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Abstract— Channel shortening is often employed as a means of
mitigating inter-symbol and inter-carrier interference in systems
using multicarrier modulation. The MERRY algorithm has
previously been shown to blindly and adaptively shorten a
channel to the length of the guard interval in a multicarrier
system. This paper addresses synchronization and complexity
reduction issues which were not dealt with in previous work,
and provides extensions to and generalizations of the MERRY
algorithm. A modification is presented which removes the square
root and division needed at each iteration without introducing
additional complexity, with the added benefit of allowing the use
of constraints other than a unit norm equalizer; an extension
is proposed which allows for the use of more data in the
MERRY update; the algorithm is generalized to the MIMO
and fractionally-spaced cases; a low-complexity, blind symbol
synchronization technique is proposed; and a method is proposed
for blind initialization of the algorithm to avoid slow modes of
convergence. Each extension to the basic MERRY algorithm is
accompanied by an illustrative simulation example.

Index Terms— Adaptive, Blind, Channel Shortening, Cyclic
Prefix, Equalization, MERRY, Multicarrier.

I. INTRODUCTION

CHANNEL shortening is a generalization of equalization,
since equalization amounts to shortening the channel to

length one. Channel shortening was first applied to maxi-
mum likelihood sequence estimation (MLSE) [1]. Since the
complexity of MLSE grows exponentially with the channel
length, a prefilter can be employed to shorten the channel and
reduce the complexity [2], [3]. Channel shortening can also be
applied to systems employing multicarrier modulation (MCM)
[4], single carrier modulation with a cyclic prefix, and even
CDMA systems [5].

MCM techniques like orthogonal frequency division mul-
tiplexing (OFDM) and discrete multi-tone (DMT) have been
deployed in applications such as IEEE 802.11a and HIPER-
LAN/2 wireless LANs, Digital Audio and Video Broadcast,
digital subscriber loops (DSL), power line communications,
and satellite radio. MCM can easily combat channel dispersion
when the channel delay spread is not greater than the length
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of the cyclic prefix (CP), and when the Doppler spread is
negligible. However, when the CP is not long enough, the
orthogonality of the sub-carriers is lost, causing inter-carrier
interference (ICI) and inter-symbol interference (ISI).

The most common technique for mitigating the ICI/ISI
caused by the inadequate CP length is the use of a time-
domain equalizer (TEQ) at the receiver front-end [3], [6] –
[20]. The TEQ is a filter that shortens the channel so that
the delay spread of the effective channel-equalizer impulse
response is no larger than the length of the CP. Most TEQs in
the literature have been designed in the context of DSL, which
runs over twisted pair telephone lines [8], [9], [11], [12]. As
a consequence, most of the TEQ designs in the literature are
trained and non-adaptive.

Recently, blind and/or adaptive TEQ design has received
increasing attention. The MERRY (Multicarrier Equalization
by Restoration of RedundancY) algorithm [16], [21] induces
channel shortening by restoring the redundancy in the received
data that is due to the CP. The algorithm is low-complexity and
converges to the minimum MSE solution of [2] (for a white in-
put). The SAM (Sum-squared Auto-correlation Minimization)
algorithm [22] attempts to shorten the auto-correlation of the
TEQ output sequence. Although SAM converges quickly, it
is multimodal and computationally intensive. To avoid multi-
modality, a blind, non-adaptive fractionally-spaced TEQ that
is also based on second-order output statistics was proposed in
[23], [24]. A “carrier nulling algorithm” (CNA) was proposed
in [25], [26], which exploits the fact that many MCM systems
transmit zeros on some input tones at the band edges. The TEQ
can be adapted blindly to force the corresponding output tones
to zero. In [25], it was shown that CNA equalizes the channel
to a single spike (i.e. an impulse), rather than shortening it to
a window, hence CNA is primarily suited to MCM systems
that do not use a CP [25].

In many cases, the receiver may need to jointly shorten
multiple channels using a single TEQ. In a multicarrier code
division multiple access (MC-CDMA) system, multiple users
each spread their signals using a spreading code before multi-
carrier modulation takes place [27]. To enhance performance,
the receiver can jointly shorten all of the users’ channels to
mitigate ISI before de-spreading takes place. In DSL, each
modem receives the desired signal as well as crosstalk from
other signals in the same cable bundle. In this case, joint
channel shortening can be combined with multiuser detection
to improve the receiver’s performance. If a DSL system is
operating in echo cancelling mode [6], then the channel and
the echo path must be jointly shortened [8], [28]. As another
example, multiple receive antennas or oversampling of the
received data may be employed, leading to multiple outputs
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Fig. 1. SISO multicarrier system model. (I)FFT: (inverse) fast Fourier transform, P/S: parallel to serial, S/P: serial to parallel, CP: add cyclic prefix, and
xCP: remove cyclic prefix.

for each input. This motivates a multiple input, multiple output
(MIMO) system model, in which multiple channels need to be
shortened simultaneously. Joint channel shortening has been
studied in [8], [28] – [33]. However, these works involved
extending the training-based, non-adaptive single-input, single
output (SISO) TEQs proposed in [2], [3], and [8] to the MIMO
case; whereas we consider the blind, adaptive MIMO case.

The contributions of this paper are as follows:
• a generalization of MERRY to the MIMO and

fractionally-spaced cases,
• a modification to the MERRY algorithm which removes

the square root and division at each iteration without
introducing additional complexity, and which allows for
constraints that may be more appropriate than the unit
norm equalizer constraint used in [16],

• a method to increase the amount of usable data (the basic
MERRY algorithm only uses one sample per block),

• a low-complexity symbol synchronization method (an
issue not addressed in [16]),

• and a method for blind initialization of MERRY to avoid
slow modes of convergence.

This paper is organized as follows. Section II reviews the
system model and notation. Section III proposes the modifi-
cations and extensions of the MERRY algorithm. Section IV
provides a method for choosing the symbol synchronization
parameter. Section V provides illustrative simulations, and
Section VI concludes the paper.

II. SYSTEM MODEL AND NOTATION

The SISO multicarrier system model is shown in Fig. 1. The
input stream is divided into blocks of N bins, and each bin
is viewed as a quadrature amplitude modulated (QAM) signal
that will be modulated by a different carrier. The modulation
can be efficiently implemented in discrete time via an inverse
fast Fourier transform (IFFT), which converts the frequency-
domain data into a time-domain signal. After transmission
through a dispersive channel h, the receiver can use an FFT
to recover the data.

If the received data is a circular convolution of the channel
and transmitted data, then the received frequency-domain out-
put is a pointwise multiplication of the transmitted frequency-
domain data with the discrete Fourier transform (DFT) of the
channel. Since the convolution is actually linear rather than
circular, it is made to appear circular by adding a cyclic prefix
(CP) to the start of each data block. The CP is obtained by
repeating the last ν samples of each block at the beginning of

TABLE I

MIMO CHANNEL SHORTENING NOTATION

Notation Definition

xl(k) transmitted signal for user l

np(k) additive noise on pth received sequence
rp(k) pth sequence of received data
yp(k) output of TEQ p

y(k) recombined output =
∑

p yp(k)

N , ν, M sizes of FFT, CP, and symbol
∆ transmission delay
hp,l channel from user l to receiver p

wp pth TEQ impulse response
cp,l effective channel = hp,l ? wp

Lh, Lw, Lc order of h, w, or c

L̃h = Lh + 1 length of h, e.g.
Rn,p autocorrelation matrix of np(k)
A

∗, A
T , A

H conjugate, transpose, and Hermitian

the block. If the CP length is shorter than the channel, then
the convolution appears to be circular and the signals in the
bins can be equalized by a bank of complex gains, referred to
as a frequency domain equalizer (FEQ) [6].

Since transmitting the CP wastes time that could be used
to transmit data, the CP is usually set to a reasonably small
value, and a TEQ w is employed to shorten the channel to
this length. Trained, non-adaptive TEQ designs have been well
explored [2], [3], [6] – [19].

Table I gives the MIMO notation, and Fig. 2 shows the
time-domain portion of the MIMO system. We assume the
use of L transmit antennas (with up to L users) and P

receive antennas (or oversampling by P ). The received signal
rp(k) from antenna p (or the pth sub-sampling sequence),
p ∈ {1, · · · , P}, is obtained by passing each signal from user
l ∈ {1, · · · , L} through channel hp,l, adding the L channel
outputs, and adding noise sequence np(k). In an MC-CDMA
system, each user’s signal xl(k) is obtained by spreading one
or more symbols in the frequency domain, taking an IFFT,
and adding a CP; see [27], e.g. If the multiple users arise due
to cross-talk in a wireline system, then each signal xi(k) is
generated in the manner of Fig. 1.

After the CP is added, the first and last ν samples are
identical in each transmitted symbol,

xl (Mk + i) = xl (Mk + i + N) ,

i ∈ {1, . . . , ν} , l ∈ {1, . . . , L} ,
(1)
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Fig. 2. MIMO TEQ model, for L transmitters and P receive antennas (or
oversampling by a factor of P ).

where M = N + ν is the total symbol duration and k is
the symbol index. The received data rp is obtained from
{xl : l = 1, · · · , L} by

rp(Mk + i) =

L∑

l=1

Lh∑

j=0

hp,l(j) xl(Mk + i− j) + np(Mk + i),

(2)
and yp, the output of TEQ p, is obtained from rp by

yp(Mk + i) =

Lw∑

j=0

wp(j) rp(Mk + i − j) (3)

=

L∑

l=1

Lc∑

j=0

cp,l(j) xl(Mk + i − j)

+

Lw∑

j=0

wp(j) np(Mk + i − j). (4)

Then the final, recombined output is obtained by

y(Mk + i) =

P∑

p=1

yp(Mk + i) (5)

=

L∑

l=1

Lc∑

j=0

cl(j)xl(kM + i − j)

+

P∑

p=1

Lw∑

j=0

wp(j) np(Mk + i − j), (6)

where

cl(j) =

P∑

p=1

cp,l(j), j ∈ {0, . . . , Lc} , l ∈ {1, . . . , L} . (7)

One could either work with the collection of P sequences
{yp(k)} or the single output sequence y(k). The weights for
the linear combination in (5) have implicitly been absorbed
into the P TEQs. Each of the P ·L channels is modeled as an
FIR filter of length Lh+1, each of the P TEQs is an FIR filter
of length Lw + 1, and each effective channel cp,l = hp,l ?wp

has length Lc+1, where Lc = Lh+Lw. The symbol ? denotes
linear convolution.

III. EXTENSIONS TO MERRY

This section discusses several extensions to the MERRY
algorithm. Section III-A proposes and analyzes the FRODO
cost function as a generalization of the MERRY cost function.
The generalization allows for a MIMO design, the use of more
than one sample in the update rule, and channel shortening to
variable window lengths. Section III-B re-casts the optimal
solution in several formulations that are equivalent but quite
different in appearance. Section III-C derives the algorithm,
with modifications (relative to the method used in [16]) to
remove the square root and division in the update rule and to
allow the use of alternate constraints.

A. FRODO: generalizing the MERRY cost function

Throughout this section we make the following assump-
tions:

1. The L input sequences of the IFFTs are each zero-mean,
white, and wide sense stationary (implying that the output
bins of each IFFT are uncorrelated), with transmit power
σ2

x,l.
2. Lc + 1 ≤ N (the length of the effective channel is no

larger than the FFT size).
3. For each p, the noise autocorrelation function Rn,p(δ) =

0 for δ ≥ N − Lw.
4. All data sequences xl and noise sequences np are pair-

wise uncorrelated.

An uncorrelated IFFT input produces an uncorrelated IFFT
output because the DFT matrix is unitary. We may alter
assumption 4 in some cases to set x1 = x2 = · · · = xL,
i.e. for the case of oversampling. If there is one user with L

antennas, assumption 4 may still hold if space-time coding is
applied.

The idea behind MERRY is that if the channel length Lh +
1 ≤ ν, then the last sample in the CP should match the last
sample in the symbol. The MERRY cost function reflects this
goal:

Jmerry = E
[

|y(Mk + ν + ∆) − y(Mk + ν + N + ∆)|
2
]

,

∆ ∈ {0, . . . , M − 1} , (8)

where the symbol synchronization parameter ∆ represents the
desired delay. Minimizing (8) minimizes the energy of the
channel outside of a length-ν window [21]. Since there are
ν samples in the cyclic prefix, a natural generalization is to
compare more than one of these samples to their counterparts
at the end of the symbol. Thus, a more general cost function
is

Jfrodo =
∑

i∈Sf

E
[

|y(Mk + i + ∆) − y(Mk + i + N + ∆)|
2
]

,

∆ ∈ {0, . . . , M − 1} , (9)

where Sf ⊂ {1, · · · , ν} is an index set. For MERRY, Sf =
{ν}. Different sets allow for the use of more or less data,
as well as for shortening to different channel lengths, which
will be shown momentarily. Since the modified cost function
allows the option of using all of the data in the CP (Sf =
{1, · · · , ν}), or a single sample (Sf = {ν}), or anything in
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between, we use the name Forced Redundancy with Optional
Data Omission (FRODO) to refer to the algorithm using
this cost function. An equalization (not channel shortening)
algorithm equivalent to using FRODO with the set Sf =
{1, · · · , ν} was proposed in [34]. The general FRODO cost
function includes the cost functions of [34] and MERRY [16]
as special cases. We now analyze the general FRODO cost
function as a means of demonstrating its utility.

Theorem 1: The FRODO cost function (9) simplifies to

Jfrodo = 2
∑

i∈Sf

L∑

l=1

σ2
x,l‖c

i+∆

l,wall‖
2 + 2 |Sf |

P∑

p=1

w
H
p Rn,pwp,

(10)
where |Sf | is the cardinality of the set Sf , and

‖ci+∆

l,wall‖
2 =

∆+i−ν−1∑

j=0

|cl(j)|
2
+

Lc∑

j=∆+i

|cl(j)|
2
, l ∈ {1, . . . , L} .

(11)
with cl(j) as in (7).

Proof: For simplicity, we consider the case σ2
x,l = σ2

x ∀l,
though the general case is a simple extension. Consider eq. (6)
in [16],

Jδ = 2 σ2
x





δ−1∑

j=0

|cj |
2

+

T+L−2∑

j=ν+δ

|cj |
2



 + 2 w
H
Rnw, (12)

and make the following substitutions: δ → ∆+ i−ν, c → cl,
T → Lw + 1, L → Lh + 1, and

w =
[
w

T
1 ,wT

2 , · · · ,wT
P

]T
, (13)

n(j) = [n1(j), · · · , n1(j − Lw), · · · ,

nP (j), · · · , nP (j − Lw)]
T

, (14)

Rn = E
[
n
∗(Mk + i) n

T (Mk + i)
]
. (15)

Since the noise sequences are uncorrelated, the result follows
by summing over i ∈ Sf .

Remarks on Theorem 1: For the case L = P = 1, and
for Sf = {ν}, we have the term i = ν only. Thus, the
cost function is the power of the “wall” of the channel (as
opposed to a “window”), and minimizing this cost function
leads to shortening to a ν-length window. For the case L = 1,
P > 1, and Sf = {ν}, the cost function suppresses the tails
of the averaged channel, c =

∑

p cp, allowing for diversity
gain. For the case L > 1, P = 1, and Sf = {ν}, the cost
function suppresses the average of the tail energies of the L

channels (rather than the tail energy of the average channel
in the previous case), thus shortening all L channels at once.
In an MC-CDMA scenario, the L demodulated signals can
now be separated using the spreading codes, which would not
have been possible if the channels were not shortened first.
The case L = P = 1 with Sf ) {ν} will be discussed after
Theorem 2.

Theorem 2: If we relax assumption 4 so that xl(k) =
x(k) ∀l ∈ {1, · · · , L}, i.e. multiple transmit antennas for a
single user, then the FRODO cost function (9) simplifies to

Jfrodo = 2σ2
x

∑

i∈Sf

‖ci+∆

wall‖
2 + 2 |Sf |

P∑

p=1

w
H
p Rn,pwp, (16)
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Fig. 3. The relation of the “don’t care” windows in the different terms of
the FRODO cost function, for ν = 4. The line “summed” indicates the effect
of considering all four terms at once, and the line “weighting” indicates how
much emphasis the total cost function places on forcing each tap to zero.

where

‖ci+∆

wall‖
2 =

∆+i−ν−1∑

j=0

|c(j)|
2

+

Lc∑

j=∆+i

|c(j)|
2
, (17)

and where

c(j) =

P∑

p=1

L∑

l=1

cp,l(j), j ∈ {0, . . . , Lc} . (18)

Remarks on Theorem 2: The proof of Theorem 2 parallels
the proof of Theorem 1, except with the definition of (18)
instead of (7), hence the details of the proof are omitted.
The cost function is the tail energy of the average channel
(averaged over p and l).

The effect of using more than one comparison [more than
one value of i in (9)] can be illustrated as follows. For
simplicity, let L = P = 1 and drop the subscripts l and
p. Consider using the “full” index set, i ∈ {1, · · · , ν}. From
Theorem 1, the cost function is

Jfrodo = 2σ2
x

ν∑

i=1

‖ci+∆

wall‖
2 + 2

ν∑

i=1

w
H
Rnw (19)

= 2 σ2
x

[
ν c2(0) + ν c2(1) + · · · + ν c2(∆ − ν)

+ (ν − 1) c2(∆ − ν + 1) + · · · + 2 c2(∆ − 2) + c2(∆ − 1)

+ c2(∆ + 1) + 2 c2(∆ + 2) + · · · + (ν − 1) c2(∆ + ν − 1)

+ν c2(∆ + ν) + ν c2(∆ + ν + 1) + · · · + ν c2(Lc)
]

+ 2 ν w
H
Rnw. (20)

Fig. 3 shows a pictorial example for ν = 4. Each time i is
incremented, the window location shifts over by one sample.
Thus, the “full” FRODO cost function tries to suppress all of
the taps of the effective channel except for the ∆th tap, and
the noise gain is limited as well. Taps farther from the center
are more heavily weighted, and hence should be smaller. This
makes the cost function very similar to the minimum delay
spread (MDS) algorithm [14] which minimizes

JMDS =

Lc∑

j=0

|j − ∆|
2
c2(j), (21)
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subject to a unit norm constraint on the effective channel,
‖c‖ = 1. A variant of the MDS algorithm proposed in [15]
uses linear weights, rather than quadratic:

ĴMDS =

Lc∑

j=0

|j − ∆| c2(j). (22)

This alternate MDS penalty increases linearly with the dis-
tance from tap ∆, and the FRODO penalty [in this example
which uses all possible values of i in the summation in (9)]
increases linearly for a distance of ν on each side of tap
∆, and then remains fixed at that penalty level for larger
distances. Consequently, the “full” FRODO algorithm will
attempt to suppress all taps save the ∆th tap, but with a
tendency to minimize delay spread rather than to equalize.
Since the ICI and ISI caused by channel taps increase with
their distance from the ∆th tap [14], minimizing the delay
spread is more advantageous than equalizing to an impulse,
yet less advantageous than an algorithm explicitly designed
for channel shortening (such as the MSSNR design [8]). The
linearly increasing penalty function of (22) may amplify the
effects of channel estimation errors [19]. The leveling off of
the FRODO penalty function mitigates this.

If a window size between 1 and ν is desired, then the index
set for FRODO can be changed accordingly. Moreover, if
two comparisons are made in (9) rather than one as in (8),
then the algorithm has access to more data per update. Hence,
convergence should be faster and smoother. The penalty is that
the window size will be smaller by one sample. However, if
ν is large (as in DVB, where ν can be as large as 2048; or
even in ADSL, in which ν = 32), then the difference between
a ν-length window and a (ν − 1)-length window is minor.

B. Equivalent problem statements

This section formulates the FRODO design problem in a
variety of mathematically equivalent ways. This equivalence
will be used in Section III-C to pick a problem statement
which allows for an update rule that has no divisions or square
roots. Defining the “stacked” vectors

rp(j) = [rp(j), rp(j − 1), · · · , rp(j − Lw)]
T

,

p ∈ {1, · · · , P} , (23)

r(j) =
[
r

T
1 (j), rT

2 (j), · · · , rT
P (j)

]T
, (24)

r̃i(k) = r(Mk + i + ∆) − r(Mk + i + N + ∆),

∀i ∈ Sf (25)

with w as in (13), the FRODO cost function (9) can be
rewritten as

Jfrodo =
∑

i∈Sf

E
[∣
∣r̃

T
i (k)w

∣
∣
2
]

(26)

= w
H

∑

i∈Sf

E
[
r̃
∗
i (k)r̃T

i (k)
]

︸ ︷︷ ︸

Ai
︸ ︷︷ ︸

A

w. (27)

Under our four assumptions, it can be shown that

Ai = 2

L∑

l=1

σ2
x,l






H
H
1,l,wallH1,l,wall, · · · , H

H
1,l,wallHP,l,wall

...
. . .

...
H

H
P,l,wallH1,l,wall, · · · , H

H
P,l,wallHP,l,wall






+ 2






Rn,1, · · · , 0

...
. . .

...
0, · · · , Rn,P




 (28)

where Hp,l,wall is obtained from the convolution matrix Hp,l

for channel p, l by removing rows ∆+i−ν through ∆+i−1,
similar to Hwall in [8]. (The proof is quite similar to the proof
of Theorem 1, and hence is omitted.) We wish to minimize
(27), with some constraint to avoid the trivial solution w = 0.

The FRODO cost function is a measure of the energy in the
“wall” portion of the effective channel. Also of interest are the
energy in the “window” portion of the effective channel, and
the total energy of the effective channel. To this end, we define

Jwin = 2
∑

i∈Sf

E [y∗(Mk + i + ∆) y(Mk + i + N + ∆)]

= w
H






∑

i∈Sf

2 E
[
r
∗(Mk + i + ∆) r

T (Mk + i + N + ∆)
]

︸ ︷︷ ︸

Bi






︸ ︷︷ ︸

B

w,

(29)

and

J total = 2 |Sf | E
[

|y(Mk + io + ∆)|
2
]

, io ∈ {0, · · · ,M − 1}

= w
H

(
2 |Sf | E

[
r
∗(Mk + io + ∆) r

T (Mk + io + ∆)
])

︸ ︷︷ ︸

C

w.

(30)

Here, io is simply a specific (but arbitrary) value of i repre-
senting the time at which the power is calculated in (30). It
is arbitrary since (30) does not depend on io. It can be shown
that the Bi matrices have the same form as the Ai matrices in
(28), except with Hp,l,wall replaced by Hp,l,win (which equals
rows ∆ + i− ν through ∆ + i− 1 of the channel convolution
matrix Hp,l), and the C matrix has the same form as the Ai

matrices, except with Hp,l,wall replaced by Hp,l.
Theorem 3: Under the assumptions in Section III-A, the

following optimization problems all produce the same solution
wopt, up to a scale factor:

w
1
opt = arg min

w
Jfrodo such that Jwin = 1 (31)

w
2
opt = arg max

w
Jwin such that Jfrodo = 1 (32)

w
3
opt = arg min

w
Jfrodo such that Jtotal = 1 (33)

w
4
opt = arg max

w
Jtotal such that Jfrodo = 1 (34)

w
5
opt = arg min

w
Jtotal such that Jwin = 1 (35)

w
6
opt = arg max

w
Jwin such that Jtotal = 1. (36)

Proof: For simplicity of notation, we consider the case
Sf = {ν}. The general case is straightforward but more
tedious. Let u1 = r(Mk+ν +∆), u2 = r(Mk+ν +N +∆),
and u3 = u1 − u2. Note that E

[
u
∗
1u

T
1

]
= E

[
u
∗
2u

T
2

]
and
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E
[
u
∗
1u

T
2

]
= E

[
u
∗
2u

T
1

]
for uncorrelated source sequences,

under our assumption that Lc + 1 ≤ N . Then

E
[
u
∗
3u

T
3

]

︸ ︷︷ ︸

A

= E
[
u
∗
1u

T
1 + u

∗
2u

T
2 − u

∗
1u

T
2 − u

∗
2u

T
1

]

= E
[
2u∗

1u
T
1

]

︸ ︷︷ ︸

C

−E
[
2u∗

1u
T
2

]

︸ ︷︷ ︸

B

, (37)

i.e. A + B = C. Thus,

w
1
opt = arg min

w

w
H
Aw

wHBw
(38)

= arg max
w

w
H
Bw

wHAw
= w

2
opt (39)

= arg max
w







w
H
Bw

wHAw
+

w
H
Aw

wHAw
︸ ︷︷ ︸

1







(40)

= arg max
w

w
H
Cw

wHAw
= w

4
opt. (41)

The remaining equivalence relations are proven in a similar
fashion.

Thus, we can transform our original constrained minimiza-
tion problem into various constrained maximization problems.
Chatterjee, et al. [35], have proposed an iterative algorithm
which can solve maximization problems of the form of (32),
(34), (36), rather than the form of (31), (33), (35). We will
combine Chatterjee’s algorithm with the results of Theorem 3
in the next section.

C. Division-free update rule

This section derives the FRODO algorithm that is free of
the periodic square root and division of other adaptive and
iterative TEQ designs [2], [7], [16], [22], [25]. An iterative
generalized eigen-decomposition algorithm was proposed in
[35] for neural networks, and it was applied to trained, iterative
(not adaptive) TEQ design in [19]. The update algorithm is a
gradient ascent of a cost function (wH

Cw) with a Lagrangian
constraint (wH

Aw = 1), and it is given by

w(k + 1) = w(k) + µ
(
Cw − Aw

(
w

H
Cw

))
. (42)

This algorithm is globally convergent to the maximum gen-
eralized eigenvalue and eigenvector of the matrix pencil [36]
(C,A) for real parameters [35]. In our case, we have blind,
stochastic approximations of A and C available at the receiver,
which are obtained by removing the expectations in (27) and
(30). Combining these estimates with (42), the FRODO update
rule is

Given ∆ and io, for symbol k = 0, 1, 2, . . . ,

r̃i(k) = r(Mk + i + ∆) − r(Mk + i + N + ∆),

∀i ∈ Sf

ei(k) = w
T (k) r̃i(k), ∀i ∈ Sf

yio
(k) = y(Mk + io + ∆) = w

T
r(Mk + io + ∆)

w(k + 1) = w(k) + µ yio
(k) [r∗(Mk + io + ∆)

−
∑

i∈Sf

(
y∗

io
(k) ei(k)

)
r̃
∗
i (k)

]

(43)

When Sf = {ν} and P = L = 1, we obtain an algorithm that
is similar to the MERRY algorithm without the renormaliza-
tion. For comparison, the MERRY algorithm of [16] is

Given ∆, for symbol k = 0, 1, 2, . . . ,

r̃(k) = r(Mk + ν + ∆) − r(Mk + ν + N + ∆),

e(k) = w
T (k) r̃(k),

ŵ(k + 1) = w(k) + µ e(k) r̃
∗(k),

w(k + 1) =
ŵ(k + 1)

√

ŵT (k + 1) ŵ(k + 1)

(44)

The algorithm of (43) requires approximately (2 |Sf |+2)PL̃w

multiplications, where |Sf |, the size of the set Sf , is usually
1. The algorithm of (44), which uses |Sf | = 1, requires
4PL̃w multiplications, a square root, and a division. (The
PL̃w divisions are implemented as one division and P L̃w

multiplications.)
The FRODO update rule of (43) uses rank 1 approximations

of A and C. One blind method of initializing the FRODO
TEQ is to accumulate better estimates of A and C from
the data by replacing the expectations in (27) and (30) by
time averages, and then find the generalized eigenvector cor-
responding to the maximum generalized eigenvalue of (Ĉ, Â).

IV. SYMBOL SYNCHRONIZATION

The FRODO algorithm requires a choice of the delay ∆.
This section shows how the core idea in MERRY/FRODO
can be used to obtain a reasonable heuristic delay choice. The
performance metric used in this section is the shortening SNR
[8], which is the ratio of energy in the desired window of the
channel impulse response to the energy outside of this window.

The heuristic is: given the delay ∆peak which maximizes
the energy of the average (unshortened) channel in a window
of taps ∆peak through ∆peak + ν − 1, a near-optimum delay
is

∆ = ∆peak +

⌊
Lw

2

⌋

. (45)

There are two issues to be addressed: (1) the means of
obtaining ∆peak, and (2) the validity of this heuristic. These
will be addressed in order.

In the absence of a TEQ, cp,l = hp,l. From Theorem 1, if
we only make one comparison using i = ν,

Jfrodo (∆) = 2

L∑

l=1

σ2
x,l‖h

ν+∆

l,wall‖
2 + 2

P∑

p=1

σ2
n,p, (46)

with an analogous definition for h
ν+∆

l,wall as for c
ν+∆

l,wall. Since

‖hl‖
2 = ‖hν+∆

l,win‖
2 + ‖hν+∆

l,wall‖
2, (47)

the index ∆peak in which the average windowed channel
energy is highest is the index in which the average walled
channel energy is smallest. Thus, ∆peak can be estimated by
minimizing an estimate of Jfrodo (∆) over ∆, as measured
on the received data rather than the TEQ output:

∆̂peak = arg min
0≤∆≤M−1

K∑

k=1

|r(Mk + ν + ∆)

−r(Mk + ν + N + ∆)|
2 (48)
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Fig. 4. Shortening SNR versus TEQ length for FRODO using the optimal
and a heuristic delay.

for some number of symbols K. This approach only requires
M · K multiplications, M · (2K − 1) additions, and M − 1
comparisons. Thus, a large value of K can be used for an ac-
curate estimate with low computational complexity. Moreover,
this heuristic can be applied to other design methods (besides
FRODO) to avoid a global delay search.

The second question is whether or not this heuristic is valid.
Fig. 4 shows a plot of the shortening SNR achieved by the
delay-optimized FRODO design and by the FRODO design
using the heuristic delay of (45). For simplicity, P = L =
|Sf | = 1. The performance was averaged over carrier serving
area (CSA) loops 1 through 8 [11] (standard synthetic ADSL
test channels), and the window size was 32 taps. The heuristic
delay provides reasonable performance relative to the optimal
delay for TEQs with at least 8 taps, and very nearly optimal
performance for TEQs with at least 32 taps. For TEQs shorter
than 8 taps, the range of “good” delay choices will be small, so
a heuristic approach may not be adequate. For ADSL, typical
TEQ lengths are 16 or 32 taps. Other heuristics may be used;
the proposed approach is merely one method which generally
works and is blind.

V. SIMULATIONS

This section presents simulation results. The first example
compares the exact (non-adaptive) FRODO design to existing
TEQs, with the goal of characterizing FRODO’s asymptotic
performance. The second example explores the convergence
behavior of FRODO. The third example demonstrates that
FRODO can be used to jointly shorten multiple channels at
once. The fourth example provides SISO and SIMO BER
curves.

In all four examples, the FFT size is N = 64, the CP
length is ν = 16, and the channel model consists of three
parts [37]: hlocal,1, scatterers near the transmitter; hmid,
remote scatterers; and hlocal,2, scatterers near the receiver. The
channel is then

h = hlocal,1 ? hmid ? hlocal,2, (49)
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Fig. 5. Example 1: the plots show the shortened channel impulse response
magnitudes using (a) no TEQ, (b) an MMSE TEQ, (c) an MSSNR TEQ, and
(d) a (zero-forcing) MSSNR TEQ with a window of size 1. Here, ν = 16.
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Fig. 6. Example 1: the plots show the shortened channel impulse response
magnitudes using (a) an MDS TEQ with linear weights, (b) a MERRY TEQ,
(c) a FRODO TEQ with two windows, and (d) a “full” FRODO TEQ with
ν = 16 windows.

where ? denotes convolution. hmid consists of 32 uncorrelated
Rayleigh fading taps with an exponential delay profile, and
hlocal,1 and hlocal,2 each consist of 6 uncorrelated Rayleigh
fading taps with a uniform delay profile.

Example 1: In this example, the TEQ has 32 taps and the
SNR is 20 dB (AWGN). Figs. 5 and 6 show the shortened
channel impulse responses magnitudes using various designs,
for the channel realization shown in Fig. 5(a). The “full”
FRODO impulse response is quite similar to the linear MDS
impulse response (rather than the zero-forcing impulse re-
sponse), FRODO with one window has characteristics like the
MSSNR design, and FRODO with two windows has similar
characteristics but is slightly narrower. Fig. 7 shows the short-
ening SNR [8], the inverse of the MSE [2], and the inverse of
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Fig. 7. Performance of various shortened channels for example 1. The
shortening SNR [8], the inverse of the MSE [2], and the inverse of the inter-
block interference [38] were averaged over 10000 channel realizations and
normalized relative to the largest (i.e. best) value obtained from the 8 TEQ
designs.

the inter-block interference (IBI) [38], averaged over 10000
channel realizations and normalized relative to the largest (i.e.
best) value obtained from the 8 designs. The FRODO cost
function with 1 window (i.e. MERRY) performs much like
the MMSE design. The use of two windows for FRODO only
slightly degrades the performance. Hence, we may use two
windows in the adaptive version of FRODO without fear of
significantly affecting the asymptotic performance. However,
the use of all 16 windows causes the FRODO TEQ to achieve
performance that is slightly worse than the (linear) MDS
TEQ. Thus, the number of windows for FRODO should be
relatively small, since we want to improve the convergence
speed without adversely affecting the asymptotic solution.

Another insight gained from this example is that if the
blind, non-adaptive FRODO initialization is used, then a
performance comparable to the MMSE and MSSNR designs
can be achieved without the need for training.

Example 2: We now examine the convergence rate of
FRODO using various numbers of windows. Here, the TEQ
has 16 taps and the SNR is 25 dB (AWGN). For a fair
comparison, all algorithms used the same step size, normalized
by the number of windows |Sf |. The synchronization was
performed blindly using the method of Section IV.

The performance of FRODO versus time is shown in Fig. 8,
in terms of the shortening SNR [8], the MSE [2], the IBI
[19], and the MERRY cost [i.e. FRODO with only one term
in (9)]. For this example, FRODO takes about 5000 iterations
to converge. This corresponds to 300 iterations per tap, which
is roughly consistent with the folklore that adaptive algorithms
often take 100 iterations per tap to converge. By adding
additional comparisons, the algorithm converges faster, but the
quality of the final solution is not as good. Ideally, one would
choose the parameters such that the final performance of the
two algorithms were equal and then compare convergence
rates, but that is not possible here since the use of more
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Fig. 8. Performance metrics vs. time: SSNR (top left), MSE (top right), IBI
(bottom left), and MERRY cost (bottom right).
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Fig. 9. Joint shortening of two Rayleigh fading channels. Top: channel
impulse responses magnitudes; bottom: impulse responses magnitudes of the
shortened channels. The “filled” stems in the channels indicate the window
of ν + 1 taps with largest energy (for the channel) or the window of ν + 1
taps starting with the desired delay (for the shortened channel).

comparisons changes the asymptotic performance. The moral
is that multiple comparisons should only be used to speed
convergence or tracking, but near convergence, the algorithm
should drop down to only one comparison.

Example 3: This MISO example demonstrates MERRY’s
ability to jointly shorten multiple channels, blindly and adap-
tively. There are L = 2 transmitters and P = 1 receivers.
The TEQ has 64 taps, and the SNR is 20 dB (AWGN). The
two input sequences and the noise sequence were independent.
We assume that the transmitted sequences are coarsely syn-
chronized, i.e. that the two cyclic prefixes arrive very roughly
at the same time as each other, otherwise no joint channel
shortening algorithm will succeed.

The implementation of MERRY in this case is no different
than for a single channel. Fig. 9 shows the two channel
impulse responses and the two effective channels shortened by
MERRY after convergence. Fig. 10 shows the joint SSNR [8],
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Fig. 10. The joint shortening SNR versus time as FRODO adapts to jointly
shorten two Rayleigh fading channels.
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Fig. 11. BER vs. SNR for the SISO case.

[28] versus time. The synchronization was performed blindly
as in Section IV. The fact that the joint SSNR increased from
6 to 32 is evidence that MERRY can jointly shorten multiple
channels, blindly and adaptively.

Example 4: Figs. 11 and 12 show BER curves for the
SISO and SIMO cases, respectively, using the channel model
of (49), with L = 1 and P = 2. The BER values were
averaged over 200 channels (for SNRs of 30–60 dB, Fig. 12
used 2000 channels), with 100 data blocks per channel. The
frequency domain signal was differentially encoded BPSK, so
that no FEQ was needed. The blind, non-adaptive MERRY
TEQ was compared to the non-adaptive MMSE [3], [29] and
MSSNR [8] designs, all using delay optimization. The MIMO
MSSNR design is simply the MMSE design with assumptions
of white input and no noise. The performance of MERRY with
the heuristic delay choice of (45) is denoted “MERRY-H.”
For low SNRs, all TEQs have very little effect on the BER.
For larger SNRs, the three delay-optimized methods perform
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Fig. 12. BER vs. SNR for the SIMO case.

similarly, and MERRY with a heuristic delay performs almost
as well. The SISO curves level off for high SNR because the
channel cannot be perfectly shortened. The SIMO BER values
are much lower because the effective channel can be almost
perfectly shortened.

VI. CONCLUSIONS

The MERRY algorithm has previously been shown to
blindly, adaptively shorten a transmission channel in order to
perform equalization in a multicarrier receiver. This paper has
proposed extensions to the MERRY algorithm that remove
the square root and division in the update, allow for the use
of alternate (and possibly more appropriate) constraints, and
allow fractionally-spaced and MIMO adaptive equalization.
A low-complexity method was proposed for choosing the
symbol synchronization, and a method was proposed for
blind initialization of the algorithm to avoid slow modes of
convergence. Each of the proposed methods was illustrated
via simulation. The Matlab code to reproduce the figures in
this paper is available at [39].
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