2 Ψ is positive

definite, so the Hessian is positive definite and the ZF solutions are minima. �

Note that positive definiteness of (5.11) depends exclusively on the underlying

signal bases S, and can thus be readily tested. For the case S = I, we are
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guaranteed positive definiteness, which can be seen by substituting (C.1) from

Appendix C into (5.11) to give

[Ψ2]m1,m2 = 2δ[m1 − m2]

[
δ[K − 1 − m1] +

|m1 − K + 1|
K2

]
which is a diagonal matrix with positive entries, and therefore positive definite. We

conjecture that the condition holds for all choices of orthogonal set S, as literally

millions of numerical tests have not turned up a counterexample.

5.2.4 Example 5.2a: Case of Global Convergence

While we have demonstrated local convergence, we cannot make any claims about

the global performance of the algorithm in general. Similar insurmountable dif-

ficulties were encountered in the global convergence analysis of the Vector CMA,

due to the presence of the cross terms. It is precisely these cross terms, i.e. the

last term in (5.3), which complicate analysis of our algorithm.

In light of this difficulty, we resort to considering a low-dimensional numerical

example, as part of the strategy outlined in Section 4.5. Again, since this is purely

an illustrative example, we operate exclusively in the combined channel/equalizer

domain c, thereby avoiding end effects that are known to plague finite-length

chip-rate blind equalizers. We note that any stationary points that appear in this

low-dimensional example will persist into higher dimensions. Furthermore, any of

these stationary points delayed by a multiple of K will also be stationary points.

This is true since condition (4.9) holds for any shift of K, and can be seen by

substituting into (5.7) which is precisely the LTBOMB gradient in the combined

channel/equalizer domain.

Letting S = I2 and Nc = 3, the stationary points can be found by setting the

non-trivial elements of the resulting gradient to zero, resulting in the system of
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Table 5.1: LTBOMB Stationary Points for Example 5.2a

c� type

[0, 0, 0] maximum

±[1, 0, 0],±[0, 0, 1] minima

±[0,
√

2/3, 0] saddle points

±[
√

1/3, 0,−√
1/3] degenerate saddle points

equations

c3[0] +
3

2
c2[1]c[0] +

1

2
c2[1]c[2] + 2c2[2]c[0] − c[0] = 0

c[0]c[1]c[2] +
3

2
c2[2]c[1] +

3

2
c2[0]c[1] +

3

2
c3[1] − c[1] = 0

c3[2] + 2c2[0]c[2] +
1

2
c2[1]c[0] +

3

2
c2[1]c[2] − c[2] = 0

c[0]c[2]c[1] = 0

Using Gröbner bases, we can solve for the locations of all stationary points exactly,

and they have been tabulated in Table 5.1. For this particular example, we see

that we can expect global convergence to the desired solution, as minima occur

only at the ZF solutions. There are not minima at c = ±[0, 1, 0]�, and this point

was specifically excluded in our definition of ZF solutions since the delay is not

a multiple of K. We also note the appearance of degenerate saddle points. A

degenerate saddle point is one where the Hessian is singular, which implies the

cost surface is very flat, and the adaptive algorithm will likely suffer convergence

speed problems as it passes through this region. In contrast to the DD-LMS

example in Section 4.2.1, we observe no undesirable local minima here, and for

this low-dimensional example the only minima of LTBOMB cost surface are the
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ZF solutions.

5.2.5 Example 5.2b: Case of False Local Minima

While Example 5.2a provides some hope of convergence to solutions with glob-

ally optimal performance, we now investigate stationary points that arise in im-

pulse responses with larger lengths of contiguous non-zero taps. Thus, we con-

ducted a (non-exhaustive) numerical search for stationary points with larger chan-

nel/equalizer lengths, while maintaining S = I2. The ZF solutions are of course

minima in this situation, but we do observe the presence of additional local minima

once the number of non-zero taps grows to Nc ≥ 6.

A six-parameter system of equations was too complex for the use of Gröbner

bases in calculating all of the stationary points, but through experimentation

we found a class of stationary points with impulse response of the form c =

±[0, α, β, γ, −β , α]�. The symmetry enabled us to reduce the 6-parameter

problem to a 3-parameter problem so that we could solve for the exact loca-

tions of this class of stationary points using Gröbner bases. The exact expres-

sions for α, β, γ are unwieldy3 , but their approximate values are α ≈ 0.1741, β ≈
0.4718, γ ≈ 0.5859. The Hessian was found to have strictly positive eigenval-

ues {0.3968, 1.5300, 2.2798, 2.5430, 2.8521, 8.0000} (which was confirmed through

simulation), and hence this impulse response is indeed a false minimum of the

algorithm. Again, we note that as Nc is increased beyond 6, this minima persists

in higher dimensions. And, any K = 2 tap shift of this impulse response is also a

local minimum (i.e. any response obtained by adding an even number of zeros to

the front). The existence of this false local minimum has larger consequences since

3The exact expressions are included in Appendix D.



113

it suggests that the fractionally-spaced implementations of this algorithm would

also have similar local minima.

5.2.6 On the Interaction of Symbol Timing and Equaliza-

tion

The problems of symbol timing (i.e. finding the symbol boundary within a chip

stream) and equalization are tightly related. Equalization algorithms with training

data, like LMS, are effectively given the symbol timing information via the training

data. Blind algorithms, however, do not have such information at their disposal.

As mentioned in Section 5.2.3, the ZF solutions are those responses that amount

to a delay that is a multiple of K. When such a response is attained by the

equalizer, symbol timing has effectively been acquired. If these ZF solutions were

the only minima of the algorithm, we could rely on the blind algorithm to acquire

the symbol timing and perform equalization simultaneously. However, we know

this is not the case, as was shown by the false local minima of Example 5.2b.

We conjecture that the false local minima of the algorithm are caused in part

by the symbol timing ambiguity. Thus, we suggest a scheme that attempts to

simultaneously acquire the symbol timing and avoid the local minima. The ratio-

nale for the scheme is based on the fact that, in the combined channel/equalizer

domain, any impulse response that is a (desired or undesired) minimum of the

algorithm — shifted by K taps — is also a local minimum. Conversely, tap shifts

that are not a multiple of K are typically not stable points of the algorithm.

Thus, we could operate K equalizers in parallel, each being updated once per

symbol but operating on a different one of the K polyphases. After each of the

equalizers has converged (i.e. once the update term is sufficiently small), we could
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select the equalizer with lowest cost by computing a sample average of (5.2). Al-

ternatively, if computational complexity were at a premium but convergence speed

was less of a concern, the operation could be done serially with a single equal-

izer, testing each of the K hypotheses in series. We cannot verify the validity of

this scheme, however, without investigating the regions of attraction of the algo-

rithm, which is far beyond the scope of this dissertation. We will, however, show

simulations of this scheme in Section 5.4.

5.3 The TROMBONE Algorithm

5.3.1 Algorithm Description

As we have discussed, the two most popular classical blind equalization algorithms

are the CMA and the SWA. Since the LTBOMB algorithm draws largely from the

spirit of the CMA, a sensible next step is to consider how we might apply the SWA

philosophy to equalization of BOM signals.

When the channel has been appropriately equalized, the correlator output

S�z[n] should be a canonical unit vector (modulo sign). While the previous algo-

rithm dealt exclusively with the �2 norm of the correlator output, we now consider

other norms of the correlator output. In particular, we observe that for any �p

norm, we desire ||S�z[n]||p = 1. As shown in [15], for any p < q and any vector

x, we have

||x||mp ≥ ||x||mq

with equality when x is a canonical unit vector. This fact is the motivation

for our next algorithm, termed “TROMBONE” (for The Recovery Of M -ary
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BiOrthogonal signals via p-Norm Equivalence) and having cost function

JTRO(f) = E
[||S�z[n]||mp − ||S�z[n]||mq

]
(5.14)

First, we note that when the equalizer is operating correctly so that the correlator

outputs are “perfect”, the cost will be zero as hoped. We also note that the trivial

solution has zero cost, so to avoid this solution we need to impose a constraint

on the algorithm. Here, we choose to constrain the equalizer output power to

be E[||z[n]||22] = E[||x[n]||22], which amounts to c�c = 1 in the absence of noise.

While in general we could consider any m, p, q so long as p < q, we focus on the

case p = 2, m = q = 4 due to its similarity with the LTBOMB algorithm, and its

relative ease of implementation. Expanding the cost in terms of cumulants, the

cost becomes

JTRO(f) = E
[||S�z[n]||42 − ||S�z[n]||44

]
(5.15)

=
∑
i,j
i�=j

[C4(S
�z)]i,i,j,j + 2

∑
i,j

[C2(S
�z)

]2

i,j
+

(∑
i

[C2(S
�z)

]
i,i

)2

−3
∑

i

[C2(S
�z)

]2

i,i
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=
∑

i1,i2,i3,i4

[
[C4 (x)]i1,i2,i3,i4

·
∑
j1,j2

∑
p

c[Kp + i1 − j1]c[Kp + i2 − j1]c[Kp + i3 − j2]c[Kp + i4 − j2]

]

−
∑

i1,i2,i3,i4

[C4 (x)]i1,i2,i3,i4

∑
j1,j2,j3,j4

∑
k

[
[S]j1,k[S]j2,k[S]j3,k[S]j4,k

∑
p

c[Kp + i1 − j1]c[Kp + i2 − j2]c[Kp + i3 − j3]c[Kp + i4 − j4]

]

− 3

K2

∑
j

[∑
p

∑
i1,i2

[S]i1,j[S]i2,jc[p − i1]c[p − i2]

]2

+
2

K2

∑
i1,i2

[∑
p

c[p − i1]c[p − i2]

]2

+

(∑
p

c2[p]

)2

The constraint that we have imposed, i.e. c�c = 1, is a function of the combined

channel/equalizer response. In practice, we do not have knowledge of c. However,

if we assume spectral pre-whitening has been performed before equalization as in

[33], thereby assuming the effective channel is white, the constraint becomes

c�c = 1 =⇒ f�HH�f = f�f = 1

so that normalization of the equalizer taps ensures that we will meet the con-

straint. The instantaneous gradient gives the algorithm update equation with a

normalization step as

f ′
TRO[n + 1] = fTRO[n] − µY [n]

(
z[n]�z[n]I − Sdiag(S�z[n])2S�) z[n]

fTRO[n + 1] = f ′
TRO[n + 1]/

√
f

′�
TRO[n + 1]f ′

TRO[n + 1]

where diag(x) is the square diagonal matrix having x along its diagonal.

We see this algorithm does appear to have some similarities with the SWA in

that we have a constrained cost function, motivated by the fact that ||S�z[n]||24 ≥
||S�z[n]||44 with equality when ISI has been eliminated. The algorithm also shares
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some similarity with the Shtrom-Fan algorithms [34] in that it involves a difference

of two �p-norms. Beyond this similarity, however, our algorithm is fundamen-

tally different from the Shtrom-Fan algorithms. Our cost function is a function of

the difference of two norms of the correlator output data. The Shtrom-Fan cost

function, on the other hand, involves the difference of two norms of the combined

channel/equalizer response, and relies on properties of scalar cumulants to map the

cost function from the combined channel/equalizer space to the equalizer space.

Thus, the Shtrom-Fan class of algorithms implicitly requires the data to be i.i.d.

at the chip level, which is not the case for BOM.

We will now show that the ZF solutions are stationary points. Taking the

derivative of the unconstrained TROMBONE cost function gives

1

4

∂JTRO(f)

∂f [n]
=

∑
m

h[p − n]Λ[m]

where

Λ[m] =
∑

i1,i2,i3,i4

[C4 (x)]i1,i2,i3,i4

∑
k1,k2

∑
p

[δ[Kp + i1 − k1 − m]

·c[Kp + i2 − k1]c[Kp + i3 − k2]c[Kp + i4 − k2]]

−
∑

i1,i2,i3,i4

[C4 (x)]i1,i2,i3,i4

∑
k1,k2,k3,k4

∑
j

[
[S]k1,j[S]k2,j[S]k3,j[S]k4,j

·
∑

p

δ[Kp + i1 − k1 − m]c[Kp + i2 − k2]c[Kp + i3 − k3]c[Kp + i4 − k4]

]

− 3

K2

∑
i1,i2,i3,i4

∑
j

[S]i1,j[S]i2,j[S]i3,j[S]i4,j

∑
p

c[m + i1 − i2]c[p − i3]c[p − i4]

+
2

K2

∑
p

∑
k1,k2

c[m + k1 − k2]c[p − k1]c[p − k2] + c[m]

(∑
p

c2[p]

)

Theorem 5.3. The ZF solutions c = eK∆ are stationary points of the TROM-

BONE cost function (5.15).
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Proof. First, note that c = eK∆ satisfies the unit-norm constraint. We have

Λ[p] = −
∑

i1,i2,i3,i4

[C4 (x)]i1,i2,i3,i4

∑
j,k

[S]k,j[S]i2,j[S]i3,j[S]i4,jδ[K∆ + i1 − k − p]

+

(
1 − 3

K

)
δ[K∆ − p]

= 0

where we substituted (C.2) in Appendix C for the cumulant tensor. �

We could have equivalently used the method of Lagrange multipliers, but since

the ZF solutions are stationary points and simultaneously satisfy the unit-norm

constraint, the Lagrange multiplier is zero. From our observations through simu-

lation, we believe the stationary points at the ZF solutions are locally stable, as

we have tested this claim on thousands of pre-whitened channels. Simple exami-

nation of the Hessian eigenvalues of constrained algorithms does not allow us to

generically classify these stationary points as minima; we would need to resort to

perturbation analysis or re-parameterization of the cost function as we will now

show in a low dimensional example.

5.3.2 Example 5.3a: Stationary Points in Low Dimensions

As we did in Example 5.2a for LTBOMB, we now classify all the stationary points

for the same numerical example. Again working in the combined channel/equalizer

domain c, we let S = I2 and Nc = 3. Because the unit norm tap constraint is

difficult to apply in the c domain, we need a transform to re-parameterize the cost

function in a coordinate system that permits us to easily apply the constraint. We

can re-parameterize the function of c in polar coordinates, having Nc − 1 rotation

angles {θ0, . . . , θNc−2} and one radius r. One possibility [30] for parameterizing c
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Table 5.2: TROMBONE Stationary Points for Example 5.3a

c� type

±[1, 0, 0],±[0, 0, 1] minima

±[
√

1/2, 0, −√
1/2],±[

√
1/2, 0,

√
1/2] saddle points

±[0, 1, 0] degenerate saddle pts

in polar form is to choose

c[n] =

⎧⎪⎨
⎪⎩

r sin(θn)
∏n−1

j=0 cos(θj) for 0 ≤ n ≤ Nc − 2

r cos(θNc−1)
∏Nc−2

j=0 cos(θj) for n = Nc − 1
(5.16)

so that by fixing r = 1, any arbitrary unit-norm c may be reached by appropriate

choice of rotation angles4.

Substituting (5.16) into the TROMBONE cost function with S = I2, setting

the gradient to zero, and zeroing all but Nc = 3 taps results in a system of equations

in two parameters, θ0 and θ1. As before, we can solve for the locations of all

stationary points exactly, and they have been tabulated in Table 5.2. The results

here for the TROMBONE algorithm are very similar to those for the LTBOMB

algorithm. We again see that we can expect global convergence to the desired

solution, as minima occur only at the ZF solutions. Furthermore, we again note

the appearance of degenerate saddle points, though they are in a slightly different

location.

4For any c, the “essential uniqueness” of the rotation angles for this transfor-
mation (5.16) is claimed in [30]. Presumably, the term “essential uniqueness” is
used to exclude a few special non-unique cases such as c = [1, 0, . . . , 0]�, which
can be reached for θ0 = π/2 and any θn for n ≥ 1.
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5.3.3 Example 5.3b: False Minima of TROMBONE

As was done for the LTBOMB in Section 5.2.5, we conducted a (non-exhaustive)

numerical search for stationary points of the TROMBONE algorithm. Again,

choosing S = I2, we found that indeed, at least for this example, the ZF solutions

are minima of the algorithm. In addition, we found false local minima with impulse

response c = ±[0, 0.2973, 0.5425, 0.4844, −0.5425, 0.2973]� which again have the

form c = ±[0, α, β, γ, −β , α]� and also appear every 2-tap shift. This impulse

response is very similar to the false minimum for LTBOMB, and so we see that

both of these blind algorithms have an inherent problem. This is peculiar since, at

least on the surface, the two cost functions attempt to restore different properties of

the BOM signal. The fact that two blind algorithms, both designed with different

criteria in mind, suffer from very similar spurious local minima raises questions

about the existence of an algorithm exhibiting global convergence. Again, we

conjecture that these false minima arise in part due to the symbol timing ambiguity.

Use of the parallel equalizer scheme described in Section 5.2.6 may help circumvent

this issue.

5.4 Numerical Examples

5.4.1 Visualizing the LTBOMB Cost Surface

We once again we consider the noiseless case with S = I2 and Nc = 2, and we plot

a 2-D slice5 of the cost surface contours. The cost surface is shown in Fig. 5.1,

where we observe the presence of a maximum at the origin and only 2 minima,

5While in general, stationary points of low-dimensional slices may change their
character in higher dimensions, those shown here do not.
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those at the ZF solution c = ±[1, 0]�. As expected minima do not also occur at

c = ±[0, 1]�, but instead there are saddle points in that region. The fact that

these are not minima implies that the proposed algorithm can acquire the symbol

timing since, as hoped, minima only occur for delays that are a multiple of K.

We refer the reader back to Fig. 4.3, where the cost surface for DD-LMS with the

same system parameters exhibited false local minima.

−1 0 1

−1

0

1

c[0]

c[
1]

S=Identity

−1 0 1

−1

0

1

c[0]

c[
1]

S=Hadamard

Figure 5.1: LTBOMB Cost Surface for Different Choices of S

Since the cost function depends on the cumulants of the underlying signal

basis S, we expect the cost surface to look different for different choices of S. If

we change the underlying orthogonal basis so that S is the 2×2 Hadamard matrix,

we arrive at the cost surface also shown in Fig. 5.1. In addition to the maximum at

the origin and the minima at the ZF solutions, we observe that minima appear at

c = ±[0, 1]�, which corresponds to a delay that is not a multiple of K. Note that

for this choice of S, the chip statistics are identical to BPSK since the symbols

become ±[1, 1]/
√

2,±[1,−1]/
√

2. Thus, when S is chosen to be the Hadamard

matrix, the algorithm has no hope of recovering the symbol timing. Regardless,

we emphasize that all choices of S that cause Ψ2 in (5.11) to be positive definite

will exhibit local convergence to ZF solutions as proven in Section 5.2.3.
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5.4.2 Visualizing the TROMBONE Cost Surface

Again considering the noiseless case with S = I2 and Nc = 2, we have plotted the

unconstrained TROMBONE cost surface in Fig. 5.2. The unit norm constraint

will force the algorithm to stay on contour indicated by the dotted circle. For the

case of S = I, the cost surface is a single trough with a bulb at the origin, and

the cost is zero along the c[0] axis. For the case of the Hadamard matrix there are

two troughs, with zero cost along both axes.
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c[
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Figure 5.2: Unconstrained TROMBONE Cost Surface for Different Choices
of S

Identifying the stationary points from the unconstrained cost, however, is not

easy. Thus, similar to what was done in Section 5.3.2, we transform the 2-

parameter cost plot into polar coordinates with a single rotation angle. Looking

at the cost function in polar coordinates, where the angle θ = tan−1(c[1]/c[0]), we

can more easily see the stationary points as shown in Fig. 5.3. We see that both

examples result in minima at the ZF solutions, as well as minima at c = ±[0, 1]�,

though this latter minimum is quite shallow for the case of S = I.
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Figure 5.3: Polar Representation of TROMBONE Cost Surface

5.4.3 Simulation Near Zero-Forcing Solutions

To provide verification that our analysis of the local behavior of these algorithms

is valid, we consider a simulation where we initialize the algorithms in a ball

around a ZF solution. We operate in a noiseless scenario, a channel with impulse

response h = [−0.4, 0.84, 0.336, 0.1344, 0.0538, 0.0215]�, and we have chosen Nf =

30 equalizer taps. As before, we choose the signal bases S = I2. The equalizer

corresponding to the ZF solution at the chosen delay of ∆ = 3 has approximate

impulse response

fZF ≈ [0.009, 0.022, 0.054, 0.134, 0.336, 0.840,

−0.399, 0.002, 0.003, 0.005, 0.006,−0.003, 0, . . . , 0]�.

Note that the channel response is approximately white (i.e. HH� ≈ I), and the

corresponding ZF equalizer satisfies f�
ZF fZF = 1.

As an initialization, we chose 1,000 points uniformly distributed in a ball around

the ZF solution, and we observed the ability of the algorithms to converge to a ZF

solution as the radius of the ball is increased. We ran the algorithms for 10,000

symbols at each of the 1,000 initializations, and declared the algorithm to have

converged if the mean-squared error was less than 10−3. As shown in Fig. 5.4,
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Figure 5.4: Convergence percentage vs. initialization distance from ZF solu-
tion

all of the algorithms converge to the ZF solution when the size of the ball of

initializations around the ZF solution is less than 1, thus verifying our analysis

of local convergence. For larger radii beyond 1, which we can hardly consider to

be “local” to the ZF solutions, we see that all algorithms still converge with a

fairly high percentage, though possibly to a ZF solution corresponding to some

other delay. Furthermore, the blind algorithms both outperform DD-LMS. The

curves are all monotone non-increasing, albeit with some sudden drops due to

the nonlinear nature of the cost surfaces, and for very large radii we note that

the convergence percentages eventually reach a constant value. This is because,

beyond a sufficiently large initialization ball radius, there is no notion of locality;

the ball grows to encompass the entire space, and so increasing the ball radius

further has no effect on convergence percentage.

We note that the lack of a good adaptive algorithm for pre-whitening and the

added complexity of pre-whitening suggests the practical superiority of LTBOMB

over TROMBONE.
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5.4.4 Simulation of a Practical Situation

Continuing with the strategy for algorithm assessment outlined in Section 4.5, we

now consider the use of LTBOMB in a practical channel, which serves to justify our

claims of local convergence, as well as the superior performance of our algorithm

over decision-directed LMS. We focus on LTBOMB here because, as mentioned

previously, TROMBONE requires a pre-whitening filter and may not be as useful

in practice. It should be noted that the analysis up to now has ignored the effects of

noise and has largely considered the cost surface in the combined channel/equalizer

space, so these simulations will also provide some faith that our algorithm performs

well in the presence of real channels with AWGN. As a channel model, we choose

one based on the Saleh-Valenzuela [31] model of an indoor channel. The IEEE

802.153a committee has constructed a set of such channels [10] based on this model,

and we have selected to use their channel model CM3 which models a non-line of

sight indoor environment over distances of 4-10 meters. To convert the channels

to a baseband equivalent tapped-delay line channel, we chose a carrier frequency

of 3 GHz and a symbol period of 10 ns, and performed low-pass filtering using

a raised-cosine filter with a rolloff factor of 0.5. We then zeroed any leading or

trailing taps with energy less than 20 dB below the peak, which resulted in a set

of baseband equivalent channels with lengths ranging from 4 ≤ Nh ≤ 13, with the

average channel length being 7.8 taps. Note that a large number of these channels

were non-minimum phase, and often had roots near the unit circle. Furthermore,

these channels were most definitely not white.

For the BOM source signal, we chose S = I2. Furthermore, the SNR was

set at 8 dB, the equalizer had length Nf = 30, and we used a centered double

spike initialization. While an analysis of initialization strategies and regions of
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Table 5.3: Simulation Results

percent converged percent converged

Algorithm to MMSE (single eq.) to MMSE (dual eq.)

DD-LMS 64.3% 94.3%

LTBOMB 88.4% 99.2%

convergence is beyond the scope of this dissertation, we observed that for a BOM

system with K chips per symbol and S = I, a K-spike initialization seemed to

improve convergence over a single-spike initialization.

After generating 1,000 channel realizations, we ran LTBOMB on each channel,

as well as DD-LMS. An equalizer was declared to have converged near the MMSE

solution if its MSE was within 1 dB of the MSE of the nearest MMSE solution.

In addition, we considered 2 equalizer setups: one with just a single equalizer,

and another setup with two equalizers operating in parallel as described in Section

5.2.6. In the setup with parallel equalizers, the equalizer with lower sample aver-

age cost was selected upon convergence, and compared with the nearest MMSE

solution. The simulation results are shown in Table 5.3. We see that the LTBOMB

algorithm does quite well, consistently beating the decision-directed algorithm. In

addition, we note that the use of 2 parallel equalizers does buy us some improve-

ment in convergence, with the LTBOMB converging nearly always. The decision-

directed algorithm, too, sees a benefit from the use of 2 parallel equalizers. As a

test, we also ran the TROMBONE algorithm without the required pre-whitening

filter; unsurprisingly, it only converged 24.3% of the time with a single equalizer,

and 36.7% in the dual equalizer setup. With a perfect pre-whitener in place, the
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TROMBONE algorithm performance was on par with LTBOMB, converging 90.2%

of the time with a single equalizer, and 99.1% with the dual equalizer. Again, we

stress that LTBOMB may be more useful in practice due to the lack of need for a

blind pre-whitener.

It is well known [29], at least for the AWGN channel, that increasing the con-

stellation size in BOM lowers the bit-error rate at the expense of the data rate.

Intuition would suggest a similar effect in ISI channels, which we have observed

to be the case. Thus, for larger values of K, we can expect the decision device to

make fewer errors, thereby improving the performance of decision-directed LMS.

The performance of the blind algorithms will not benefit from an increase in K

since they do not rely on correct decisions.



Chapter 6

Conclusion

In this chapter, we present a summary of results and a listing of some immediate

open issues relating to equalization of energy efficient modulations.

6.1 Summary of Results

While energy efficient modulations have existed for decades, they have only recently

been considered for use in ISI channels. In this dissertation, we have conducted the

first comprehensive exploration of equalization for such modulations. We began

by considering the use of a traditional DFE, and derived the MMSE equalizer set-

ting for orthogonal, biorthogonal, and transorthogonal modulations. By exploiting

properties of orthogonal signals, we were able redefine the MSE in such a way that

perfect linear equalization is possible in some situations with a critically-sampled

finite-length equalizer.

Next, we considered an improvement upon the scalar DFE, by extending the

equalizer to be a multirate filterbank. This block structure brought about several

benefits by exploiting properties unique to the multipulse energy efficient modula-

tions under study. In particular, the use of a block equalizer further enlarged the

class of signals for which perfect feedforward equalization is possible, it resulted

in a reduction in computational complexity, and it reduced the effective delay

through the feedback equalizer. We derived the MMSE equalizer setting for the
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block structure, and presented the equations for adaptation of the equalizer taps

via LMS and decision-directed LMS.

The second half of the thesis focused on blind adaptation of the equalizer. We

demonstrated the shortcomings of decision-directed LMS as an algorithm for cold

startup of the equalizer, thus pointing to the need for blind algorithms beyond

decision-direction. As a first step, we considered the use of the two most popular

blind algorithms — the Constant Modulus Algorithm and the Shalvi-Weinstein

Algorithm — and showed that they were unsuitable for use with these modula-

tions, largely due to their reliance on i.i.d. source statistics. With the lack of a

suitable blind algorithm, we proceeded with a general discussion of blind algorithm

development, including the desired properties of blind algorithm cost functions, a

methodology for algorithm assessment, and guidelines for selecting cost functions.

Next, we presented the first two blind algorithms for biorthogonal modulation,

including a discussion of their characteristics and convergence. The first algorithm,

called LTBOMB, was CMA-like in spirit, and we showed that the zero-forcing

solutions are locally stable under ideal conditions. The second algorithm, called

TROMBONE, was designed with a SWA-like philosophy in mind, and thus relied

on a spectral prewhitener before equalization. We showed that the ZF solutions

are stationary points of TROMBONE, and included simulations demonstrating

the performance of the two blind algorithms. Both algorithms performed quite

well, handily outperforming DD-LMS in their ability, for arbitrary initialization,

to converge near an MMSE solution. However, we did note the appearance of false

local minima for both algorithms. Under the belief that the false minima were a

result of the symbol timing ambiguity, we suggested a technique to minimize the

likelihood of encountering these false minima, which resulted in an improvement
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in our simulated results.

6.2 Open Issues

We now consider a list of open issues and possible future directions.

• Feedback of Tentative Decisions: As described in Section 2.1, the deci-

sion device needs to wait until all K chips of a symbol have been received

before making a decision, thus introducing a N−1 chip delay in the feedback

path. It may be possible to feed tentative chip decisions back through the

filter, replacing them with more reliable values once the entire symbol has

been received and estimated. The motivation for this is a reduced feedback

delay; however, it is not clear how much this technique would help, in light

of the fact that such chip decisions could be very unreliable. In addition, it

is not clear what form such a tentative chip decision device should take.

• Blind Algorithms for Orthogonal and Transorthogonal Modula-

tions: Though we provided several blind algorithms for equalization of or-

thogonal and transorthogonal modulations in Appendix E, preliminary simu-

lations have not shown these algorithms to have desirable convergence behav-

ior, particularly when compared with DD-LMS. Thus, there is still the lack of

a blind algorithm that outperforms decision-direction for these modulations.

• Globally Convergent Blind Algorithm for Biorthogonal Modula-

tion: The two blind algorithms that we proposed for biorthogonal modula-

tion in Chapter 5 both performed quite well, but did show the presence of

false local minima (which persist in infinite length equalizers). Ideally, we

seek a blind algorithm that shares similar convergence behavior to that of the
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CMA for M -PAM, i.e. global convergence in the absence of noise (with either

a fractionally-spaced or infinite length equalizer) as described in Section 4.4.

• Incorporation of Symbol Timing Knowledge into Blind Equaliza-

tion Algorithm: We believe that a successful blind algorithm for these

energy efficient modulations will need to address the issue of symbol tim-

ing. Alas, in the presence of ISI, the location of the symbol boundary is not

clear, which presents a bit of a chicken-and-egg problem. While ideally a

potential blind algorithm would acquire symbol timing blindly and estimate

the equalizer taps, this may be unreasonable. Thus, future directions may

consider the incorporation of symbol timing knowledge into the equalization

algorithm.

• An Adaptive Prewhitener: The TROMBONE algorithm relies on having

a prewhitened signal at the input to the equalizer. However, an adaptive

prewhitener has not been proposed for use with these algorithms. While

prewhitening could be accomplished via eigen-decomposition of estimated

received autocorrelation matrices, such a technique is less attractive than a

completely adaptive solution. Thus, future work could investigate the devel-

opment of an adaptive prewhitener, and could also examine the sensitivity

of the TROMBONE algorithm to an imperfectly whitened input signal.

• Proof that condition (5.11) is met for all S: We conjectured that (5.11)

is satisfied for all S. However, we have not yet found a proof of this. While

millions of numerical examples have not turned up a counterexample, a proof

of this conjecture is desired.
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• Investigation of Regions of Attraction of LTBOMB and TROM-

BONE: Realizing that both the LTBOMB and TROMBONE algorithms

exhibit false local minima, it would be quite useful to have some ideal of the

regions of attraction of these algorithms.



Appendix A

Correlation Matrices for Scalar MMSE

DFE
Here, we address calculation of the correlation matrices Rxx, Rxâ, Rââ, and Rww

used in the scalar MMSE DFE design equations. Note that these expressions only

apply to the scalar equalizer.

A.1 Biorthogonal Modulation

To calculate Rxx, we note that symbols in X[n] appear in bands along skew

diagonals, and we partition this matrix into square blocks X̃[n] ∈ R
K×K where

[X̃[n]]i,j = x[Kn − i − j] and

.

.

.

X[n] =

X̃[n]

X̃[n − 1]
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where the enclosed dotted regions indicate chips from the same symbol. Note that

each block X̃[n] contains chips from the nth and (n − 1)th symbol, i.e. x[n] and

x[n− 1]. Due to lack of a compact closed-form expression for E[X[n]SS�X[n]�],

we specify the constituent blocks of the matrix

E[X[n]SS�X[n]�] =

[
E[X̃[n]SS�X̃[n]�] E[X̃[n]SS�X̃[n−1]�] ···

E[X̃[n−1]SS�X̃[n]�] E[X̃[n−1]SS�X̃[n−1]�]
...

. . .

]

by calculating E[X̃[n]SS�X̃[m]�]. The i, jth entry of E[X̃[n]SS�X̃[m]�] can

be calculated by expanding the matrix products, resulting in

[
E[X̃[n]SS�X̃[m]�]

]
i,j

=
K−1∑

k1,k2=0

E
[
[X̃[n]]i,k1 [X̃[m]]j,k2

]
[SS�]k1,k2

=
K−1∑
k1=i

K−1∑
k2=j

[
E[x[n]x�[m]]

]
k1,k2

[SS�]k1−i,k2−j

+
K−1∑
k1=i

j−1∑
k2=0

[
E[x[n]x�[m − 1]]

]
k1,k2

[SS�]k1−i,K+k2−j

+
i−1∑

k1=0

K−1∑
k2=j

[
E[x[n − 1]x�[m]]

]
k1,k2

[SS�]K+k1−i,k2−j

+
i−1∑

k1=0

j−1∑
k2=0

[
E[x[n − 1]x�[m − 1]]

]
k1,k2

[SS�]K+k1−i,K+k2−j. (A.1)
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The second-order moments (2.13) can be substituted to give[
E[X̃[n]SS�X̃[m]�]

]
i,j

=
1

M

K−1∑
k1=i

K−1∑
k2=j

δ[n − m]
[
SS�]

k1,k2

[
SS�]

k1−i,k2−j

+
1

M

K−1∑
k1=i

j−1∑
k2=0

δ[n − m + 1]
[
SS�]

k1,k2

[
SS�]

k1−i,K+k2−j

+
1

M

i−1∑
k1=0

K−1∑
k2=j

δ[n − m − 1]
[
SS�]

k1,k2

[
SS�]

K+k1−i,k2−j

+
1

M

i−1∑
k1=0

j−1∑
k2=0

δ[n − m]
[
SS�]

k1,k2

[
SS�]

K+k1−i,K+k2−j
. (A.2)

Finally, the elements of Rxx = E[X[n]SS�X[n]�] are given by

[Rxx]i,j =
[
E

[
X̃ [n − n′] SS�X̃ [n − n′′]�

]]
i−Kn′,j−Kn′′

(A.3)

where

n′ =

⌊
i

K

⌋

n′′ =

⌊
j

K

⌋
Calculation of Rxâ is also quite tedious. Under the assumption of feedback of

correct decisions, â[n] = a[n − ∆], so the ith column and jth row of Rxâ can be

expanded as

[Rxâ]i,j = E
[
X[n]SÂ

�
[n − 1]

]
=

K−1∑
k=0

N−1∑
�=0

E [x[Kn − i + k]a[N(n − ∆ − 1) − j + �]] [S]k,� (A.4)

where the expectation can be expanded using

E
[
x[n]a�[m]

]
= SE

[
a[n]a�[m]

]
=

⎧⎪⎨
⎪⎩

1
M

S n = m

0K×K n �= m
(A.5)
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Fortunately, calculation of Rââ is much more straightforward. Again using the

assumption of feedback of correct decisions,

E
[
â[n]â�[m]

]
= E

[
a[n − ∆]a�[m − ∆]

]
= E

[
a[n]a�[m]

]
=

⎧⎪⎨
⎪⎩

1
M

IN n = m

0K×K n �= m

=⇒ Rââ =
1

M
INg (A.6)

which satisfies the invertibility required by the MMSE DFE design equations (2.21)

and (2.22).

Finally, [Rww]i,j can be expanded as

[Rww]i,j =
K−1∑

k1,k2=0

E [w[Kn − i + k1]w[Kn − j + k2]]
N−1∑
�=0

[S]k1,� [S]k2,� .

In the case when w is AWGN, this becomes

[Rww]i,j = σ2
w

K−1∑
k1,k2=0

δ[j − i + k1 − k2]
N−1∑
�=0

[S]k1,� [S]k2,� .
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A.2 Orthogonal and Transorthogonal Modulation

To calculate Rxx = E
[
X[n]SJS�X�[n]

]
, we start by substituting SJS� for

SS� in (A.1), giving

[
E[X̃[n]SJS�X̃[m]�]

]
i,j

=
K−1∑
k1=i

K−1∑
k2=j

[
E[x[n]x�[m]]

]
k1,k2

[SJS�]k1−i,k2−j

+
K−1∑
k1=i

j−1∑
k2=0

[
E[x[n]x�[m − 1]]

]
k1,k2

[SJS�]k1−i,K+k2−j

+
i−1∑

k1=0

K−1∑
k2=j

[
E[x[n − 1]x�[m]]

]
k1,k2

[SJS�]K+k1−i,k2−j

+
i−1∑

k1=0

j−1∑
k2=0

[
E[x[n − 1]x�[m − 1]]

]
k1,k2

[SJS�]K+k1−i,K+k2−j.

Then, the second-order moments (2.12) or (2.14) can be substituted, and then the

elements of Rxx = E[X[n]SJS�X[n]�] are given by

[Rxx]i,j =
[
E

[
X̃ [n − n′] SJS�X̃ [n − n′′]�

]]
i−Kn′,j−Kn′′

(A.7)

where

n′ =

⌊
i

K

⌋

n′′ =

⌊
j

K

⌋

For Rxâ, the ith column and jth row of Rxâ can be expanded as above, giving

[Rxâ]i,j = E
[
X[n]SJÂ

�
[n − 1]

]
=

K−1∑
k=0

N−1∑
�=0

E [x[Kn − i + k]a[N(n − ∆ − 1) − j + �]] [SJ ]k,� (A.8)
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where the expectation can be expanded using

E
[
x[n]a�[m]

]
= SE

[
a[n]a�[m]

]
=

⎧⎪⎨
⎪⎩

1
N

S n = m

1
N2 S1N×N n �= m

(A.9)

Now, for calculation of Rââ, we again use the assumption of feedback of correct

decisions, so

E
[
â[n]â�[m]

]
= E

[
a[n − ∆]a�[m − ∆]

]
= E

[
a[n]a�[m]

]
=

⎧⎪⎨
⎪⎩

1
N

IN n = m

1
N21N×N n �= m

Thus,

[Rââ]i,j =
[
E

[
Â[n − 1]JÂ

�
[n − 1]

]]
i,j

=
N−1∑
k,�=0

E [â[N(n − 1) − k − i]â[N(n − 1) − � − j]] [J ]k,� (A.10)

Finally, [Rww]i,j can be expanded as

[Rww]i,j =
K−1∑

k1,k2=0

E [w[Kn − i + k1]w[Kn − j + k2]]
N−1∑
�=0

[SJ ]k1,� [S]k2,� .

In the case when w is AWGN, this becomes

[Rww]i,j = σ2
w

K−1∑
k1,k2=0

δ[j − i + k1 − k2]
N−1∑
�=0

[SJ ]k1,� [S]k2,� .



Appendix B

Cumulants of Vector Random Processes
The first, second, and fourth order cumulants of an i.i.d. vector random process

x ∈ R
K are defined as [5]

[C1(x)]i1 � E[xi1 ]

[C2(x)]i1,i2
� E[xi1xi2 ] − E[xi1 ]E[xi2 ]

[C4(x)]i1,i2,i3,i4
� E

[
(xi1 − [C1(x)]i1) · (xi2 − [C1(x)]i2)

· (xi3 − [C1(x)]i3) · (xi4 − [C1(x)]i4)
]

− [C2(x)]i1,i2
[C2(x)]i3,i4

− [C2(x)]i1,i3
[C2(x)]i2,i4

− [C2(x)]i1,i4
[C2(x)]i2,i3

for i1, i2, i3, i4 ∈ {0, 1, . . . , K−1}. The first order cumulant is the mean vector, the

second order cumulant is the covariance matrix, and the fourth-order cumulant is

a super-symmetric fourth-order tensor. Furthermore, we note that when K = 1 so

that x is a scalar, the cumulant definitions reduce to the definition of cumulants

of a scalar random process. Much like cumulants of scalar random processes,

cumulants of vector random processes also obey a linearity property. When x is a

linear function of a random vector process a, related via x = Sa, the Nth order

cumulant obeys

CN(x) = CN(Sa)

= CN(a) ×1 S ×2 S . . . ×N S
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where ×N denotes the n-mode product of a tensor and a matrix, which, for an

Nth order tensor C ∈ R
M×M×...×M and a matrix S ∈ R

K×M is defined as

[C ×n S]i1,i2,...,in,...,iN �
∑

j

[C]i1,i2,...,j,...,iN [S]in,j



Appendix C

Fourth-Order Cumulant Tensor of BOM

Source
Here, we provide an expression for the fourth-order cumulant tensor of a BOM

source in terms of S. First, we consider the choice S = I. Due to the super-

symmetry of the cumulant tensor, we can consider an ordering i1 ≥ i2 ≥ i3 ≥ i4

without loss of generality. From (5.4), averaging over all possible symbols gives

the cumulant tensor for S = I as

[C4(x)]i1,i2,i3,i4 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
K
− 3

K2 for i1 = i2 = i3 = i4

− 1
K2 for i1 = i2 > i3 = i4

0 otherwise

(C.1)

Next, note that for any choice of S, we can express the source symbol x[n] =

Sx′[n] where x′[n] is a BOM symbol for the particular choice S = I. Thus,

exploiting the linearity property of cumulants and using (C.1), we have for all

i1, i2, i3, i4 ∈ {0, . . . , K − 1}

[C4 (x)]i1,i2,i3,i4
= [C4 (Sx′)]i1,i2,i3,i4

=
∑

k1,k2,k3,k4

[C4 (x′)]k1,k2,k3,k4
[S]i1,k1

[S]i2,k2
[S]i3,k3

[S]i4,k4

=
1

K

∑
�

[S]i1,� [S]i2,� [S]i3,� [S]i4,� −
1

K2
δ[i1 − i3]δ[i2 − i4]

− 1

K2
δ[i1 − i2]δ[i3 − i4] − 1

K2
δ[i1 − i4]δ[i2 − i3] (C.2)

141



Appendix D

Impulse Response of False Local Minima

for LTBOMB
As described in Section 5.2.5, false local minima in LTBOMB that occur when

S = I2 have the form c∗ = ±[0, α, β, γ, −β , α]�. Using the Gröbner basis

technique, the exact values of α, β, γ were found to be

α =
1

3064
γ
(
15896γ2 − 5584 + 8815γ4

)
β =

√
b2 + b3b

1/3
1 + b4b

2/3
1

γ =

√
2

5289

√
b
1/3
1 + 12226b

−1/3
1 + 526

where

b1 = 20801089 + 5289
√

15402345

b2 =
251

5289

b3 =
26175630712804443486963678 − 4894846657232724650142

√
15402345

1513948591386062

b4 =
974963328397765876223832 − 245022587455130663004

√
15402345

1513948591386062
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Appendix E

Candidate Blind Algorithms for

Orthogonal and Transorthogonal

Modulation
The following candidate algorithms were tested for equalization of orthogonal and

transorthogonal modulation. While we did not conduct a thorough study of these

algorithms (as we did for blind algorithms for biorthogonal modulation in Chapter

5), simulations have suggested that these are not suitable choices. All of these

algorithms were meant for adaptation of the scalar linear equalizer presented in

Chapter 4. They all exhibited poor convergence and spurious local minima, and

none appeared to outperform DD-LMS. We list them simply as documentation of

failed algorithms, so that we can avoid these as pitfalls in subsequent algorithm

development for orthogonal and transorthogonal modulations.

E.1 Candidate Algorithm #1

We attempted a CMA-like algorithm which is identical to LTBOMB but for or-

thogonal and transorthogonal modulation, and attempts to exploit the fact that,

when the equalizer is operating correctly, the power of the correlator output ã[n]

is constant, so

J(f) = E
[
(||ã[n]||22 − 1)2

]
resulting in the algorithm update equation

f [n + 1] = f [n] − µY [n]Sã[n](||ã[n]||22 − 1)
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E.2 Candidate Algorithm #2

A slight modification of the previous algorithm, this algorithm forms the error in

a space of reduced dimension, and does not penalize DC offsets:

J(f) = E

[(
||Uã[n]||22 −

N − 1

N

)2
]

= E

[(
ã[n]�Jã[n] − N − 1

N

)2
]

and corresponding algorithm update equation

f [n + 1] = f [n] − µY [n]SJã[n]

(
||Uã[n]||22 −

N − 1

N

)

E.3 Candidate Algorithm #3

We also tried an algorithm (for orthogonal modulation only) that is identical to

TROMBONE,

J(f) = E
[||ã[n]||42 − ||ã[n]||44

]
and corresponding algorithm update equation

f [n + 1] = f [n] − µY [n]S
(
ã[n]�ã[n]I − diag(ã[n])2

)
ã[n].

Like TROMBONE, this algorithm needs a constraint. We chose the constraint

E[ã[n]�ã[n]] = 1.



Appendix F

Extension of LTBOMB to DFE with

Complex Signals
First, we redevelop the model in Fig. 2.1 for the complex case. Now, instead of

imposing conditions on S�S as in Table 1.2, we make the same requirements on

SHS where H denotes conjugate transpose. Thus, for example, with orthogonal

and biorthogonal modulations S must be unitary. We continue to employ the min-

imum Euclidean distance detector, which in the complex case requires the insertion

of a real operator �(·) at the input to the “choose max” detectors described in

Section 1.4. The equations to describe the complex model are nearly identical to

the real case, with the only change being the equation for ã[n], giving

x[n] = Sa[n] (F.1)

Y [n] = HX[n] + W [n] (F.2)

z[n] = Y �[n]f (F.3)

ã[n] = �{
SHz[n]

}
+ Â

�
[n − 1]g. (F.4)

Note that S, x[n], Y [n], H , W [n], z[n], and f are all complex variables. On the

other hand, a[n], ã[n], Â[n − 1], and g assume only real values.

While the complex extension to the system model in (F.1)-(F.4) applies to all

of the modulations, we now consider the particular case of DFE adaptation via

LTBOMB, which is was studied in Chapter 5 for use with biorthogonal modulation

when K = N . For DFE adaptation with complex signals, the LTBOMB cost

function is given by

JLTB(f , g) = E
[(

ã�[n]ã[n] − 1
)2
]
. (F.5)
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Taking the instantaneous derivatives with respect to f and g gives the complex

DFE LTBOMB update equations

εLTB[n] = ã[n]
(
ã�[n]ã[n] − 1

)
(F.6)

fLTB[n + 1] = fLTB[n] − µ1Y [n]S∗εLTB[n] (F.7)

gLTB[n + 1] = gLTB[n] − µ2Â[n − 1]εLTB[n] (F.8)

where S∗ is the complex conjugate of S.
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