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Abstract

Equalization is crucial in mitigating inter-carrier and inter-symbol interference in a multicarrier

system. To ease equalization, typically a cyclic prefix (CP) is inserted between successive symbols.

When the channel order exceeds the CP length, equalization can be accomplished by placing a time-

domain equalizer (TEQ), in the form of a finite impulse response (FIR) filter, in cascade with the

channel. The TEQ is designed to produce a shortened effective impulse response. Alternatively, a bank

of equalizers can be used to remove the interference tone-by-tone. A literature survey and a unified

treatment of optimal equalizer designs for multicarrier receivers were presented in Part I of this paper.

This Part II focuses on implementation and performance issues. Complexity reduction techniques are

discussed, and the computational complexity of these techniques is tabulated. In addition, 16 different

equalizer structures and design procedures are compared in terms of achievable bit rate using synthetic

and measured data.

Index Terms: Multicarrier, Channel Shortening, Time-domain Equalization, Complexity.

EDICS Designation: 3-TDSL, Telephone Networks and Digital Subscriber Loops

R. K. Martin and C. R. Johnson, Jr., are with the School of Electrical and Computer Engineering, Cornell University, Ithaca,
NY, 14853-3801, USA (email: {frodo,johnson}@ece.cornell.edu). They were supported in part by NSF grant CCR-0310023,
Applied Signal Technology (Sunnyvale, CA), Texas Instruments (Dallas, TX), and the Olin Fellowship from Cornell University.

K. Vanbleu, G. Ysebaert and M. Moonen are with the Katholieke Universiteit Leuven – ESAT-SCD/SISTA, 3001 Leuven–
Heverlee, Belgium (email: {vanbleu,ysebaert,moonen}@esat.kuleuven.ac.be). G. Ysebaert and K. Vanbleu are Research Assis-
tants with the I.W.T. and F.W.O. Vlaanderen respectively. Their research work was carried out in the frame of (1) the Belgian
State, Prime Minister’s Office – Federal Office for Scientific, Technical and Cultural Affairs – Interuniversity Poles of Attraction
Programme (2002–2007) – IUAP P5/22 and P5/11, (2) the Concerted Research Action GOA-MEFISTO-666 of the Flemish
Government, and (3) Research Project FWO nr. G.0196.02. The scientific responsibility is assumed by the authors.

M. Ding and B. L. Evans are with the Dept. of Electrical and Computer Engineering, The University of Texas at Austin, Austin,
TX 78712-1084, USA (email: {ming,bevans}@ece.utexas.edu). They were supported in part by The State of Texas Advanced
Technology Program under project 003658-0614-2001. M. Milosevic was with the Dept. of Electrical and Computer Engineering
at The University of Texas at Austin. He is currently with Schlumberger in Sugar Land, TX (email: milos@ece.utexas.edu).

∗Correspondence: Richard K. Martin, 397 Frank Rhodes Hall, Cornell University, Ithaca, NY, 14853-3801 USA, Phone:
(607) 254-8819, FAX: (607) 255-9072, frodo@ece.cornell.edu

December 14, 2003 DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Multicarrier Equalization: Unification and

Evaluation. Part II: Implementation Issues and

Performance Comparisons

I. INTRODUCTION

Multicarrier (MC) modulation is currently enjoying a boom in popularity, largely due to the

fact that it allows an efficient receiver implementation that achieves high throughput. Discrete

multitone (DMT) has been implemented in wireline MC applications such as various digital

subscriber line (DSL) standards [1] and in power line communications standards. Orthogonal

frequency division multiplexing (OFDM) has been implemented in wireless MC applications

such as IEEE 802.11a [2] and HIPERLAN2 [3] local area networks, digital video and audio

broadcast (DVB/DAB) [4], [5], and satellite radio.

One of the main advantages of MC modulation (relative to single carrier modulation) is the

ease with which equalization can be performed. If the channel delay spread is shorter than the

guard interval between the transmitted blocks, then the frequency-selective channel appears as a

bank of adjacent flat fading channels, and equalization can be performed by a bank of scalars.

If the channel delay spread is longer than this guard interval, a prefilter is needed at the receiver

to shorten the effective channel to the appropriate length. This prefilter is called a time-domain

equalizer (TEQ). A review of optimal TEQ designs is given in Part I of this paper [6].

An alternative to the TEQ structure is to use a bank of filters or linear combiners, one per tone,

to remove the intersymbol and intercarrier interference (ISI, ICI) caused by a long channel. The

filters can be placed in the time or frequency domain, leading to the TEQ filter bank (TEQFB)

[7] and the Per-Tone Equalizer (PTEQ) [8], respectively.

Many equalizer designs are computationally intensive, requiring multiple matrix inversions,

eigendecompositions, and Cholesky decompositions. However, the matrices involved in most

designs have such a high amount of structure that many computations can be reused. Moreover,

it is sometimes possible to transform the problem into a mathematically equivalent problem that

requires fewer computations. The goals of this paper are:
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i) to survey the complexity reduction techniques in the multicarrier equalization literature,

ii) to compare the computational cost of these methods, and

iii) to compare the bit rates of these methods for synthetic and measured ADSL channels.

The performance will be assessed in an identical manner for all designs.

Part I [6] of this paper showed that almost all TEQ designs take the form of maximizing a

product of generalized Rayleigh quotients. This Part II is organized in a manner parallel to Part I.

General complexity reduction techniques and fixed-point implementation issues are described in

Section II. Techniques for single Rayleigh quotient designs are discussed in Sections III and IV,

with a single filter or multiple filters, respectively. Techniques for designs that maximize a

product of Rayleigh quotients are discussed in Section V. Section VI provides a performance

comparison, and Section VII concludes the paper. The notation of Part I [6] will be retained:

• N is the (I)DFT size, ν is the prefix length, s = N +ν is the symbol size, Nu is the number

of used tones, S is the set of used tones, Nz is the number of unused (“null”) tones, i is the

tone index, k is the DMT symbol index, n is the sample index, ∆ is the synchronization

delay, and N∆ is the number of values of ∆ that are considered in a given TEQ design.

• FN and IN are the N -point DFT and IDFT matrices, respectively; f i is the ith DFT row.

• The transmitted (QAM) frequency domain symbol vector at time k is X k; its ith entry

is Xk
i ; vectors xk, yk, nk, and uk contain the transmitted time domain samples, received

samples (before the TEQ), additive noise samples, and TEQ output samples, respectively.

• The vectors w, h, and c = h ? w contain the TEQ, channel, and effective channel impulse

responses of orders Lw, Lh, and Lc, respectively, where ? denotes linear convolution.

• 0m×n is the all zero matrix of size m × n; In is the identity matrix of size n × n.

• (·)T , (·)H , and (·)∗ denote transpose, Hermitian, and complex conjugate respectively.

• E{·} denotes statistical expectation.

II. COMPLEXITY REDUCTION TECHNIQUES AND FIXED-POINT ISSUES

Part I of this survey paper [6] showed that almost all TEQ designs can be classified as

maximizing a cost function in the form of a product of generalized Rayleigh quotients,

ŵopt = arg max
ŵ

M∏

j=1

ŵTBjŵ

ŵTAjŵ
(1)
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(or minimization of its inverse), where ŵ is usually the TEQ. Many TEQ designs reduce to

the case of a single generalized Rayleigh Quotient (M = 1), which can be maximized by

solving a generalized eigenvalue problem. For the more difficult case when multiple generalized

Rayleigh quotients are involved (M > 1), numerical methods must be applied to search for the

(locally) best solution. However, solutions for both the M = 1 and M > 1 cases are usually

computationally expensive, and some are infeasible for a real-time implementation, especially

on programmable fixed-point DSPs. Recent literature has therefore contained much work on

computationally efficient methods for calculating the optimum equalizer coefficients.

A. Classification of complexity reduction techniques

Some complexity reduction techniques entail no loss of optimality, whereas others use heuris-

tics or approximations with a possible loss of optimality. We categorize the various techniques

as follows:

(a) exploitation of the structure of the Aj and Bj matrices in (1), with no loss of optimality

(b) reuse of computations between different values of the synchronization delay (maintaining

optimality), or reduction of the number of delays considered (possibly sub-optimal)

(c) approximation of the Aj and Bj matrices (as Toeplitz, persymmetric, or circulant, e.g.),

with an expected loss of optimality

(d) use of iterative algorithms to approximate an optimal design, with an expected loss of

optimality.

When Aj and Bj are structured, type (a) techniques exploit this structure when performing

certain matrix operations. For instance, Aj and Bj are often constructed using correlation

matrices of the transmitted and/or received signals. In [9] it was pointed out that correlation

matrices are block-Toeplitz matrices and therefore some Toeplitz-based algorithms [10] could be

applied to compute their inverses. Another more complicated approach is to re-use computations

when computing the elements of Aj and Bj in [11] for the minimum intersymbol interference

(Min-ISI) design and [12] for the maximum shortening SNR (MSSNR) design.

Most TEQ designs have Aj and Bj matrices that depend on a synchronization delay ∆, which

is a design parameter. Type (b) complexity reduction techniques simplify the search for the delay

corresponding to optimal performance. Most designs require the solution of (1) separately for
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each delay, thereby making complexity proportional to the number of possible delays. If Aj(∆o)

and Bj(∆o) depend on a delay ∆o and only change slightly as the delay is incremented, then it

may be possible to derive Aj(∆o + 1) and Bj(∆o + 1) from Aj(∆o) and Bj(∆o), rather than

by recomputing the matrices entirely [12]. Another approach is to re-formulate a given design

to be less delay dependent, e.g. by making either Aj or Bj independent of the delay [13], [14],

and [15]. Heuristic approaches may also be adopted. Some equalizer designs (particularly those

that explicitly optimize bit rate) show a performance which is smooth and optimal for a number

of consecutive delays [7], [8], [16]; i.e. there exists a flat region on the bit rate performance

curve. One could design the equalizer for a single delay within the expected flat region (as many

vendors do), or search over a small number of possible delays [9]. The expected flat region is

typically near the delay of the transmission channel itself.

Type (c) complexity reduction techniques make approximations in Aj or Bj that may induce

an acceptable performance loss. One example is to approximate a Toeplitz matrix by a circulant

matrix [17], [18], which has discrete Fourier transform basis vectors as eigenvectors [19]. Using

the FFT and IFFT operations, the matrix computations can be carried out very efficiently.

As another example, Aj and Bj can be assumed or forced to be persymmetric [20] or Toeplitz

[21], leading to a linear phase (symmetric or skew-symmetric) solution for ŵ in (1). Forcing an

otherwise optimal TEQ to have linear phase leads to a substantial decrease in implementation

complexity at the cost of a limited loss in bit rate [20], [21], [22], [23]. Other parameter reduction

techniques (besides forcing a TEQ to have linear phase) include the reparameterization of a long

FIR channel or TEQ as a pole-zero filter with fewer parameters [9], [24], and the use of the same

filter (up to a scalar) for several adjacent tones in a per-tone equalizer (PTEQ) [8] or TEQ filter

bank (TEQFB) [7], leading to “per group” schemes. The dual-path TEQ (DP-TEQ) structure

[25] can be thought of as an extreme example of a tone-grouped TEQFB, in which one TEQ is

designed for all of the tones and a second TEQ is designed to maximize bit rate on a subset of

tones.

In some cases, finding the optimal solution of (1) is computationally too expensive. As a

consequence, some authors resort to iterative and adaptive algorithms to obtain the solution. This

is what we call a type (d) complexity reduction technique. For instance, when the equalizer design

problem can be described as an eigenvalue problem, candidates to find a specific eigenvector
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include the generalized power method [26], gradient descent algorithms with projections [27],

[28], and stochastic gradient descent algorithms with projections [29]. In addition, least-squares

problems, e.g. with the PTEQ, can efficiently be solved recursively [30], [31].

Sections III, IV, and V give explicit details regarding the types (a), (b), (c), and (d) approaches

described above for the cases M = 1 for a single filter, M = 1 for multiple filters, and M > 1

for a single filter, respectively, with M as in (1).

B. Fixed-point implementation issues

Any fixed-point number can be represented with m bits for the integer part and n bits for the

fractional part. One example is the Q-format notation in Texas Instruments’ C6000 DSPs. The

dynamic range of the problem determines m and the required precision determines n, although

the nature of the underlying DSP induces a practical restriction on the total number of bits

(m + n) that can be used. Commonly, the need for the integer part is eliminated via appropriate

normalization of the data, which ensures that multiplication will not change the dynamic range.

In the TEQ design problem, attention should be paid to some special matrix operations. To

solve (1) with M = 1, which requires a generalized eigendecomposition, one standard method

involves computing the Cholesky factorization of the matrix B; see Part I [6]. However, a fixed-

point implementation produces A + ∆A and B + ∆B instead of A and B. The error of the

computed eigenvalues is bounded by a multiple of κ(B)µ, where κ(B) is the condition number

of B and µ is the unit round-off [32]. When B is ill-conditioned, numerical stability can be lost

in the Cholesky factorization. The condition number of B is often large, so even with careful

choices of the binary data format, the accuracy of Cholesky factorization can be unacceptable

when the dimension of B (usually the TEQ length) is large.

The effect of round-off errors, called the digital noise floor, can be incorporated into the noise

model explicity, as in [7], or implicitly, as in [16].

III. SINGLE QUOTIENT CASES

We now consider reduced-complexity implementations of TEQ designs for the specific case

of maximizing a single generalized Rayleigh quotient.
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A. Methods for eigenvector computation

The maximization of a single generalized Rayleigh quotient requires computation of the

generalized eigenvector corresponding to the largest generalized eigenvalue of the matrix pair

(B,A), as discussed in [6]. This section details general techniques for this math problem, and

subsequent sections discuss details specific to particular TEQ designs.

One common iterative eigensolver is the generalized power method [10], which iterates

B ŵk+1 = A wk (2)

wk+1 =
ŵk+1

‖ŵk+1‖
, (3)

which requires a square root and division at each step for the normalization, as well as an LU

factorization [10] of B to solve (2) for ŵk+1. A similar approach is to alternate between gradient

descent of wTAw and renormalization to maintain wTBw = 1:

ŵk+1 = wk − µAwk (4)

wk+1 =
ŵk+1

‖ŵk+1‖B

, (5)

where ‖w‖2
B

4
= wTBw and µ is a small user-defined step size.

The expensive renormalization in (3) and (5) can be avoided through the use of a Lagrangian

constraint, as in [33], [34], which leads to an iterative eigensolver of the form

wk+1 = wk + µ
(
Bwk − Awk

(
wT

k Bwk

))
, (6)

where µ is a small user-defined step size. If stochastic rank-one approximations of B and A are

available, as in [29], then the generalized eigensolver in (6) requires O(Lw) multiply-adds per

update. If the matrices A and B are used explicitly, (6) requires O(L2
w) multiply-adds per update.

In either case, (6) is amenable to fixed-point calculation. For comparison, an LU factorization or

a Cholesky decomposition requires O(L3
w) floating point operations, including many divisions.

B. The MMSE family

There are several flavors of MMSE TEQ designs, which are distinguished based on the

constraint used to avoid the trivial solution b = w = 0. See Part I [6] for details on the

different constraints. For any MMSE method, the correlation matrices Rxx, R−1
xx , Rxy, Ryx,

Ryy, and R−1
yy must be computed. We now explain how to efficiently compute these matrices.
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Typically, Rxx is delay invariant and can be approximated as a diagonal matrix, trivializing

the computation of R−1
xx . In downstream ADSL, e.g., tones 33–256 are used, which makes Rxx

almost the identity. The channel output autocorrelation Ryy is also delay invariant, Toeplitz, and

symmetric, but not diagonal. Computing the inverse of such a matrix, i.e. R−1
yy , requires only

O (3L2
w) instead of O (L3

w) operations [10, Section 4.7.4]. Moreover, when R−1
yy is approximated

by a circulant matrix, its inverse can be performed by means of DFTs [17], [18].

If the channel is known explicitly, then the matrices Rxy, Ryx and Ryy can be written in

terms of the channel coefficients, as in [35]. Otherwise, computation of Rxy and Ryx can be

simplified by re-using computations from one delay ∆ to the next. Note that

[Ryx(∆ + 1)](0:Lw,0:ν−1) = [Ryx(∆)](0:Lw,1:ν) , (7)

which provides the bulk of Ryx(∆ + 1) for free. Moreover, the matrix [35], [36], [37]

R(∆) = Rx − RxyR
−1
y Ryx, (8)

is used for a unit norm constraint on b, for example. This matrix must also be computed for

every delay. Using (7), we have [12]

[R(∆ + 1)](0:ν−1,0:ν−1) = [R(∆)](1:ν,1:ν) . (9)

In fact, (9) holds for all MMSE designs, not just for the unit norm constraint on b. For each

new delay, only the last column of R(∆ + 1) must be computed, and the last row is obtained

by symmetry. Moreover, the speed of the computation of the eigenvector of R(∆ + 1) can be

increased by using a shifted version of the target impulse response (TIR) for delay ∆ to initialize

the eigensolver for delay ∆ + 1 [12].

Approximations can be made to further simplify the computations. For instance, [36] first

proposes the use of a representative class of channels, and then pre-computes the desired TIR for

each channel. When an actual channel is measured, the TIR is selected as the one corresponding

to the pre-defined channel that best matches the actual channel [36]. The TEQ is then computed

to match the given channel to the precomputed TIR.

Impulse reponses can also be approximated as symmetric. For an infinite length TEQ, the

finite length MMSE TIR will be symmetric or skew-symmetric [21]. Thus, it is reasonable to

enforce a finite-length symmetric TIR. This reduces the complexity of the eigensolver by a factor

of 4, at a loss of about 10% of the bit rate for a 20-tap TEQ [12].
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An alternate approach is to avoid the matrix computation and eigenvector solver altogether

via an iterative algorithm. The MMSE design was originally proposed in a form similar to (4)

and (5), except with simultaneous gradient descent on both the TIR and the TEQ [35]. However,

this approach is often slow to converge [1], [38]. Moreover, this adaptive algorithm requires

time-domain training, which is only available if there is training on all of the frequency bins in

a given symbol. This is not the case in many multicarrier standards, for example Digital Video

Broadcast [4]; and in ADSL, the training is only available during the initial handshake period

and every 69th symbol thereafter. This can in principle be remedied by using decision-direction

if one is willing to tolerate a delay of an entire block before decisions can be made, perhaps by

updating at the symbol rate rather than at the sample rate.

The computational complexity for several MMSE designs is summarized in Table I. The most

efficient techniques are used in all cases, including applying (9) during matrix computations and

not repeating matrix inversions at each delay unless the matrix is delay-dependent.

TABLE I

COMPLEXITY OF MMSE DESIGNS. MACS ARE REAL MULTIPLY-AND-ACCUMULATE OPERATIONS.

Optimal design Complexity per delay

MMSE, UTC on b [9] O
(

1
3
ν3 + ν2 + 2νLw + L2

w

)
MACs

MMSE, UTC on w [39] O
(

1
3
ν3 + ν2 + νLw

)
MACs

MMSE, UNC on b [35] O
(
ν2 + 2νLw + 2L2

w

)
MACs

MMSE, UNC on w [39] O
(
ν2 + νLw + L2

w

)
MACs

Sym-MMSE, UNC on b [12] O
(
ν2 + 3

2
νLw + 5

4
L2

w

)
MACs

Adaptive design Complexity per update per delay

Adaptive MMSE [35] O (4ν + 2Lw) MACs + square root + division

C. Chow’s TEQ training algorithm

In [38], Chow et al. describe an efficient TEQ training algorithm. It is meant as a computation-

ally inexpensive iterative algorithm (by reusing the available hardware such as FFT/IFFT blocks)

that approximates the MMSE TEQ with unit-norm constraint on b while avoiding expensive

matrix inversions [1]. However, the algorithm does not ensure convergence to the MMSE TEQ.

Each iteration consists of 4 steps: an update of the TIR b, a windowing of b to ν + 1 taps,

an update of the TEQ w, and a windowing of w to Lw + 1 taps. The updates are performed in
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the frequency domain (Bwin = F {b}, W win = F {w}), either by an instantaneous zero forcing

update or a frequency domain LMS update:

Bi =
Wwin

i Y k
i

Xk
i

or Bi = Bwin
i + µ(Xk

i )∗(Wwin
i Yi − Bwin

i Xi) and (10)

Wi =
Bwin

i Xk
i

Y k
i

or Wi = Wwin
i + µ(Y k

i )∗(Bwin
i Xi − Wwin

i Yi) (11)

The time-domain windowing is performed on the inverse FFT of W and B such that only the

Lw + 1 and ν + 1 samples with highest total energy are retained. An algorithm outline and the

computational complexity for Chow’s algorithm are given in Table II.

TABLE II

OUTLINE AND COMPLEXITY (PER ITERATION) OF CHOW’S ALGORITHM, USING DIVISION FOR Bi IN (10) AND LMS FOR

Wi IN (11). MACS ARE REAL MULTIPLY-AND-ACCUMULATE OPERATIONS.

Operation Complexity per iteration

1. update B O (4N) MACs & 1 FFT

2. window b O (2N) MACs & 1 FFT

3. normalize b 1 square root & 1 division

4. update W O (4N) MACs & 1 FFT

5. window w O (2N) MACs & 2 FFTs

total: O (N (12 + 5 log2(N))) MACs + 1 square root + 1 division

D. The MSSNR family

This section discusses the MSSNR TEQ design [40] and its extensions, including symmetric

and skew-symmetric MSSNR TEQs [20], [22] and related methods such as the Minimum Inter-

symbol Interference (Min-ISI) method [26], the Minimum Inter-block Inferference (Min-IBI)

method [33], and Minimum Delay Spread (MDS) methods [13], [14].

First, consider the standard MSSNR design. Following [40], we define H as the channel

convolution matrix of size (Lc + 1)× (Lw + 1), Hwin as rows ∆ through ∆+ ν of H (with row

indexing starting at zero), and Hwall as the remaining rows of H. Details can be found in [6].

The MSSNR design problem can be stated as [41]

max
w


wT HT

winHwin︸ ︷︷ ︸
B

w


 subject to wT HT

wallHwall︸ ︷︷ ︸
A

w = 1. (12)
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It has been shown that maximizing the energy of the “windowed” portion of the effective channel

with respect to the energy of the “walled” portion leads to the same TEQ as maximizing the

energy of the “windowed” portion of the effective channel with respect to the energy of the

entire channel [42]. Thus, (12) is equivalent to

max
w


wT HT

winHwin︸ ︷︷ ︸
B

w


 subject to wT HTH︸ ︷︷ ︸

C

w = 1. (13)

The solution for w will be the generalized eigenvector of the matrix pair (B,C) corresponding

to the largest generalized eigenvalue λ; note that C takes on the role of A in (1). Since C is

not a function of delay ∆, it only needs to be computed once, and since it is symmetric and

Toeplitz, it can be computed in its entirety by computing only the first column. Moreover, (12)

requires a Cholesky decomposition of A or B for each ∆, but since C is not delay dependent,

only one Cholesky decomposition is needed for (13). Thus, we will refer to (13) rather than (12).

A similar implementation, with a generalization to reduce noise gain, was proposed in [15].

To solve (13), the (Lw+1)×(Lw+1) matrix B must be computed for each of the possible values

of ∆, and for each ∆ a generalized eigenvector must be computed. Reducing the complexity

can be accomplished by reducing the computation of B, or by reducing the computation of the

eigenvectors. One way to re-use computations is to obtain all but the first row and column of

B(∆ + 1) by shifting in all but the last row and column of B(∆) [12],

[B(∆ + 1)](1:Lw,1:Lw) = [B(∆)](0:Lw−1,0:Lw−1) (14)

in a manner similar to (9). The first column of B(∆+1) can then be quickly obtained as follows.

Since B is nearly Toeplitz, instead of computing a full (ν + 1)-length dot product to get each

element, only two multiply-adds are needed [11]:

B(m,n) = B(m+1,n+1) + h(∆ + ν + 1 − m) h(∆ + ν + 1 − n) − h(∆ − m) h(∆ − n). (15)

The first row can then be obtained by transposing the first column. The B for the first delay

considered can also be computed almost entirely via (15).

Further reductions in complexity can be obtained by reducing the number of delay values that

are searched (possibly creating sub-optimal performance), or by using a shifted version of the

TEQ for delay ∆ to initialize the eigensolver for the TEQ for delay ∆ + 1 [12].
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Similar complexity reduction techniques can be applied to MSSNR variants such as the Min-

ISI method [26], the Min-IBI method [33], and the Minimum Delay Spread (MDS) method [13].

For example, in the Min-ISI method, the ISI is weighted in the frequency domain, leading to a

more complicated B matrix (see [6]). The above techniques still apply, although (15) must be

modifed as in [11].

The Min-IBI and MDS designs are part of a larger class defined in [15]. Consider minimizing

J = α

∑
n f(n − nmid) |cn|

2

∑
n |cn|

2 + (1 − α)
σ2

w

σ2
x‖c‖

2
, (16)

where nmid is the desired “middle” of the non-zero portion of the effective channel and f(·) is

an arbitrary function. The case α = 1 and f(n) = n2 leads to an algorithm that minimizes the

delay spread (MDS) of the effective channel [13]. The case α = 1 and

f(n) =





0, −ν
2
≤ n ≤ ν

2

1, otherwise
(17)

leads to an algorithm which minimizes wTAw while keeping wTCw = 1 [with A and C as

in (12) and (13)]. For general values of α (“Noise-limited MSSNR,” or NL-MSSNR), (15) still

applies, since the noise term does not change the near-Toeplitz structure of the matrices.

Hitherto, the MSSNR complexity reduction techniques have focused on finding the same

SSNR-maximizing solution at a lower cost. An alternate philosophy is to use approximations or

iterative algorithms to find nearly the same solution at reduced cost. Symmetric MSSNR (Sym-

MSSNR) constrains the impulse response to have linear phase (symmetric or skew-symmetric),

so only half of the TEQ coefficients need to be computed. This reduces the complexity of the

eigensolver by a factor of 4. However, the bit rates of the constrained MSSNR solution drop by

about 3% for ADSL and VDSL systems [12], [20], [22].

One iterative method of solving (13) is the generalized power method of (2) and (3). Other

iterative/adaptive MSSNR techniques have been proposed in [27] and [29]. These techniques

are similar to the power method, but perform a gradient descent of a cost function (rather than

a matrix multiply) with a periodic renormalization. Alternatively, (6) can be used to avoid the

renormalization.

The computational complexity for MSSNR designs is summarized in Table III. The MSSNR,

NL-MSSNR, and Sym-MSSNR designs assume that the methodology of (13), (14), and (15) are
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used. The Min-ISI design assumes that the efficient matrix computations of [11] are used, which

are a generalization of (15). The method of [29] is assumed to use a stochastic update of the

form of (6). The method of [27] requires a constraint to avoid w = 0, which can be enforced

through periodic renormalization, for example. The method of enforcing the constraint could

add considerably to the algorithm’s complexity. The power method assumes that the Cholesky

decomposition of B needed to solve (2) is only performed once, rather than at each iteration.

TABLE III

COMPLEXITY OF MSSNR DESIGNS. MACS ARE REAL MULTIPLY-AND-ACCUMULATE OPERATIONS, AND FLOPS ARE REAL

FLOATING POINT OPERATIONS (I.E., INCLUDING DIVISIONS).

Optimal design Complexity per delay

MSSNR [40] and NL-MSSNR [15] O
(
L3

w

)
flops

Sym-MSSNR [20] O
(

1
8
L3

w

)
flops

Min-ISI [26] O
((

5NLw + L3
w

))
flops

Min-IBI [33] O
((

LcL
2
w + 5

3
L3

w

))
flops

MDS [13] O
((

LcL
2
w + L3

w

))
flops

Iterative/adaptive design Complexity per delay

MSSNR via power method (2) [10] O
(
3L2

w

)
MACs/update

MSSNR via iteration of (6) [34] O
(
2L2

w

)
MACs/update

MERRY [29] O (4Lw) MACs/update

Nafie & Gatherer [27] O (2Lw) MACs/update + (1 square root and 1 division)/update

Iterative Min-ISI [23] O
(
N3
)

MACs + O
(
3L2

w

)
MACs/update + (1 square root and 1 division)/update

E. The CNA adaptive equalizer

In many multicarrier standards [2], [3], [4], [5], the frequency-domain input signal is zero-

padded before transmission, so some frequency bins Xi are null (zero). In the absence of ISI, each

corresponding receiver FFT output Ui is expected to also be zero; whereas in the presence of ISI,

it may not. The carrier-nulling algorithm (CNA) [43], [44] performs a stochastic gradient descent

of the output energy in the set of Nz null carriers, where a periodic renormalization is used to

avoid w = 0. This constrained minimization problem is in fact an eigenvector problem, and the

CNA algorithm becomes a low-complexity adaptive eigenvector estimator which equalizes the

channel to an impulse, rather than shortening it to a window [43]. The computational complexity

of CNA is given in Table IV.
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TABLE IV

COMPUTATIONAL COMPLEXITY OF CNA. MACS ARE REAL MULTIPLY-AND-ACCUMULATE OPERATIONS.

Operation Complexity per iteration

additive update O (N (Nz + Lw)) MACs

renormalization 1 square root & 1 division

IV. MULTIPLE FILTERS, EACH WITH A SINGLE QUOTIENT

The design methods called a per tone equalizer (PTEQ) and a time domain equalizer filter bank

(TEQFB) treated in this section discontinue the practice of using only one filter to equalize the

channel across the entire bandwidth, and instead assign each subchannel a potentially different

equalizing filter. Both methods use the measure achievable bit rate as their objective function,

thus also breaking away from the practice of earlier methods (e.g. in Sections II and III) that

maximized objective functions that were not necessarily related to the bit rate of the system.

Both methods were reviewed in Part I of this paper [6], focusing on the equalizer architecture

and design premises. This section describes the implementation of these methods, with emphasis

on the computational complexity encountered during equalizer coefficient initialization and data

transmission.

A. Per-tone equalizer

The PTEQ architecture [8] allows one equalizer in the frequency domain for each subchannel.

PTEQ moves the equalization after the FFT block and incorporates the functions of the FEQ as

well. The PTEQ derivation (reviewed in Part I) starts from the conventional single time domain

architecture and uses the linearity of all operations to arrive at the frequency domain equalizer

wi for subchannel i. We can write the equalized output on tone i as [30]

X̃k
i = v̄T

i Fiy
k (18)

where X̃k
i is the estimate of the transmitted symbol Xk

i in subchannel i, v̄T
i are PTEQ equalizer

coefficients for tone i incorporating the sliding FFT subtraction terms [8], yk is a vector of

N + Lw samples in symbol k, and

Fi =


 ILw

0 −ILw

0 fi


 (19)
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Here, fi performs the single-point DFT. The optimal coefficients are then arrived at by minimizing

J(vi) = E[|v̄T
i Fiy

k − Xk
i |

2] (20)

The cost function (20) can be minimized using several direct methods discussed in Part I, either

with or without the knowledge of the channel state information and noise and signal statistics.

Direct methods require a transmission of a training sequence of K symbols and a large number

of computations, although an adaptive method would have lower numerical complexity.

An adaptive PTEQ method minimizing (20) based on recursive least squares (RLS) with

inverse updating is given in [30]. This RLS-based method estimates the covariance matrix of the

equalizer input Rk
i =

∑k

j=1(Fiy
j)∗(Fiy

j)T and decomposes it into (Rk
i )

−1 = (Lk
i )

HLk
i where

Lk
i is a lower triangular matrix. The algorithm then for K iterations directly improves the estimate

of Lk
i [without recomputing (Rk

i )
−1] and uses the byproduct of that refinement in an RLS-based

adaptation for the equalizer coefficients vk
i . The reader should see [30] for further details. Most

important, the inclusion of the sliding FFT difference terms induces a special structure in Lk
i

where the matrix Lk
i (0 : Lw − 1, 0 : Lw − 1) is real and equal for all subchannels and only

the last row of Lk
i is different and complex. A combined RLS-LMS initialization technique is

described in [31].

The RLS initialization complexity, assuming that all of the available subchannels are used, is
N
2
(20Lw + 30) + 3L2

w + 7Lw MACs/iteration, while the RLS-LMS complexity under the same

assumptions is N
2
(4Lw + 13) + 3L2

w + 7Lw MACs/iteration [31].

Note, that in contrast to direct PTEQ initialization methods, the RLS PTEQ does not need

knowledge of the channel state and the noise statistics. The simulation results reported in [30]

show that for the given examples, the RLS-based initialization algorithm achieves a data rate

and SNR similar to the direct methods for the same number of training symbols.

B. Time domain equalizer filter bank

A per tone method with a time domain equalizer for each subchannel is the TEQ Filter Bank

(TEQFB) [7]. The method models the subchannel SNR as a single generalized Rayleigh quotient

SNRi =
wT B̃iw

wT Ãiw
, (21)
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where the complex-valued Hermitian symmetric (Lw + 1) × (Lw + 1) matrices are

Ãi = 2Sx,i


HT

wall,1ViV
H
i Hwall,1︸ ︷︷ ︸

Ai,h

+HT
wall,2WiW

H
i Hwall,2︸ ︷︷ ︸

Ai,t


 (22)

+ Qnoise
i Rn

[
Qnoise

i

]H
︸ ︷︷ ︸
Ai,awgn+Ai,next+Ai,adc

+
σ2

DNF

wTw
ILw+1,

B̃i = Sx,iH
TQcirc

i

[
Qcirc

i

]H
H. (23)

Hwall,1 and Hwall,2 are convolution matrices composed of the head and tail portions of the

channel, h(0 : ∆ − 1) and h(∆ + ν + 1 : N), respectively; Vi and Wi are upper and lower

triangular Hankel matrices made from the ith row of the DFT matrix, fi; Qnoise
i and Qcirc

i are

Hankel matrices made from fi that account for the DMT symbol structure; Rn is the noise

(AWGN, crosstalk and finite precision of analog-to-digital converter) covariance matrix; and

σ2
DNF is the power of the noise due to the fixed-point arithmetic [7]. The TEQFB design involves

computing Ãi and B̃i as in (22) and (23), then maximizing a generalized Rayleigh quotient for

each subchannel. The efficient TEQFB initialization procedure in [45] exploits the structure of

these matrices to reduce the number of computations necessary for their initialization compared

to a straight multiply-update approach that would be taken if no such structure existed.

1) Subchannel SNR model numerator: Element k, j of B̃i can be written as

B̃i[k, j] = N fi[k − j]

(
N+Lw−2−k∑

m=0

h[m]fi[m]

)

︸ ︷︷ ︸
ti[k]

(
N+Lw−2−j∑

l=0

h[l]fi[−l]

)

︸ ︷︷ ︸
t∗i [k]

(24)

where 0 ≤ k ≤ Lw. A recursive formula for the computation of elements ti[k] is given in [45].

Computation of the lower triangle elements of B̃i requires order O (max(L2
w, N)) real multiply-

accumulate (MAC) operations1.

2) Subchannel SNR model denominator:

a) AWGN and ADC component: The AWGN and ADC contribution is captured in Ai,awgn+

Ai,adc, which is a Hermitian symmetric and Toeplitz matrix. Thus, it is only necessary to compute

elements of its first column. The remaining elements are then defined by the Hermitian symmetry

and Toeplitz structure.

1In standardized ADSL the largest value of N used is 512 and Lw often ranges from 2 to 32 for customer premises equipment.
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b) Near-end crosstalk component: The matrix Ai,next = Qnoise
i Rnext

[
Qnoise

i

]H
where the

noise covariance matrix Rnext is symmetric and Toeplitz. Hence,

Ai,next[k, j] =
N−1∑

n=0

N−1∑

m=0

Rnext[|n − m + i − j|, 0]fi[m − n] (25)

The dependence of the element Ai,next[k, j] on the index i−j of matrix Rnext means that Ai,next

also is symmetric and Toeplitz and only the first column needs to be calculated. The algorithm

requires O (4N + 15Lw) real MACs [45].

c) Channel tail component: Define the temporary Hankel matrix Xi = HT
wall,2Wi. It is

shown in [45] that the element A
k,j
i,t is recursively defined as

Ai,t[Lw − 1, j] =
∆−1∑

g=Lw−1

Xi[0, g]

∆−Lw+j∑

s=0

XH
i [0, s], (26)

Ai,t[k, j] = Ai,t[k + 1, j + 1] + Xi[0, k]XH
i [0, j]. (27)

Computation of the lower triangle elements of Ai,t requires exactly 7L2
w + 4Lw∆ + 5∆ − 3Lw

MAC operations. Usually ∆ > Lw, so the described algorithm requires O (4Lw∆) MACs.

d) Channel head component: Define Zi = HT
wall,1Vi. A recursive relationship can be

defined between the elements of the kth row of Zi:

Zi[k, j + 1] = fi[1]Zi[k, j] + h[(N + Lw − 2) − k − (j + 1)]. (28)

This algorithm for calculation of Ai,h will update the value of all of the matrix elements with

the contribution of the product the jth column of Zi and the jth row of ZH
i for 0 < j <

N − ν − ∆ + Lw − 1. The algorithm requires order O (NL2
w) MACs.

The overall initialization complexity of TEQFB is of the order O (8L2
wN) per subchannel.

Assuming that N/2 subchannels are used, that there are N frames to complete initialization2 and

that the duration of a frame is (N + ν)/fs where fs = 2.208 MHz is the sampling frequency,

the TEQFB initialization complexity is approximately 4L2
wfs MACs / s.

C. Data transmission complexity

The computational complexity and memory requirements during data transmission (as opposed

to initialization) for the TEQFB and PTEQ architectures are shown in Table V. Thus, a TEQFB

2Assuming that the channel state and noise statistics are already known
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TABLE V

DATA TRANSMISSION COMPUTATIONAL COMPLEXITY FOR SAMPLE RATE fs = 2.208 MHZ, SYMBOL RATE fsym = 4 KHZ,

FFT SIZE N = 512, CYCLIC PREFIX LENGTH ν = 32, AND ASSUMING N
2

DATA-CARRYING SUBCHANNELS.

PTEQ MACs / s Storage Words

FFT 2N log2 Nfsym 4N + 2ν

Difference terms Lwfsym Lw

Combiner N(Lw + 2)fsym (Lw + 1)N

8-tap example 57 · 106 6728

TEQFB MACs / s Storage Words

TEQ FB N
2

Lwfs Lw(N
2

+ 1)

Goertzel FB (N2 + N)fsym 4N

FEQ 2Nfsym N

8-tap example 5577 · 106 4616

can have lower memory needs than a PTEQ; however, a TEQFB has significantly higher com-

putational requirements during data transmission that make it too expensive for cost-effective

embedded implementation today. If equalization should take at most 5% of the processor time

and 17-tap subchannel equalizers are used, a TEQFB becomes feasible for single-core processors

running at 240 MHz (multiple core processors can do with a lower speed due to the possibility

of a highly parallelized TEQFB implementation).

V. MORE THAN ONE RAYLEIGH QUOTIENT

Although the most popular design methods to find a single TEQ are based on solving a

generalized eigenvalue problem (see Section III), they are in general not optimal in the sense of

bit rate maximization. Several attempts have been made to design a TEQ that maximizes bit rate.

As in Section IV, the bit rate is again the underlying objective function, but in this section we

are focusing on single TEQ design. These designs vary in nature, but they can all be described

in a common way as a maximization of a product of multiple Rayleigh quotients, and hence

lead to a non-linear optimization problem [6]. In this section, each method is briefly reviewed,

some non-linear optimization procedures are presented, and complexity is tabulated.
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A. Maximum geometric signal-to-noise ratio (MGSNR) method

The geometric SNR for a DMT system [37], [46], [47], [48] is defined as

SNRgeom =

(
∏

i∈S

SNRi

) 1
Nu

, (29)

where S is the set of tones that carry data and Nu is the number of tones in that set. For a

high SNR and a fixed transmission bandwidth, maximizing the achievable bit rate is equivalent

to maximizing the geometric SNR in (29) [37], [47]. After assuming equal power distribution

in all subchannels and that the TEQ w and the TIR b are related through Ryxb = Ryyw,

maximization of (29) can be rewritten as [37], [47]

b
opt
GSNR = arg max

b

∑

i∈S

lnbTGib s.t. bTb = 1 and bTR∆b ≤ MSEmax, (30)

where R∆ is given in (8), Gi is a matrix with DFT coefficients related to tone i, and the second

constraint avoids equalization to a single spike.

The optimization problem in (30) is a constrained nonlinear optimization problem and does

not have a closed form solution. In [37], [47], the MATLABr optimization toolbox was used

to solve (30). Recently, Laskarian and Kiaei proposed to use the gradient projection method in

conjunction with projection onto convex sets as a means to find the solution of (30) [28], [49].

First, they remove the unit-norm constraint on the TIR since the origin is not a trivial solution

of the problem. Then they observe that the second constraint represents a closed convex set in

the (ν +1)-dimensional Euclidean space: {b ∈ IRν+1|bTR∆b ≤ MSEmax}. Using the convexity

property of the constraint set along with a suitable iterative descent method efficiently leads

them to a stationary point. A feasible descent direction is obtained by taking a step along the

negative gradient of the cost function followed by a projection on the constraint set. Based on

[28], an outline of the algorithm and its complexity are given in Table VI.

B. Maximum bit rate (MBR) method

In [26] and [50] the Maximum Bit Rate (MBR) TEQ design method was presented to maximize

the bit rate at the TEQ output. The approximate subchannel SNR model is given by

S̃NRi(w) =
wTAiw

wTBiw
, (31)

December 14, 2003 DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING 19

TABLE VI

ALGORITHM OUTLINE AND COMPLEXITY TO SOLVE (30) [28].

Operation Complexity (flops)

1. Initialization:

1.1 Calculation of R∆ O
(
L2

w + L2
wν + Lwν2

)

1.2 Eigenvalue decomposition of R∆ O
(
ν3
)

2. Per iteration:

2.1 Gradient computation O
(
Nuν2

)

2.2 Descent update O (ν)

2.3 Projection onto convex set O (2ν)

where Ai and Bi describe the signal and noise components for tone i respectively (see [26],

[50] for details). The approximate bit rate is then given by

b̃TEQ OUT(w) = fsym

∑

i∈S

log2

(
1 +

S̃NRi(w)

Γ

)
, (32)

where fsym = 4 kHz is the symbol rate. Arslan, Evans and Kiaei [26] propose to maximize this

non-linear bit rate equation by using an advanced iterative Newton-like optimization algorithm,

such as the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm [51] in the MATLABr

optimization toolbox. The authors conclude that the MBR procedure is computationally expensive

and not well-suited for real-time implementation on a programmable digital signal processor.

C. Bit rate maximizing TEQ (BM-TEQ) and maximum data rate TEQ (MDR-TEQ)

The TEQ procedures of Sections V-A and V-B contain many approximations. Vanbleu et al.

and Milosevic et al. independently suggested very similar TEQ design procedures for bit rate

maximization, referred to as the bit rate maximizing TEQ (BM-TEQ) in [16] and the maximum

data rate (MDR) TEQ in [52]. In both cases, the bit rate maximization problem can be written

as

arg max
w

bDMT(w) = arg min
w

∑

i∈S

log2

wTBiw

wTAiw
, (33)

where Ai and Bi are tone dependent matrices (see [7], [16] for details). In [16], the bit rate

is maximized at the FEQ output while the authors of [7] have chosen to maximize a slightly

differently defined bit rate at the FFT output (or FEQ input).
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Minimizing (33) is an unconstrained nonlinear optimization problem. When channel knowl-

edge and noise statistics are available, standard non-linear iterative optimization algorithms,

such as iterative (quasi-)Newton algorithms and simplex algorithms, can be applied to solve

(33). Milosevic et al. [7] use the Almogy and Levin iteration [53] to find a root of the gradient

of (33) that corresponds to the closest local maximum to the initial point. The initial point

for w can be the TEQFB subchannel equalizer that results in the highest value of (33) for all

subchannels of interest.

In [16], the authors observed (without proof) that, although the BM-TEQ cost function is often

multimodal, the different local minima yield nearly optimal performance. Therefore, a recursive

TEQ update based on a Gauss-Newton-like search direction was proposed to solve (33),

wk = wk−1 − (Hk(wk−1))† gk(wk−1), (34)

where gk(wk−1) is the gradient of the cost function, (·)† is the pseudo-inverse, and Hk(wk−1)

is a positive semidefinite approximation of the Hessian of the cost function. The algorithm is

recursive (or adaptive) since the TEQ update is based on continuously incoming data and not on

noise statistics nor channel knowledge. The gradient and Hessian in (34) are obtained by [54]

• recursively estimating the Cholesky factor of E{[Y k
i ∆Tyk]T [(Y k

i )∗ ∆Tyk]} and the

crosscorrelations E{∆yk(Xk
i )∗}, E{Y k

i (Xk
i )∗} for ∀i ∈ S , where Y k

i is the DFT output

of the received signal for tone i, ∆yk are Lw difference terms of the received time-domain

signal, and Xk
i is the transmitted frequency domain symbol for tone i,

• evaluating the expressions for Hk and gk as functions of wk−1.

Based on [54], an outline of the algorithm and its complexity are given in Table VII. The

algorithm converges very fast (fewer than 100 iterations) and allows for further adaptation and

tracking during data transmission.

VI. COMMUNICATIONS PERFORMANCE EVALUATION

This section presents a performance comparison of the optimal designs presented in Part I

[6] and the low-complexity implementations presented in this paper. Section VI-A describes the

communications performance measure, Section VI-B describes the synthetic data and results,

and Section VI-C describes the measured channels and the performance of the various designs

for these channels.
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TABLE VII

ALGORITHM OUTLINE AND COMPLEXITY TO SOLVE (33) [54].

Operation Complexity (flops/iteration)

1. Statistics update O
(
L2

w + 2NuLw

)

2. Gradient and Hessian computation O
(
2NuL2

w + NuLw

)

3. Pseudo-inverse calculation of Hessian O
(
L3

w

)

4. TEQ update O
(
L2

w

)

A. Communications performance measure

The performance metric adopted in this paper is the achievable bit rate for a fixed probability

of error (10−7). Bit allocation on subcarrier i is calculated by

bi = log2

(
1 +

SNRi

Γsim

)
(35)

where SNRi is the SNR at the ith subcarrier, measured by averaging the output signal to noise

(and residual interference) ratio at the FEQ output, and

Γsim (in dB) = Γgap + system margin − coding gain. (36)

Here, the “SNR gap” Γgap = 9.8 dB corresponds to 10−7 bit error rate, the system margin is

6 dB, and the coding gain is 5 dB [55]. Note that (35) is not in dB, whereas (36) is. The

achievable bit rate is then R = fsym

∑
i bi, where fsym = 4 kHz is the symbol rate and

∑
i bi is

the number of bits per DMT symbol.

B. Synthetic data simulations

1) Test transmission lines: The physical media for ADSL channels are metallic twisted pairs

of wires, i.e. telephone lines. In practice, it is common to encounter transmission lines in which

several segments of wire, each of different gauge and length, are connected together to form the

subscriber loop. The common gauges are 0.32 mm, 0.4 mm (26 gauge), 0.5 mm (24 gauge), and

0.63 mm. The gauge changes introduce an impedance mismatch and cause signal reflections in

the lines. Most lines also contain bridged taps, open-circuited wire pairs bridged onto the main

cable pair. Bridged taps are intended to offer flexibility for future alterations in transmission

lines, at the cost of significant reflections of signals.
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This paper uses a group of eight loops widely used in research simulations, called the carrier

serving area (CSA) loops, which were proposed by Bell Systems in the early 1970s. The impulse

responses of these test loops can be obtained by using the LINEMOD software [56], which was

developed based on two-port network transmission line theory [1, Sec. 3.5]. The simulations

use the 8 CSA loops (available in [57]) in series with a 5th order Chebyshev Type I high-pass

filter with cut-on frequency at 4.8 KHz and a high-pass filter with cut-on at 138 kHz, which

serve to filter out the “plain old telephone system” (POTS) voiceband signal and to filter out the

upstream signals, respectively.

2) Noise enviroment: Sources of DSL noise can be classified into three categories: impulse

noise, background noise, and crosstalk. Impulse noise consists of impulses occurring at random

times, and background noise is usually modelled as additive white Gaussian noise (AWGN).

Crosstalk arises due to the fact that twisted pairs of wires are usually bundled together in large

cables, and signals can leak through from one cable to the next. A typical configuration towards

the customer (“downstream”) is fifty pairs with a larger gauge in one cable. In contrast, the

configuration towards the central office (“upstream”) often contains a much larger number of pairs

of small gauge. Crosstalk is further divided into near-end crosstalk (NEXT) and far-end crosstalk

(FEXT). NEXT tends to be dominant in ADSL transmissions [1]. It is generally modelled as a

coupling filter fed by a white signal that has the same bandwidth and statistical properties as

the modulated signal used by the adjacent loops. Our simulations use NEXT corresponding to

5 ISDN disturbers plus AWGN at -140 dBm/Hz, distributed over the entire bandwidth (relative

to 23 dBm input signal power).

3) Simulation results: The FFT size is N = 512 and the CP length is ν = 32, as in the G.DMT

standard for downstream transmission. Delay optimization has been applied to all methods. The

TEQ length is 17 taps, which is a common choice in practice. Fig. 1 compares designs that

are optimal in terms of some cost function other than the bit rate, Fig. 2 presents the results

for sub-optimum methods that make approximations or use a limited number of iterations (1000

iterations in this case), Fig. 3 presents the results for methods that explicitly attempt to maximize

the bit rate, and Fig. 4 presents the bit rate vs. delay for various TEQ designs, using CSA loop 4.

The dual path TEQ computed the MMSE, MSSNR, and MDS TEQs, and picked the best one

for one path, then designed a Min-ISI TEQ optimized over a subset of tones for the second path.
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Fig. 1. Bit rate of designs that are optimal in terms of a measure other than the bit rate: minimum mean squared error (MMSE),

maximum shortening SNR (MSSNR), minimum intersybol interference (Min-ISI), minimum delay spread (MDS), and dual path

TEQ. Left-to-right corresponds to top-to-bottom on the legend.
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Fig. 2. Bit rate of designs that make approximations or use a limited number of iterations: symmetric minimum mean

squared error (Sym-MMSE), symmetric maximum shortening SNR (Sym-MSSNR), symmetric minimum intersybol interference

(Sym-Min-ISI), multicarrier equalization by restoration of reduncancy (MERRY), and sum-squared auto-correlation minimization

(SAM). Left-to-right corresponds to top-to-bottom on the legend.

December 14, 2003 DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING 24

1 2 3 4 5 6 7 8
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

CSA loop number

B
it 

ra
te

 (
M

bp
s)

MGSNR
MBR
MDR
BM−TEQ
TEQFB
PTEQ

Fig. 3. Bit rate of TEQ designs that explicitly attempt to maximize the bit rate: maximum geometric SNR (MGSNR),

maximum bit rate (MBR), maximum data rate (MDR), bitrate maximizing TEQ (BM-TEQ), TEQ filter bank (TEQFB), and

per-tone equalization (PTEQ). Left-to-right corresponds to top-to-bottom on the legend.
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Fig. 4. Bit rate versus delay for various TEQ designs, using CSA loop 4.

As such, it outperforms the other designs in Fig. 1. The approximations used in Fig. 2 usually

induce a small loss in bit rate with respect to their counterparts in Fig. 1. The SAM algorithm

seems to become stuck in false local (but not global) minima of the SAM cost function, leading
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to a performance loss. The algorithms in Fig. 3 are listed in order of fewer approximations and

more general structures; hence performance is expected to (and generally does) increase as we

move left to right on the bar chart. From Fig. 4, the MDR, BM-TEQ, TEQFB, and PTEQ do

not require a full delay search in order to achieve good performance, whereas most of the other

designs are sensitive to the choice of delay and thus require a thorough delay search to achieve

optimal performance.

C. AST data set

Applied Signal Technology has generously provided the authors with several measured ADSL

data signals. The voltage signal from a telephone line was recorded, sampled at 2.5 MHz, and

digitized. The signal was frequency-duplexed so that the upstream and downstream channels lay

in two distinct frequency bands [1].

We resampled the data to exactly 2.208 MHz, and then used the C-REVERB2 training

sequence to perform a (downstream) channel estimate. The estimated channel is given by

ĥ = FN
−1

(
1

1000

1000∑

k=1

FNxk

FNyk

)
, (37)

where vector division is performed pointwise. Here, FN is the DFT matrix, xk is the kth period

of the chosen C-REVERB2 signal, and yk is the corresponding received signal over the same

period. The C-REVERB2 signal is generated according to the definition in [58, Sec. 10.4.5].

Fig. 5 shows the impulse responses of the estimated channels for two sets of recorded data,

including the POTS splitters.

Fig. 6 shows the achievable bit rate for the 16 TEQ designs considered in the previous

simulations, except now they have been used to equalize the two AST channels from Fig. 5.

These results corroborate the results from the synthetic channels in Figs. 1–3.

VII. CONCLUSION

Equalizer design for multicarrier systems can be a computationally intensive procedure. We

have surveyed the TEQ design literature for complexity reduction techniques, and tabulated the

complexity requirements of the most popular algorithms. We have also provided a performance

assessment in the form of bit rate computation for designs using both synthetic and measured

DSL channels. For ADSL channels, most designs yield bit rates that only differ by about 10%,
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Fig. 5. Estimated channel impulse responses for measured signals 1 and 2 from the Applied Signal Technology data set.
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Fig. 6. Bit rate acheived using the two measured AST channels. The channel impulse responses are given in Fig. 5.

but computational requirements can vary by several orders of magnitude. The literature appears

to be moving towards more costly implementations with the goal of ever-increasing bit rates.
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