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Blind, Adaptive Channel Shortening by
Sum-squared Auto-correlation Minimization (SAM)

Jaiganesh Balakrishnan, Member, IEEFE, Richard K. Martin*, Student Member, IEEFE,
and C. Richard Johnson, Jr., Fellow, IEEE

Abstract— We propose a new blind, adaptive channel
shortening algorithm for updating the coefficients of a time-
domain equalizer in a system employing multicarrier mod-
ulation. The technique attempts to minimize the sum-
squared auto-correlation terms of the effective channel im-
pulse response outside a window of desired length. The pro-
posed algorithm, “Sum-squared Auto-correlation Minimiza-
tion” (SAM), requires the source sequence to be zero-mean,
white and wide-sense stationary, and it is implemented as
a stochastic gradient descent algorithm. Simulation results
have been provided, demonstrating the success of the SAM
algorithm in an ADSL system.

Keywords— Multicarrier, OFDM, DMT, Channel Shorten-
ing, Equalization, Blind, Adaptive.

I. INTRODUCTION

ULTICARRIER modulation (MCM) techniques like

orthogonal frequency division multiplexing (OFDM)
and discrete multi tone (DMT) have been gaining in pop-
ularity over recent years. One reason for this surge in pop-
ularity is the ease with which MCM can combat channel
dispersion, provided the channel delay spread is not greater
than the length of the cyclic prefix (CP). However, if the
cyclic prefix is not long enough, the orthogonality of the
sub-carriers is lost and this causes both inter-carrier in-
terference (ICI) and inter-symbol interference (ISI). The
inadequacy of the CP in xDSL (digital subscriber loop)
systems can be seen by considering the standard carrier
serving area (CSA) test loops [1].

A well known technique to combat the ICI/ISI caused
by the inadequate CP length is the use of a time-domain
equalizer (TEQ) at the receiver front-end. The TEQ is a
filter that shortens the channel so that the delay spread
of the effective channel impulse response is no larger than
the length of the CP. The TEQ design problem has been
extensively studied in the literature. In [2], Falconer and
Magee proposed a minimum mean squared error (MMSE)
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channel shortening method, which was designed for maxi-
mum likelihood sequence estimation. More recently, Melsa,
Younce, and Rohrs [3] proposed the maximum shortening
signal-to-noise ratio (MSSNR) method, which attempts to
minimize the energy outside the window of interest while
holding the energy inside fixed. However, in a point-to-
point system such as DSL, the true performance metric
to optimize is the maximum bit allocation that does not
cause the error probability to exceed a threshold; and in
broadcast systems, the true performance metric is the bit
error rate for a fixed bit allocation. Optimizing the MSE
or SSNR does not necessarily optimize the bit rate [4] or
error probability [5]. Recent work [4], [6], [7] has addressed
the problem of maximizing the bit rate in xDSL systems.

Besides the TEQ structure, there are several alternative
structures that can be used for equalization in multicarrier
systems. Per tone equalization moves the TEQ to the far
side of the fast Fourier transform (FFT) in the receiver,
allowing separate equalization for each tone [§8], [9]. Al-
ternatively, a decision feedback multi-input multi-output
(MIMO) equalizer can be used to cancel the interference
by estimating the transmitted symbols, filtering them, and
subtracting the result from the received signal [10]. Yet an-
other approach was devised by Trautmann and Fliege [11],
in which a post-FFT block-equalizer structure is used. This
is similar to the per tone structure, but it is shown in [11]
that the unused tones can be exploited to remove the ICI
from the remaining tones with high performance. How-
ever, each of these approaches requires matrix processing
of the received signal rather than simple filtering. This pa-
per focuses on the TEQ structure for equalization, since it
has a low-complexity implementation and via the proposed
approach it can easily be made to adapt blindly.

All of the TEQ design techniques described above are
non-adaptive (except [2]), and all require training (usu-
ally to estimate the channel). The MMSE solution [2] can
be implemented adaptively (using training), but it is cited
as converging very slowly [12]. Chow’s algorithm [13] con-
verges more quickly, but it usually converges to a distinctly
suboptimal setting [12]. Lashkarian and Kiaei [14] have
developed an iterative implementation of Al-Dhahir’s ap-
proximate maximum bit rate method [6], but as cited in
[4], the method in [6] makes several inaccurate assump-
tions and is not really optimal. Furthermore, the method
in [14] is not truly adaptive, in the sense that it assumes
knowledge of large matrices that depend upon the channel,
hence it is not able to track a time-varying channel. [15]
discusses adaptive channel shortening, but their focus is
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on the performance metric, and no adaptive algorithm is
explicitly given.

In the context of multicarrier modulation, we use the
term “blind” to refer to an algorithm that does not require
knowledge of the exact values of the transmitted signal,
though other definitions could be chosen. An algorithm
that exploits the transmission of known signals (including
zeros) would not be considered blind by this definition, but
an algorithm that exploits structural properties of the sig-
nal (such as a constant modulus signal on each tone, or the
cyclo-stationarity introduced by the cyclic prefix) would
be considered blind by this definition. The goal of this
paper is to develop a blind, adaptive channel shortening
algorithm. The problem of adapting the 1-tap frequency-
domain equalizer (FEQ) [13] per tone is not considered, but
this is usually done through the use of frequency-domain
training or decision-directed LMS.

De Courville, et al. have proposed a blind, adaptive
equalizer for a multicarrier receiver [16], but it performs
equalization to a single spike rather than channel shorten-
ing. The algorithm assumes that there is oversampling in
the transmitter, which has the effect of zero-padding the
IFFT input. The equalizer is adapted in order to restore
the zeros on the corresponding FFT outputs. The trans-
mission of zeros on certain carriers could be thought of as
training signals consisting of zeros, so the use of the term
“blind” for this algorithm is debatable. However, [16] is
the first algorithm in the literature that performs adaptive
equalization (to a single spike) for a multicarrier receiver.

Martin, et al. [17] have proposed a low-complexity, blind,
adaptive TEQ algorithm known as MERRY, but it only
updates once per symbol. The MERRY algorithm is based
on restoring the redundancy introduced by the CP, and the
cost function is the mean squared error between the data
in the CP and the corresponding data in the signal. In con-
trast, the SAM algorithm proposed in this paper adapts in
order to suppress the received signal’s autocorrelation out-
side of a CP-length window. SAM converges much faster
than the MERRY algorithm, but at the expense of signif-
icantly higher complexity. SAM has the added advantage
of not requiring an estimate of the symbol synchronization
(i.e. the location of the start of each data block). MERRY
requires that the channel not vary significantly over each
symbol (since it only updates once per symbol), but the
SAM algorithm can track time variations within a symbol
(since it can update once per sample).

The adjectives “blind” and “adaptive” need some moti-
vation. In the DSL case, the TEQ is expected to converge
completely by the end of the initialization period, which
consists entirely of training symbols. Thus, one can argue
that in that situation, a blind algorithm is unnecessary.
However, if there are any further variations in the channel,
for example due to temperature variations, then a blind
algorithm can track those variations. In a wireless envi-
ronment, one wishes to adapt continually, even between
training frames, since the channel is constantly changing.
Finally, even when training is available, a blind algorithm
does not require knowledge of where the training symbol

lies in the data. In particular, SAM does not even need to
know where the symbol boundaries are.

Beyond being necessary in a time-varying environment,
adaptive realizations can also lead to reduced complexity
algorithms. Non-adaptive algorithms such as the minimum
MSE solution and maximum SNR solution require matrix
inversions and eigen decompositions, which are very costly,
whereas adaptive algorithms (such as SAM) are usually
vector update rules, and can be thought of as just iterative
approximation algorithms.

The remainder of this paper is organized as follows. Sec-
tion IT presents the system model and notation. Sections
IIT and IV discuss the SAM cost function and gradient de-
scent algorithm. Section V studies the properties of the
cost function. Section VI provides simulations of SAM in
an ADSL environment, and Section VII concludes.

II. SYSTEM MODEL

The system model is shown in Fig. 1. Let z(n) be
the source sequence to be transmitted through a linear
finite-impulse-response (FIR) channel h of length (Lj + 1)
taps. Let r(n) be the received signal, which will be fil-
tered through an (L,, + 1)-tap TEQ with an impulse re-
sponse vector w to obtain the output sequence y(n). Let
¢ = hxw denote the effective channel-equalizer impulse re-
sponse vector of length (L. + 1) taps, where L, = Ly + L,,.
The TEQ will be adapted with the goal of shortening the
effective channel ¢ such that it possesses significant coeffi-
cients only within a contiguous window of size (v +1) taps.
In multicarrier systems, v is the CP length. That is, we
wish to minimize the energy of the coefficients in the effec-
tive channel outside the window of interest. The received
sequence r(n) is

wk)r(n — k) = wlr, (2)

where r,, = [r(n) 7(n — 1) --- r(n — L,)]T. Throughout,
we make the following assumptions.

1. The source sequence z(n) is white, zero-mean and wide-
sense stationary (W.S.S).

2. The relation 2L. < Nyfs holds for multicarrier (or
block-based?) systems, i.e. the combined channel has length
less than half the FFT (or block) size.

3. The source sequence z(n) is real and has a unit variance.
4. The noise sequence v(n) is zero-mean, i.i.d., uncorre-
lated to the source sequence and has a variance o2.

The first assumption is critical for the proposed channel
shortening algorithm. Assumption two is important for

1Vaidyanathan and Vrcelj [18] have proposed the use of a block
structure and a cyclic prefix for single-carrier systems, in which case
channel shortening may be needed.
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Fig. 1. System model for an adaptive TEQ.

analytical reasons, but if it is modestly violated the per-
formance degradation should be minor. This assumption
is irrelevant for the application of SAM to equalization of
(non-CP-based) single carrier systems. The last two as-
sumptions are for notational simplicity.

III. SUM-SQUARED AUTO-CORRELATION MINIMIZATION

This section motivates the use of the SAM cost func-
tion, and shows how to blindly measure it from the data.
Consider the auto-correlation sequence of the combined
channel-equalizer impulse response, i.e.,

L.

Ree(l) =Y e(k)e(k —1). (3)
k

=0

For the effective response ¢ to have zero taps outside a win-
dow of size (v + 1), it is necessary for the auto-correlation
values R..(l) to be zero outside a window of length (2v+1),
ie.,

R..(1) =0,

Hence, one possible way of performing channel shortening
is by ensuring that (4) is satisfied by the auto-correlation
function of the combined response. However, this has a
trivial solution when ¢ = 0 or equivalently w = 0. This
trivial solution can be avoided by imposing a norm con-
straint on the effective response, for instance ||c||3 = 1 or
equivalently R..(0) = 1.

It should be noted that perfect nulling of the auto-
correlation values outside the window of interest is not pos-
sible, since perfect channel shortening is not possible when
a finite length baud-spaced TEQ is used. This is because
if the channel has L;, zeros, then the effective response will
always have Ly + L,, zeros. If we had decreased the length
of the channel to, say, Ly < Lj taps, then the combined
response would only have Lg zeros, which contradicts our
previous statement.

Hence, we define a cost function J,;; in an attempt
to minimize (instead of nulling) the sum-squared auto-
correlation terms, i.e.,

V> (4)

L.
JV+1 = Z |Rcc(l)|2 . (5>

I=v+1
The TEQ optimization problem can then be stated as

Pt = arg, min J,q; . (6)

llel3=1

w

Consider the auto-correlation function of the sequence
y(n),

Ryy (1) = Ely(n)y(n —1)] (7)
=E[(c"x, +Ww'v,) (xf_jc+vi_w)],
where x, = [z(n) x(n —1) -+ @(n — Ly — Ly)]", and

v, = [v(n) v(n —1) --- v(n — L,)]T. To simplify,

Ryy(1) Ry, (14 L)
E [ang—l] = (8)
R,,(I1—1L) R, (1)

where R, () = E[v(n)v(n —1)]. Since v(n) is i.i.d., this
matrix will be Toeplitz, with only one diagonal of nonzero
entries. It becomes a shifting matrix, i.e. its affect on a
vector is to shift the elements of the vector up or down
(depending on [). Since the signal and noise are uncor-
related, F [xnvgfl] = 0 and F [VnXZ,l] = 0. Finally,
E [xnx57 J becomes another shifting matrix, provided that
the assumption 2 (L, + L,,) < Nys; holds. If this is vio-
lated, then the matrix is still Toeplitz, but for some values
of [ there will be another diagonal of nonzero entries, corre-
sponding to the correlation between samples in the trans-
mitted symbol end and samples in the transmitted cyclic
prefix. Fortunately, assumption 2 is a reasonable one, as
can be seen by considering the CSA test loop channels [1]
for the case of DSL: Ly = 200, L,, = 32, and Nys = 512,
so 2 (200 + 32) < 512.
Now (7) can be simplified to

L. Ly
Ryy(D) = c(k)e(k — 1)+ 07 Y w(k)w(k —1)
k=0 =0 (9)

= Ree(l) + 02 Ryw(l).

Under the noiseless scenario, R,,(I) = R.(I) and hence
equation (5) can be rewritten as

LC Lc
Joi= Y R’ = 3 Ry, (D).

l=v+1 lI=v+1

(10)

In the presence of noise, (10) is only approximately true.
This suggests approximating the cost function of (5) by

Lc
Jop1 = Z |Ryy(l)|2

l=v+1
L. L
= Z |RCC<Z)|2+2‘73 Z Ree(l)Ruww(l) (1)
l=v+1 l=v+1
Lo,
+0, Z |wa(l)|2-
l=v+1

In many cases, the equalizer length L,, + 1 is comparable
to or shorter than the cyclic prefix length v. (This is true,
for example, in [3] and [4].) In such situations, both noise
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terms in (11) vanish entirely, due to the empty summa-
tions. Even if L,, is significantly longer than v, for typical
SNR values o will be very small (compared to the unit
variance source signal), so we can neglect the last term in
(11). Furthermore, the summands in the second term will
be both positive and negative, so they will often add to a
small value. Combining this with the fact that the second
summation is multiplied by the (small) noise variance, we
are justified in ignoring the second term in (11) as well.
This leaves us with ju+1 >~ J,41 (and ju+1 = J, 11 exactly
if L, < v+ 1). Accordingly, we will henceforth drop the
hat on J, 1 and ignore the noise terms. The effect of noise
on the performance of SAM is investigated in Section VI.

Note that the cost function J,;; depends only on the
output of the TEQ, namely y(n), and the choice of v.
Hence, a gradient-descent algorithm over this cost function,
with an additional norm constraint on ¢ or w, requires no
knowledge of the source sequence. Such an algorithm will
be derived in Section IV. Also note that the channel length
Ly, + 1 must be known in order to determine L.. In ADSL
systems, the channel is typically modeled as a length N
FIR filter, where N = 512 is the FFT size. The CSA test
loops [1] typically have almost all of their energy in 200 con-
secutive taps, so the FFT size is a very conservative choice
for L + 1 in this application. For other applications, the
user must choose a reasonable estimate (or overestimate)
for Ly, based on typical delay spread measurements for that
application.

IV. ADAPTIVE ALGORITHM

The steepest gradient-descent algorithm over the cost
surface Jy, 41 is

L.
W = wld g, ( S Elymy(n - l)P) (12)

l=v+1

where p denotes the step size and Vy, denotes the gradi-
ent with respect to w. To implement this algorithm, an
instantaneous cost function is defined, where the expec-
tation operation is replaced by a moving average over a
user-defined window of length .

L. (k+1)N—1

y(m)y(n—1)
D D

l=v+1 n=kN

) =

(13)

The value of N is a design parameter. It should be large
enough to give a reliable estimate of the expectation, but
no larger, as the algorithm complexity is proportional to N.
The “stochastic” gradient-descent algorithm is then given

Le (k+1)N—1

_ Z)
whTl —wk _ 2% Z Z y(n)y(n
l=v+1 n=kN N
(k+1)N—-1
y(n)y(n—1)
Vw | > i
n=kN

which simplifies to

e | ET ymyyn - 1)
k+1 _ k —
Wt 30|y
I=v+1 n=kN
k+1)N—1
e y(n)rp_i +y(n —r,
> . i
n=kN

The TEQ update algorithm described in (14) will be re-
ferred to as the Sum-squared Auto-correlation Minimiza-
tion (SAM) algorithm, as it attempts to minimize the cost
function described in (5).

An alternate method of implementing the algorithm
comes from using auto-regressive (AR) estimates instead
of moving average (MA) estimates. Let

r(n—v—1)
A" =(1—-a)A" ! +a y(n) :
r(n — Le — Ly)
B" = WA™
r(n) yin—v-1) 1"
C'=(1-a)C"!'+a : :
r(n — L) y(n—L.)

where 0 < o < 1 is a design parameter and W is the
(L.—v)x(L.+ Ly, —v) convolution matrix of the equalizer,

wWo w1 wa e O O
0 Wy W1 0 0

W = (15)
0 0 0 wr,—-1 WL,

Using these AR estimates, the update rule can be written
as

L
Wt = w =20 37 {Ely()y(n— ]}
I=v+1

{Ey(n)rn— +y(n - Dr,]}

L.
=w'—2u Y (B}
l=v+1
Al—l/ Cl,l—u
. + .

Cro,+1.1-v
(16)

AL,

With both implementations, w must be periodically renor-
malized (or else the constraint may be implemented in some
other fashion, such as by adding a penalty term onto the
cost function). The advantage of this implementation is
that it allows us to form an update at each time instant,
rather than every N*" time instant, where N is the num-
ber of samples used in the block averaging of the expec-
tation estimates. The disadvantage is that the estimates
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now depend more on previous settings of f rather than
the current setting, but if the time variations are reason-
ably slow, this should not matter. In terms of complexity,
the auto-regressive implementation of (16) requires approx-
imately 4L, (L. — v) multiplications and additions (each)
per update, plus a division for renormalization; whereas the
moving average implementation of (14) requires approxi-
mately 3N L,, (L. — v) multiplications and additions (each)
per update, plus a division for renormalization. Hence the
complexity per unit time is approximately the same for
the two if (14) is implemented only once every N samples.
However, the moving average implementation is intuitively
appealing, and is useful for analytic purposes.

The choice of « in the AR implementation is analogous
to the choice of NV in the MA implementation of (13). Both
the MA and the AR estimates are unbiased:

B[RUAD] = 5 3 Blymy(n 1)

1
= N -N - Ryy(l) = Ryy(l)
E[BAR0)] = Y a(1- )" Ely(n — Kyt — b~ 1)
k=0
1
=a- 1-(1-a) Ry (1) = Ryy (1)

(17)

A “fair” comparison of the two approaches should set N
and « such that the variances of the two estimates are
equal, yet closed-form expressions for the variances of the
two estimates are difficult to obtain. An examination of
(17) suggests o = 1/N is a reasonable choice.

As stated earlier, to prevent the algorithm from collaps-
ing the TEQ to an all-zero solution, the equalizer param-
eters can be normalized after each update to ensure that
the norm of the effective response is unity, i.e., ||c[|3 = 1.
As the source sequence is assumed to be white, from (9),

Bly*(n)] = [l + o3 llwll3 = |lel3 (18)
and the norm of ¢ can be approximately determined by
monitoring the energy of the output sequence y(n). The
approximation does not matter much as it is only used to
keep ||c||3 non-zero, and the actual value of ||c||3 does not
matter. Similarly, if the source is non-white, (18) does not
hold exactly, but maintaining E[y?(n)] = 1 will still keep
lcl|3 # 0. A more easily implementable constraint is the
unit norm constraint on w, i.e. |[w||3 = 1. This is easier
to implement because we have ready access to w, but not
to ¢, so this is the constraint used in the simulations in
Section VI.

V. PROPERTIES OF THE COST FUNCTION

As is typical of blind equalization algorithms, for in-
stance the constant modulus algorithm (CMA) [19], SAM’s
cost surface can be expected to be multi-modal. If it has
bad local minima, then initialization to ensure convergence
to the global minimum becomes important. In general, the

SAM cost surface will have local minima. This is a direct
result of the following theorem.

Theorem 1: The SAM cost function is invariant to the
operation w — W, where W denotes w with the order of
its elements reversed.

Proof: Consider the autocorrelation sequences of the
combined channels ¢; = hxw and co = hxWw.

Rejep =c1x¢ = (h*w)x(hxw)
=hxwxh*xw
= (h*W)* (h*w)

= C9 %xCy = RC202~

(19)

Since the autocorrelation sequence is invariant to revers-
ing the order of the elements of w, the SAM cost is also
invariant to such a switch. ]

The upshot of Theorem 1 is that whenever there is a
good minimum of the SAM cost surface, say at w,, there
will also be another minimum at w,. There is no reason
to expect that the flipped w, is as good an equalizer as
w, (in terms of achievable bit rate, for example), so each
good minimum may give rise to a bad minimum. Here,
“good” and “bad” mean that even though the SAM cost is
the same, the ultimate performance metric (achievable bit
rate, for ADSL) will not be the same for the two settings.
Another consequence is that the SAM cost surface is sym-
metric with respect to w < W, so there will be minima,
maxima, or saddle points along the subspace w = w.

To visualize Theorem 1, consider the following example.
The channel is h = [1,0.3,0.2], the cyclic prefix length
is 1 (so we want a 2-tap channel), there is no noise, the
equalizer w has 3 taps, and we use the unit norm constraint
|lw| = 1. With this constraint, the equalizer must lie on a
unit sphere, so we can represent the equalizer in spherical

. JAN . A
coordinates: wo = w, = cos(f)sin(¢), w1 = w, = cos(¢),
A . . . . .
wy = wy = sin(f) sin(¢). In this case, w — W is equivalent
to switching w, and w, (the first and third taps), which

is equivalent to reflecting @ over T or 3%; and w — —w
Z and

is equivalent to the combination o’[fl reﬂeciting ¢ over 5
adding 7 to 6 (mod 27).

A contour plot of the SAM cost function is shown in
Fig. 2. The axes represent normalized values of the spher-
ical coordinates # and ¢. The contours are logarithmically
spaced to show detail in the valleys. There are four min-
ima, but they all have equivalent values of the SAM cost,
due to the symmetry relations w & —w and w & w.

We compare the locations of these minima to those of a
traditional channel shortening cost function: the shorten-
ing SNR (SSNR) [3]. The SSNR is defined as

H .
SSNR = win‘win

CwallCwall

(20)

where ¢, 18 the effective channel impulse response inside
the window of interest (of width v+1), and cyay is the effec-
tive channel impulse response outside this window. Thus,
for our 5-tap effective channel, we pick a 2-tap window and
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1 saddle points

1 1.5 2
8/m  saddle points
Fig. 2. Contours of the SAM cost function. The two circles are
the global minima of the 1/SSNR cost function. The cost function is
symmetric about the dashed line.

SAM minima

e/m

Fig. 3. Contours of the 1/SSNR cost function. The four circles are
the global minima of the SAM cost function.

compute the energy of these taps, then divide by the en-
ergy of the remaining 3 taps. For each equalizer setting, we
will compute the combined channel, pick the 2-tap window
with the highest SSNR, and then plot the inverse of that
value (so that we are looking for minima rather than max-
ima). Contours of this cost function are shown in Fig. 3.
Comparison of the two contour plots show that the pair of
global minima of 1/SSNR match up nicely with two of the
global minima of the SAM cost. Thus, if we find a pair of
global minima of the SAM cost, and they have a high value
of 1/SSNR, we can fix this by switching to the other global
minima of SAM simply by reversing the order of taps in w.

VI. SIMULATIONS

This section provides a numerical performance assess-
ment of SAM in an ADSL environment. All of the Mat-
lab code is available at [20]. Parameters were chosen to
match the standard for ADSL downstream transmission:
the cyclic prefix v was 32 samples, the FFT size was 512,
the equalizer (TEQ) had 16 taps, and the channel was CSA
test loop 1 [1], available at [21]. The noise power was set
such that o2|h||?/02 = 40 dB. 75 symbols were used (of
544 samples each), and SAM used the auto-regressive im-
plementation of (16) with @ = 1/100 and with the unit
norm equalizer constraint. The initialization was a single
spike, and the step size was 5 (such a large step size can be
used because the SAM cost is very small, so the update size
is still small). SAM is compared to the maximum short-
ening SNR solution [3], obtained using the code at [21];
and the matched filter bound (MFB) on capacity, which
assumes no ICI.

Two types of noise are considered: white Gaussian noise
and near-end cross-talk (NEXT) [13], which is highly col-
ored. The NEXT was generated by exciting a coupling fil-
ter with spectrum \Hnemt(f)\Z = H, Huasi(f) FB/2) with
white noise [14]. The constant H, was chosen so that the
variance of the NEXT was o2, with 02 chosen to achieve
the desired SNR. The filter H,,qsr is an ADSL upstream
spectral mask that passes frequencies between 28 kHz and
138 kHz, since the upstream signal is the source of the
NEXT for the downstream signal. The code to generate
the NEXT was obtained from [21].

Fig. 4 shows the channel and the combined channel-
equalizer after running SAM. Figs. 5 and 6 show the SAM
cost and achievable bit rate versus the iteration number.
The fact that the SAM cost is not monotonically decreasing
in the first few hundred samples is because of the renormal-
ization. After each iteration, the equalizer is divided by its
norm, and this projection causes the algorithm to no longer
be a gradient descent algorithm (though it is approximately
$0). The bit rate is not monotonically increasing because
the SAM cost bears no direct relation to the bit rate. At
340 iterations, SAM achieves 96% of the MFB, but then
drops, and eventually rises again to 74% of the bound. The
fact that the SAM cost is steadily decreasing when the bit
rate decreases and then increases again is very important:
it indicates that the SAM minima and the bit rate max-
ima are not in exactly the same location. Note that SAM
performs similarly for white and for colored noise.

Fig. 7 shows the achievable bit rate versus SNR for SAM
and for the maximum shortening SNR algorithm of [3],
for white noise and for NEXT. The bit rate is determined

based on
Nyt

SNR;
RZlog2<1+ T )

=1

(21)

The SNR was computed using a 6 dB margin and a 4.2
dB coding gain. For more details, see [4] or [21]. The bit
rate was determined for the settings SAM arrived at after
75 DMT symbols. Observe that for low SNR, the perfor-
mance of SAM and the MSSNR method are comparable,
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Fig. 4. Channel (dashed) and shortened channel (solid) impulse
responses. The shortened channel should have 33 taps. Fig. 6. Achievable bit rate vs. iteration number (not symbol num-

ber), for 40 dB SNR. The dashed line and the diamonds correspond
to the maximum SSNR solution and the matched filter bound.

SAM cost vs. iteration number
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Fig. 5. SAM cost vs. iteration (not symbol) number, for 40 dB SNR.

and the performance of SAM degrades (relatively) for high
SNR. This is because when the noise is high, SAM only
needs to reduce the inter-channel interference (ICI) below
the noise floor, but when the SNR is 60 dB, the excess ICI
becomes more noticeable. For very low SNR (less than 15
dB for white noise, less than 25 dB for NEXT), the perfor-
mance of SAM degrades, presumably due to the noiseless
assumption in the derivations. However, typical SNR val-
ues for ADSL are 40 dB to 60 dB, and an SNR less than
25 dB is very unusual. Bit error rate (BER) curves are not
included because for ADSL, the bit allocation on each tone
is increased until the BER becomes 10~7, so a BER curve
would be flat as a function of SNR.

Lo 10° achievable bit rate
—— SAM (white noise) f
9H ‘== SAM (NEXT noise) : s
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Fig. 7. Achievable bit rate vs. SNR for SAM and the maximum

SSNR algorithm for white noise and for colored noise (NEXT).

VII. CONCLUSIONS AND FUTURE WORK

A new blind, adaptive channel shortening algorithm
based on a windowed sum-squared auto-correlation min-
imization has been proposed. The effectiveness of the al-
gorithm to blindly shorten the channel has been demon-
strated numerically. However, SAM may perform poorly
in situations such as when the source sequence is not white
or when there is extremely strong cross-talk (or other forms
of colored noise).

Proper initialization of the TEQ is necessary to ensure
the convergence of the SAM algorithm to a good minima.
Further studies are needed to characterize the cost function
and formulate suitable design rules to ensure good perfor-
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mance. Robustness of the algorithm to receiver noise and
violation of the assumption of source whiteness need to be
investigated further as well.
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