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Exploiting Sparsity in Adaptive Filters

Richard K. Martin, William A. Sethares, Robert C. Williamson, and C. Richard JohnspRellow, IEEE

Abstract—This paper studies a class of algorithms called natural the taps that are in the queue are not updated. In contrast to
gradient (NG) algorithms. The least mean square (LMS) algorithm - these approaches, the exponentiated gradient (EG) algorithm [6]
is derived within the NG framework, and a family of LMS variants  q465 not try to reduce computational complexity, yet it has been
that exploit sparsity is derived. This procedure is repeated for other h h b f h ical aradi hod
algorithm families, such as the constant modulus algorithm (CMA) shown to have ette_r per Ormancet an typical gradient methods
and decision-directed (DD) LMS. when the target weight vector is sparse [7], [8].

Mean squared error analysis, stability analysis, and convergence  This paper rederives the EG algorithm as an approximate
analysis of the family of sparse LMS algorithms are provided, and “natural” gradient (NG) descent algorithm [9] and interprets the
it is shown that if the system is sparse, then the new algorithms improved performance under sparsity in terms of a reparame-

will converge faster for a given total asymptotic MSE. Simulations L - -
are provided to confirm the analysis. In addition, Bayesian priors terization of the underlying linear process. The MSE and con-

matching the statistics of a database of real channels are given, and Vergence properties of EG-like algorithms are studied, and al-
algorithms are derived that exploit these priors. Simulations using gorithms are derived that make use of the CMA and DD cost
measured channels are used to show a realistic application of thesefynctions.

algorithms. Section Il introduces the EG algorithm. Section I provides
Index Terms—Adaptive filters, Bayesian priors, measured chan- - a theoretical analysis of the excess MSE and convergence prop-
nels, natural gradient, sparse channels. erties of EG-like algorithms. Section IV gives a framework for

deriving algorithms that exploit prior knowledge of the param-
eters to be estimated, and Section V applies this framework to
) a variety of traditional algorithms. Sections VI and VIl demon-
T RANSMISSION channels are often sparse, that is, Mogate the performance of these algorithms for synthetic and real

1 ofthe taps are small, and only a few taps are large. Thigta, respectively, and Section VIII concludes the paper.
includes the traditional notion of sparsity as a few large taps

separated by many negligible taps. Optimal equalizers often re-
flect this sparsity, yet equalization methods such as the least
mean square (LMS) algorithm, the constant modulus algorithmA data sequence; is assumed to be generated from input
(CMA), and decision directed (DD) algorithms do not exploilatazy in a linear manner. The simplest of the EG algorithms
thisa priori information. Typical approaches to exploiting spart6, €d. (3.5)] estimateg, by

sity are motivated by complexity reduction (at the expense of a o

small performance loss), which is often accomplished by only gk =Y wizh. 1)
updating a subset of the channel model or equalizer taps [1][5]. @

Forexample, [4] uses a least-squares based technique performetﬂe EG framework, the weights are typically assumed pos-
on the filter input and output to determine if each tap is ac- i

; o ive. The weight vectomw; = [w}, ..., w)|? is updated at
tive (nonzero). If an “activity measure” exceeds a threshold, tl%%/ch iterallivorli? byv K [ors -y wi ] s up

tap is considered active and is updated; otherwise, it is not up-
dated. In [5], Sugiyamat al. keep a queue of indices of inac-

tive taps and allow an inactive tap to become active once it exits

the queue. However, if the newly active tap remains small,\{f,ore,, is a small positive stepsize. This was derived by an ap-
will shortly be returned to the end of the queue. In this Wayy o imation (which is discussed in [6, Sec. 4.4]) of the general
update strategy

I. INTRODUCTION

Il. PROBLEM SETUP AND MOTIVATION

w1 = wj, + pwi,(uk — )2, (2)
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for some parameter vecter= (2}, ..., )T If we think of  The key term ig||w*||1 — (|[w*||2/|lw*||1)), which provides a
the algorithm as adapting over the underlyirgpace, we can measure of the sparsity of the target weight vector. When there is
use the Euclidean gradient descent considerable sparsity, this term is small, and the step size can be
R made larger for faster convergence without adversely affecting
Zi+1 =z - M (6) the excess MSE. When this term is large there is not much spar-
0z, sity, and the step size must remain small in order not to increase

the MSE. For example, consider the charjek, a, a, a, 0.5].

If we absorb constants into the stepsize, this yields .
For |a| = 0.05, the “measure of sparsity” equals 1.04, whereas

Zho1 = 2+ pA(2) (yn — Gr)h (7) forla| = 0.5, itequals 3.07. . .
~ X In Section V, we will relax the assumption that the weights are

positive, allowing for more practical algorithms. First, however,
What we are truly interested in is the effective update rulesfor we will consider the MSE and stability behavior of EG-like al-

and notz since that is what is used to generate our estimate gorithms (algorithms with component-wise modifications to the
in (1). The effective update te is approximately stepsize).

Wiy =2(F1) = Az + ) 2 () F A (©)

=wj, + 17 (21,) (Uk — 1) Th- 9)

I1l. ANALYSIS

This section derives theoretical expressions for the MSE and
Since A is o(u), the approximation in (8) leading to (9) be-stability criteria of the class of algorithms introduced in Sec-
comes increasingly accurate for smallFor they given by (5), tion Il in a fashion similar to that in [11] and [12].
¥2(z) = (1/4)(#)? = wi, which gives us (2) once again.
Thus, the EG algorithm can also be thought of as a Euclidean Asymptotic Mean Squared Error
gradient descent algorithm, but the gradient descent is takin
place inz-space.

The algorithm (2) can be contrasted with the standard LMS
algorithm Wht1 = W — uDﬁk
=wi + pD(— Vi +L%) (13)

%Lonsider the vector update rule of

Wi = i, + p(ur — Gr) 2% (10)

which can be formally derived using the Euclidean gradient d&N€re
scent strategy of (6). The only difference between (2) and (10) V¥
is the presence of the multiplying the stepsize. In essence,
when the current estimate @f, is small, its update is small, and Vv  estimate of this gradient;

when the current estimate of, is large, its update is large. I'r  gradient noise, as in [11];

Duttweiler [10] has proposed an algorithm called propor- p  diagonal matrix that depends on the current value of
tionate normalized LMS (PNLMS) that has similar feature%n this section, we will assume that =~ w* since we are
That is, PNLMS modifies NLMS by multiplying the updatecsnsidering asymptotic MSE.) This is a more general form of
tgrms by the tap weights, resulting in faster convergence. e LMs update rule (in whic) = I). The EG algorithm (2)
difference between [10] and our work is that we provide @ 5 example of an algorithm of this form, and a more general
framework for deriving many variations of these algorithmg, ., is given in Section IV by (33).
with a means for fitting the algorithm to the environment. The reason that we want to determine the asymptotic MSE
However, the results and intuition in [10] should be usefy yhat the result of the next theorem provides a basis for a fair
when implementing the variants found in our paper.  comparison between LMS and algorithms of the form of (13).

Some insight into the effects of the nonlinear modificationsyy 4 given algorithm and system, it is possible to compute the
we have added to LMS can be obtained by theoretically andsymptotic MSE as a function gf. The step sizes for the dif-
lyzing the steady-state mean square error (MSE). In [7], thgrent algorithms can then be adjusted such that at convergence,
steady-state MSE of (3) when driven with a white input sey have the same MSE. Then simulations can be run, and the
quence(x;) with variances? in the presence of white NOiSeonyergence time can be compared fairly.
with variances;; was shown to be Theorem I11.1: The asymptotic MSE of (13) for a small step
sizeu is given by

gradient of the cost function at timewith respect to
Wi,

T By — i)’

e * ||W*||2> 2) 2 n
=¢&=11 — 11
3 < + <||W Il1 Wl ) 7)o (11) € = Eoin <1 + %uZ)\p[Q—l D Q]pJ)) (14)

p=1

where w* is the target weight vector, andlw|, =
{/Ef;l lw; [P, whereas the MSE for LMS is whereQ='RQ = A (diagonalization),R = E[XXT], and
Ap = A,y (the pth diagonal element ok, wherep is simply

&= (14 puNo)o?. (12) the index for the summation).
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Proof: Using the definition of the error systems = w;—  B. Stability Criteria
w* and the fact that the gradient can be expresseglras,,

Using methods similar to those in [12], one can derive sta-
whereR = E[XX7] (see [12])

bility criteria for EG-like algorithms. This analysis is standard;
therefore, only the highlights will be given here. Since (13) is

Vit = Vi pD(=2Rvy + I'y) very similar to LMS, one of the criteria for stability of the av-

=(I = 2uDR)v;, + uDIy. (15) erage system is that
At this point,_[ll] rotatgs the coordinate _system by diagonal- 0<p< = 2 (21)
izing R. That is not feasible here because if we diagonaliZe Amax, k

via Q"' DRQ, thenQ~*DQ may not be diagonal.
To determine the MSE, we need to find the covariance matfig’ all k, where Ay,  is the largest eigenvalue bR (for
of v;,. DefineC = E[Vk Vk]' and assume that the system ik =1, this reduces to the LMS Stabl'lty Crlterlon) It should

near convergence [hence, ¢oy1) = cov(v;)]. Then be emphasized that (21) refers to the more general time-varying
system, rather than the steady-state system, hence, the inclusion
C=(I-2uDR)C(I —2uDR)* + 1> D cov(T';,) D. of the time indeX: in the eigenvalues and ib,. Equation (21)

can be enforced by applying a clipping function to the weights
From [11], co(I'x) = 4&minkt, Where&y,, is the minimum  to bound the elements @by, ensuring thah,,...  is bounded
MSE not counting misadjustment (which is defined in [12])as well. However, since we now have a time-varying system
Inserting this and absorbing the 2s and the 4 jnemdy.” gives  (characterized byl = Dy R), we must invoke the “slow time
variation lemma” of [13]. This says that if (21) is met, and if
the rate of time variation of the system is slow (quantitatively,
The approximate solution fa' (which is obtained by ignoring SUPp>po ”AP.“ — Ayl IS small for some finite t'm.%)’ then

2 . the system is stable. Since we have been assuming that the step

the u? DRCRD term) is . ; . .

sizep is small, this guarantees stability.

C= (I - NDR)C(I - NDR)T + N2£minDRD~ (16)

C= 1 minD 17 . . .
2 1 (@7) C. Directionality of Convergence
and the exact solution, which is derived in the Appendix, is  In this section, we will see that the speed of convergence (in
1 1 particular, near the true weight vector) depends heavily on the
C = 5 EminD (I - gRD) (18) direction of the parameter error vector; in fact, it is more so

than in LMS, which only exhibits directionality if the input is
which holds provided that all eigenvalues(pf/2)RD are less correlated.
than one in magnitude. For simplicity, whenis small, we Again, consider the average error system, with update rule
prefer (17) over (18).
Widrow et al. [12] show that for an FIR filter with weight Vil = (I — pDR)vy = vi. + Avy,

error vectorvy, the MSE is
wherevy, = wy — w*, andAvy, = —uDRvy. The MSEs at

i timesk andk + 1 are
5 = gmin + Z )‘PE[(UZ% k)Q]
p=1 &k :VzRvkv
wherev, = Q v, (so thatd, ; is the pth element of this Gt = (Vi + Avi)TR(vi + Avy).

vector at timek), and() andA,, are as defined in Theorem IIl.1.
In our case, col) = Q7! cov(v)Q = Q~1CQ. From (17), This means thatif we are &t at timek, then the change in the

the theoretical MSE is then MSE will be
. (A& =&pgr — & = —pvER(2D — pD*)Rv,,  (22)
=&min |1 5 A _lD 19
£=¢ < +3 NPEZ:I (@ Q]pp> (19) ~ _2uvI RDRv, 23)
where[ . ],,, , indicates thgith element on the main diagonal. assumingu is small. To proceed further, we must make some
If both D and R are diagonal@) = I; therefore simplifying assumptions. First, assume tliiaE . Second, as-
sumelN = 2 so that we can visualize our results. For concrete-
£ = &nin (14 5 ptr(DR)) (20) ness, we will assum®;; = |w;,| + ¢ [this leads to an algorithm

o similar to (2), which is called signed sparse LMS (SSLMS),
where t(A) denotes the trace of. When D is just the Jaco- which will be elaborated on in Section V]. We would like to
bian used by [7], this simplifies to the result derived in [7]. Itompare values of (23) for LMS and SSLMS. To do that, we

this paper,D is always diagonal. Although [7] shows th& must choose the step sizes to equate the asymptotic MSE. Using
is nondiagonal for the regular EG algorithmijstdiagonal for (20), we have

the approximate algorithm studied in Section Il. Howeveis
often not diagonal, such as in an equalization setting. prysN = psspavs tr(D™).
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HEG'?T N WHICH SLWS 1S PASTER THAN LS tion of EG-like algorithms that shows how to exploit prior infor-

1 mation to derive algorithms (such as SSLMS) that are logically
|| more suited to certain situations than LMS.

IV. EXPLOITING PRIOR INFORMATION

05

This section derives a general form of reparameterized gra-
dient algorithms that can be understood in terms of prior knowl-
edge or in terms of an underlying cost function. Each algorithm
will be characterized by a cost functidi{yy, %), @ reparame-
terization functiony, and by a prior distribution of the unknown
parameters. Specifically, let

= Z whrh = Z (7)), (26)

as in [7, Eq. 8], and(z) is assumed to be invertible and dif-
; 5 ferentiable except possibly at a finite number of points. We will
consider algorithms that update the entriez ahd, therebyw.

_ _ _ , _ Mahony and Williamson [14] provide a general discussion of
Fig. 1. Region (shaded) in which SSLMS outperforms LMS. The urclﬁ . . . . .
denotesw™ . ow to encode prior knowledge into learning algorithms using

a geometric “preferential structure.” The essence of this is to

define a metric so that the algorithm evolves over an error sur-

Thus face shaped to incorporate the known prior information. For in-
stance, if theith component is known to be reliable, whereas

(A8 pars = —2ppas[(wr — wi)? + (we —wd)?]  (24) the jth component is not, then the algorithm should take larger
steps in thejth direction. This is accomplished by warping the

(A)ssLms underlying space.

Y [(w1 — ) < 2w + 2¢ ) Mathematically, the preferential metric is a family of func-

’ |wy| + |wi| + 2¢ tions¢; (z*) that represent the priori knowledge (the Bayesian

2|wa| + 2¢ (25) prior) of theith parameter. The _idea of a Baye;ian prior [15]

W : is that an unknown parameter (in our cas§,is viewed as a
random variable with a known probability density function [in

When (A&)ssravs < (A&)rars, SSLMS will have a larger our caseg;(z*)]. Note thatin common with most Bayesian rea-

decrease in MSE (sincA¢ < 0). Even for this simple case, soning [15], the prior can bienproper; i.e., it is not required that

it is difficult to compute a simple expression for the region i integrated over the whole domain is unity; in fact, the integral

which this is true. However, we can compute it numerically. &an even be infinite.

plotis given in Fig. 1, withw™ = [1, 0.1]. In the shaded region, Using this concept of priors, Mahony and Williamson [14]

SSLMS is faster than LMS in terms a£¢. show that when the standard parameterization is (ged) =

Fig. 1 shows that in the two-tap case, if we initialize at the},), the NG algorithm of [9] is

origin, LMS will have an advantage at first, but as we approach

w*, SSLMS will go faster. Since LMS is faster over most of A =0t <‘1’i(zi) — 81; 1 ‘ ) 27)

the route, it could do better than SSLMS in this particular case. * ' 9%, $i(z,)

However, in Section VI, we will examine an example of a system

that is more dramatically sparse. In that case, LMS still monghereq) Is the indefinite integral of. If we interpret) as a (pos-

faster at first, but SSLMS gains an advantage more quickly th%ijly |mprqpe.r) pI’ObabI.|Ity denglty function that IS glways POS-
. S oo e ltive, then its integral will be strictly monotonically increasing,
Fig. 1 implies. The qualitative effects are similar, however.

1 . o
Of more importance is the fact that near the right answer, tﬁmdq) wHIﬂwa_ys eX|st._However, ity is zero over any range
of w, then®~~ will not exist.

speed of convergence depends on which parameter is in error. .
prmore of the ergr]or is inwp then SSLMS v?ill go faster, and [Jnfortunately, the updates of the NG algorithm (27) can be
b ' quite complicated due to the presence of the nonlineariteasd

if more of the error is inw,, then SSLMS will be slower than &1, A kinder, gentler algorithm can be derived as a first-order
LMS. This shows that there is a directionality to this algorithm, ° 9 9

even though the inputis uncorrelated. Thisis in contrastto LMgr')proxmatlon to (27) by rewriting the update as
which has isotropic convergence when the input is uncorrelated. 4 4 8L 1

These results imply that algorithms of the form (13) are not ®i(2h11) = Pilz) — 1 97 W (28)
globally faster than standard algorithms. Rather, it depends on bR
in what region of the parameter space the comparison is pEEcpanding@i(z;;H) in a Taylor series about, gives
formed. The critical region will vary with the algorithm and with
the true weight vectow™ . The next section offers an interpreta- ;(z}, 1) = ®;(21) + ¢(2) (7411 — 24) + 0((Zhy1 — 20)?)

-1

+ua - up?
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which uses the fact thal®;(z})/9z; = ¢:(2}). Whenp is  Sincey is generated according . = >, wiz}, what we
small and we are reasonably close to converge(r,u;f;gs;,1 —Zi) ought to compare is the effective changewofasz changes.
will also be small. In that case, the higher order terms may Ber smalli,, A = o(u), and therefore

neglected. Substituting the remainder into the left-hand side of

(28) gives Wi = V(Zq1) = 201+ D) Zy(z) +3(=)A  (3D)
4 o 4 4 8L 1 assuming we drop terms in the Taylor series expansion of order
Cilzi) + ¢(2) (s — 21) = ila) — g e 112 or higher. Thus, the proof requiresto be sufficiently small,
“k PiNE

. - . 4 _ i which is a standard assumption. The resulting effective update
Finally, dividing both sides by(z;,) and rearranging gives theiq w is

algorithm oL 2020
i i N N
‘ . aL 1 Ohrt T T g <¢2(7’5)) ' ¢
Tt T TG a0y L o
k Tk (29) Similarly, the ANG corresponding @ and¢ is
This approximate natural gradient (ANG) algorithm may be pre- wio =wi—p L, (7*(=)
ferred to (27) in applications since the updates are simpler, and LT P00 TR\ p2(2)
the resulting algorithms can be more readily analyzed using o PR, .
standard techniques such as averaging theory [16] and local SRC€ ¥"/#° = 77/¢ by assumption, these are the same
bility [17]. Furthermore, the differences between the NG arf90rithm. u

ANG algorithms are generally minor. The left and right sides of (30) are both functions:of/et »

When prior information is available about the desired targ'g(different fqr each side sincg the parameterization is different.
weight vector, it is desired to design an algorithm exploiting thdf!uS: both sides of the equation must be separately represented
knowledge. For example, the notion of sparsity can be capturti functions ofw and then compared. For example, consider
by the supposition that with high probability, the tap will havdhe motlvat_lng example of Section II. The_ algorithm as initially
a small value, whereas with low probability, the tap will have Bresented in (2) can be thought of as having the standard param-
large value. One such prior i&z) = 1/,/z. As will be shown €terizationw = (z) = z and priorg, (z) = 1/1/z. Thus
in Section V-B, this prior leads to algorithm (2). ¥? 1 1

. Suppose i?'a (po'ssitt))lyllin;protf)erz probabilit)t/ de;lf]ity flzg(;) . d)_% = R0 B
ion representing prior beliefs about a parameter. Then, s : L _ 5
the NG algorithm that incorporates this prior, and (29) is th;esr? dttigttuzrl?rﬁgi’nf erforre:]ﬁaza;nit?m\zlvaéigg) = (1/4)z
first order ANG algorithm, both assuming that the parameteri- P 22 =5
zation functiony of (26) is the identity. The same algorithm can 7_22 — 42(2) 1,

also be derived (or interpreted) as a Euclidean gradient descent 3 ME = s =

(¢(2) = 1) on a modified cost function [i.ex(z) not neces- These two ratios useddifferently, but in terms ofu, the ratios

sarily the identity]. The next proposition makes this precise. 5re the same. Consequently, the update rules given by (2) and
Proposition IV.1: Let ¢ andy represent the priors and paramrg) were the same.

eterizations of an ANG algorithm (29) withparameterized as * |, the course of the proof, we have shown that for sufficiently

in (26), and let the cost function be given iy, §). If there  gma)| 4, algorithms incorporating priors and reparameteriza-

are functionsy and¢ with tions can be written in the general form of
22 =2

then® and¢ are an alternate set of priors and parameterizationdere Dy, is given by

‘ ‘ oL .
v =wy — p— x5 [Dilii
Wiyl = Wi — K ET 2 [Dilii

that yield the same effective update rule for as long ag: is 2
sufficiently small. (Dilis = < i ) < 1 ) . (33)
Proof: From (29), the ANG corresponding & ~, and ’ (=) e
Ly, 9)is This shows how ANG algorithms can be analyzed using the
i i oL 1 framework of Section Ill. Note the similarity betweéh, and the
Ret1 = Rl T M 8—4 W Jacobianin[7, equation (15)]. The difference is that the Jacobian
) ) . ' in [7] only includes the first factor from (33), whereas our use
Applying the chain rule yields here is intended to capture the effects of the prior as well.
S i OL O 1 The ANG may be derivable from an alternative prousing
K T A P the standard parameterizatiaiz) = z. This prior will be

called the “true” prior because it represents the prior beliefs
o without the confounding influence of the reparameterization
H —uﬁ ’Y(Zi“) ai . function. Alternatively, the ANG may be derivable from a
€ reparameterization using the standard piior= 1 (which
= X corresponds to a belief that all parameter values are equally

Sincedi, [0z, = (= )4, this becomes

)

@ —
Zk+1—z
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ALGORITHMS USING THE STANDARD COST FUNCTION OF (Y. — )2 AS INT?SFEO'II'E THAT WHEN ¢(z) = 1, THE NG AND THE ANG UPDATESARE |DENTICAL.
NOTE THAT THESEALGORITHMS ARE IN z-SPACE, BUT WHEN 7(z) = z, THE w-SPACE UPDATESARE THE SAME
Algorithm Name | v(z), ¢(z) pairs l NG update ANG update
LMS 21 iy = 2h+ (e — ) ) Tyt = 24t (e — Ge) 2}
(see note in text) In(z), 1 zi, = 2L exp(ulye — Gi)zl) Zi =z pzl (ye - G) T4
EG natural [8] z, 1 zjyy = zhexp(p z; (yr — Gx) 1) 2;';_,_1 = zp + p (2% (v — B2) 74
exp(z), 1 zher = 2h + pexp(zh) (ye — Ge) 74 zhiy = 24+ pexp(z}) (ye — 9r) 7}
Sparse LMS z, % Zhy = (\/;;:+ Luv/zE(ue — i) z;e)z zi =2+ pzl (e —0) 5k
1234, 1 i =z +p(32L) (ye —Gi) 2 zhy =25+ o (2h) (ke — i) 2
Signed Sparse LMS 2, —ﬁ too complicated for a table 2y = zh + plizi] + ) (yr — Gx) =

psen(2)e® +ver, 1 | 2p = zp + (3l + VO - Bk)ek | sy = 4 +ublzi] + VO bk - Gn)ag

Fractional LMS z, = (@#1) refer to Equation (45) 2z =z} + wl(zE) 2 (yx — Gz,

(1 -a)2)™=, 1 Zhyy =2+ a1 - )2 T (e — )zl | zhyy = 2 + (- 0)2) T (e — Gi)a}
Signed Frac. LMS see Eq. (48), 1 refer to Equation (49) refer to Equation (49)
IPL LMS 2z, e too complicated for a table 2y =z + pl)2E]® + €)% (e — G
Exponential LMS z, c el too complicated for a table oy = 7k p ey — gi)al

likely). In this casesy can be used to give the cost function oveA. Least Mean Squares
which the algorithm is evolving under the standard Euclidean 1, prior belief corresponding to the LMS algorithm is that

gradient. These multiple interpretations are useful becaugenarameters are equally likely to achieve any value. Hence,
sometimes it is easier to understand the behavior of an algp(w) — 1, &;(w) = w, and®; (v) = v. The appropriate

rithm from the point of view of priors, whereas sometimes it iSy<t function is the mean square cbgy, i) = (i — )2
easier from the perspective of the cost function. Imposition gf, 4 the parameterization withi is the standard one (1) with
the requirement that? /¢? remain invariant allows translation (w') = w'. Hence AL/dwi, = 2(yy — 9x)x... Substituting
of an algorithm to both frameworks. This is an importanfyg either (27) or (29) yields the LMS algorithm of (10). Note

feature of the ANG algorithms since this translation is ngf 54 because(w) = 1, there is no difference between the NG
possible with the nonlinear NG algorithms. and the ANG algorith’ms.

A third possible interpretation (following Amari and Douglas
[9], [18]) considers the functio’ (=) [which is mathemati-
cally equivalent tal /¢?(z)] to be a Riemannian metric of dis- ) ) )
tance measure imposed on the underlying space. This can bgonsider the priog; (z) = 1/z, z > 0, which corresponds to
used, for instance, when signal measurements are corrupte@gy}9h likelihood that the parameter value is small and a small
additive noise (and the probability distribution function of thghanc_elthat the parameter is large. Accordinglyz) = In(z),
noise is known) to create a Fisher-efficient learning algorithd@Nd i~ (v) = exp(v). Using the standard codi(yy, gi) of
The main difference between this paper and [9] and [18] is thH&) and the standard parameterizatigir) = » gives the NG
they explicitly assume they know the likelihood function of th&/gerithm
noise (and, hence, a noise model) and then effectively use the i i N i
uniform prior (p = 1) and standard parameterization £ z), Zepr = explln(z) + s — Gi)ei2,) (34)
although we ma_lke no assumptions al_aouft the noise, and we use =2 eXP(uzi(yk — gk)xi), (35)
nonstandard priors and/or parameterizations.

B. Exponentiated Gradient Algorithm

This is the exponentiated gradient algorithm of [8]. The associ-
V. ALGORITHMS ated ANG algorithm is

This section derives a number of NG and ANG algorithms.
The first two examples show how special choicesyaind ¢

result in familiar algorithms, whereas the remaining subsec-an equivalent way to derive this ANG algorithm is to let

tions derive new algorithms specifically for signal processing ;) — exp(z) and¢(z) = 1. In this case, both the NG and
and communications problems when prior information (such a\G algorithms are

sparsity) is available. The new algorithms include blind CMA

and DD algorithms and an ARMA model algorithm that cor- Zi+1 = zi + pexp(zi) (un — Gn) k. (37)
responds to the “equation error” [19] form of standard ARMA

model adaptive filters. The parameterizations, priors, costs, afmlsee the equivalence of (36) and (37) as a concrete example
update rules for these algorithms are displayed in Tables | anddf.Proposition 1V.1, convert them int@-space. Equation (36)

Zhpr = 21+ 10227 (e — 1)zl (36)
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TABLE I
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ALGORITHMS USING MISCELLANEOUS COST FUNCTIONS. WHEN ¢(z) = 1, THE NG AND ANG UPDATESARE |DENTICAL

Algorithm Name | ~v(z), ¢(z) pairs [ NG update

ANG update

Algorithms using the CMA cost function: L = (57

s

CMA w, 1 zhr = 74— p G — ©) =} i =%~ p (R - ) 7}
Signed Sparse CMA z, ]?117: zi .y = zhexp(—pl(|zi| + €)gn (7 — c)z) zio =z — p(lzi] + &%, (37 — o)zt
Fractional CMA z, & refer to Equation (52) zio, = 2 — p(2h)? g, (§7 - o)z

(1 -a)2)™=, 1

Zhpr = 24 — (1~ )2) =T i (3 — o)z}

zhy =2 — p((1 - a)2) ™= g (32 — o)}

Signed Frac. CMA see Eq. (48), 1

refer to Equation (53)

refer to Equation (53)

Algorithms using the DD cost function: L = %(Q(ﬁk)

- g)?

DD-LMS z, 1 Zopr = 2 + 1 (QGk) — Gx) Zhor = %+ 1 (QGk) — 9x) =}
Sparse DD-LMS 2, 7|=:I+ﬂ€ too complicated for a table zio, = zi + p(lzi + Q@) ~ dk) 2%
1sen(2)2? + ez, 1 | 2y = 2 + u(Glak] + V) (QUk) — Gi)zh | 2iy1 = 2 + (512 + VO(QGR) = Gx)}
Algorithms using ARMA model parameterization with L = %(yk —ie)?

Equation Error z, 1

Zhyr =2k + o (e — 9n) Yr-

2T =2 (yk — Gk) Th—;

same as NG update

same as NG update

Sparse 158n(2)2® + ez, 1

Equation Error

2hoy = 2h 0 (e — Ok) ye—i (2L + e

Jj+n Jj+n

7y =2+ p (e — Gk) ze—j (|2E] +€)

same as NG update

same as NG update

is already in that format (since there we had= z); therefore, and negative coefficients and remove the stationary point that
consider expanding (37) in a Taylor series as in (8). This yieldscurs atw = 0. This can be done by modifying the parame-
terization (as first suggested in [14]) to

2(2) = Lsgu()()? + Ver

wheree > 0. What is the effect of this modification?
Sincey(z) = (1/2)|z] + /¢ > 0, equilibrium in the corre-
which is the same as (36). sponding ANG algorithm can only occur whein = .. Specif-
Now, consider an algorithm with(z) = z and a priokp(z) = ically, ¢ keeps the update term from vanishing for smaWhich
1/+/z, which is qualitatively similar to the prior in the previouswould have prevented coefficients from adapting across zero.
example (i.e.1/z). The corresponding NG update is Now, consider the question of how suall hocmodifications

2 influence the sparsity prior. The parameterization given by (39)
hon = (Vo b - 0t

Wiy = wi, + p(exp(2}))* (v — Gr) -
Sincew = v(z) = exp(2), this is effectively (39)

wipr = wi 4 p(wi,)? (yr — Gr )i,

and a Euclidean gradient overis equivalent toy(z) = 1 and

d(z) = /1/(|z| + €) by Proposition 1V.1. This is because

and the simpler ANG update is

4 4 ‘ ‘ (7(2))* = 1 12° + Velz| + ¢ (40)
i1 = 2 + b2 (yn — Or )Ty (38) and
This is exactly the example introduced in Section Il simce= lw| =|y(2)| = % |2* + Velz| (41)
z. Recall that an equivalent way to derive this ANG algorithr{)vhich imol
comes from setting/(z) = (1/4)2? [and¢(z) = 1]. Py
In Section V-C, we will modifyv(z) to allow both positive ~ 2 4\ 2 o
and negative weights. Using the duality of priors and parameter- <g) = <g> = (1) = lw| + e (42)

izations, we will show how such modifications affect the priors.
If we choosey(z) =

w = z SO that

z (thus redefiningz), theny = 1 and
C. Practical LMS for Sparsity

Suppose that the “sparse” prior ¢fw) = 1/y/w, w > 0 o 2 + ¢
appears to fit well (assuming no reparameterization). Then, the @(2))2 h
discussion in Section V-B suggests that an algorithm of the gen-
eral form of (2) may be particularly effective. As discussed ifhis yields¢(z) = \/1/(]z| + ¢). Compared with the previous
Section Il, this is equivalent to a Euclidean gradient descentpnior of ¢(z) = \/1/_7 there is little difference. Theis a small
z-space withy(z) = (1/4)z%. We would like to allow positive modification that only changes the algorithm neat 0. The

(43)
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algorithms are listed in Table | as “Sparse LMS” and “Signetions can be treated analogously. For example, the CMA [20]

Sparse LMS.” uses the cost function
Analogous designs result from other choices of priors. The A L )
parameterizationy(z) = (1/3)z* leads to the Euclidean de- Ly, Gn) = 5 (G — ©) (50)

scent algorithm wherec is a constant appropriate for the given signal constella-

Zzic+1 — 7i + M(Zi)Q(yk — yk)wi (44) tion. This leads to algorithms that do not require knowledge of

) . , ! yx and can be used to adapt the weights even in the absence of
As with all Euclidean gradient algorithmg(z) = 1. To deter- training signal. Such algorithms are called “blind.”

mine the corresponding sparsity prior, invoke (30) to obtain the r yerive the CMA algorithm, use the cost function in (50),
equivalent ANG algorithm. This give®(z) = 1 and¢(z) = e parameterization(z) = z, and the uniform priop(z) = 1.

2/3
(3122 ) . _ This leads to NG and ANG algorithms that are both given by
For the general case of fractional power priors, consider
¢(z) = 1/z% for @ # 1 andz > 0 for which ®(z) = Zhy = 21, — pik(9r — )z, (51)
(1/(1 — a))z*=> and®~*(v) = ((1 — a)v)*~t. Under the
standard parameterizatiofiz) = z, the NG algorithm is which is the standard CMA of [20].

Suppose, however, that prior knowledge suggests a prior of
¢(z) = 1//z andz > 0. Then, the NG algorithm is

2
(45) 2oy = <1 /7% + gﬁk(ﬁi - c)a:iﬂz,i)

a—1
1 i\ 1l—a ~ PR A
() + e — )i (21)

Zhpr =(1— @) <

l1—«

whereas the ANG algorithm is
whereas the simpler ANG update gives

Zop1 = 2k + 10027 (e — i)z (46) ‘ ‘ , o
By Proposition IV.1, this corresponds to a Euclidean gradient eyt = 2k~ k(U — )73z
descent withp(z) = 1 and somey(z). To find¥(z), note that  As in Section V-C, to be practical, these updates must be mod-
Y e a ified to allow both positive and negative weights and to re-
s TV move the stationary point at = 0. Modifying the prior to
Sinced(+) = 1 #(z) = 1/+/|z| + e results in the ANG algorithm
y=uw*=75° lec-l—l Izi—uﬁk@f—c)xiﬂzﬂ‘f‘ﬁ)
vy d Equivalently, Proposition IV.1 shows that this algorithm results
yo o from a Euclidean descent irspace on the cost function (50)
i with ¢(z) = 1 and the reparameterizatiofiz) given by (39).
2= More generally, for fractional power priorg(z) = 1/2%, for
. o 1- @ a#1,0(2) = (1/(1-a))zt=*,and® 1 (v) = ((1—a)v)* 1.
giving the parameterization function Under the standard parameterizatipfx) = 2 and the cost
F(2) = (1 — a)z)Y/ =), (47) function (50), the NG algorithm is
a—1
Both (45) and (46) are only appropriate for positive targgt —_ q _ < 1 il—a _ e (02 N i a)
weightsw. To create a practical algorithm, the parameterizatiof ™" (A=) { g5 &) (i = )i (24)
can be modified to (52)

v(z) = sgn(2)((1 — )| + ez (48) whereas the ANG algorithm is
which corresponds to the algorithm (both NG and ANG)

Zhor = 2 — (G — )23 (21)%
7 ot 4 7 _ i ya/ (1—a) . . . .
g1 = 2Ty — 1) (((1 @)lzi)) + C) - (49) By Proposition IV.1, this corresponds to a Euclidean gradient
Understandably, it might be undesirable to implement an alg@scent withy(z) = 1 and7y(z) given by (47). Again, to create
rithm this complicated. a practical algorithm, the parameterization can be modified as
All the above derivations occur for individual weights. If dif-In (48) (with the uniform prior), producing the NG and ANG
ferent priors are available for different weights, then differef@gorithms
algorithm updates can be used. This might be usefulinanequal-, o i (1 i e/ (1—a)
izer design problem, where the center taps are likely to be large®s+1 = %k — PG, — )i ((( —a)lzl) - C) :

whereas the tails of the equalizer are likely to be small and o o o (53)
sparse. The true prior is too difficult to compute in this case.

Variations onZL(yy, 4 ) are also common, such as general-
D. Blind Adaptation With CMA izing (50) to

The previous sections assumed that the cost function was the I L . p
standard squared error function (4). However, other cost func- (s @) = g 19l — el
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Wher@ andq take on VarIOUS Va|ueS Th|S can be Comblned W|t . MEAN SQUARED ERROR, AVERAGED OVER 100 RUNS, WITH 4 OF 10 TAPS ACTIVE
. 10 T T T T T

T
— LMS

prior information leading to a generalized CMA for sparsity O SPARSELMS
— - MMSE (THECRY)

The procedure is similar to that for standard CMA.

E. Other Extensions

Another important class of algorithms are DD blind algo
rithms designed for use with a finite alphabet. The DD algorithr 107 . .

. . . 200 400 GII)O 800 1000 1200 1400
can be viewed as Euclidean descent over the cost function SYMBOL NUMBER

. 1 . N 5 MEAN SQUARED ERROR, AVERAGED OVER 100 RUNS, WITH 4 OF 100 TAPS ACTIVE
Lyk, i) = 5 (Q(ix) — ) (54) ' ' ' ‘ =y
O SPARSE LMS
where the memoryles§)(-) quantizes the argument to the ¢, ~HMSE (THEQRY
nearest symbol in the alphabet. [In such a derivation, one iy %
nores the fact thaf)(-) is discontinuous and formally replaces® otk
its derivative with zero.] All of the analysis done for the MSE gyt

. h . . D e &
cost function also applies here. Simply replagewith Q(%y) . ‘ , , , ‘ ‘
in any of the NG or ANG update r_ules. _ _ 0 200 400 S oL N 1000 1200 1400

Another use of EG-like algorithms is for systems with
ARMA model parameterizations. Many system modeling and Fig. 2. MSE curves for LMS and sparse LMS in a sparse environment.
Signal process_ing applications require that estimates be mare MEAN SQUARED ERROR, AVERAGED OVER 100 RUNS, WITH 8 OF 10 TAPS ACTIVE
of autoregressive (as well as moving average) parameters. ( ‘ ' ‘ ’ ' ' T
algorithm that makes use of an ARMA model parameterizatic 1° O e atorn
is the “equation error” algorithm. Details can be found ir
. . . w

[21]. The standard equation error algorithm and its sparg
counterpart are listed in Table II.

o’

L L I L L L L L !
VI . SI MULATIONS 0 200 400 600 800 1000 1200 1400 1600 1800 2000

. . . . . SYMBOL NUMBER
This section gives expe”memal performance Curves In se MEAN SQUARED ERROR, AVERAGED OVER 100 RUNS, WITH 90 OF 100 TAPS ACTIVE

eral system identification scenarios that compare the perfc , ' ' s
mance of LMS to that of signed sparse LMS (SSLMS in Table e, O L GHEoRY)
in terms of MSE, convergence rates, and tracking ability. Forth ]
comparisons to be fair, the step sizes are chosen to equateg

MSE after convergence, using Theorem lII.1. 10°

A. Performance in a Sparse Environment

. ) . ) X [} 5(’)0 1000 1500 20IOO 25‘00 30‘00 3500 4000
This set of simulations was run in a sparse environmer... SYMBOL NUMBER

The first channel had ten taps, with nonzero taps of valugia 3. MSE curves for LMS and sparse LMS in a nonsparse environment.
[0.1, 1, —0.5, 0.1] located in positions[1, 3, 4, 8]. The Note the different scales.
second channel had 100 taps, with nonzero taps of the same
values located in position§l, 30, 35, 85]. The parameters environment (by a “sparse” algorithm) is comparable with the
we used werg: = 0.0050, p5ms = 0.0215 (for channel 1), performance gain in a sparse environment, as compared with
pssims = 0.0629 (for channel 2)o2 = 0.0252, ¢ = 0.0625 LMS.
(the parameter in SSLMS), anvdy = 0.
Fig. 2 shows the MSE versus time for both algorithms. THe. Tracking Ability
MSE was computed by taking the ensemble averagé ofer  The next simulation was run on a 20—tap channel with two
100 runs. These experiments suggest that when the environmgps set to vary sinusoidally in time. The actual channel con-
is sufficiently sparse, the sparse version of LMS converges musiBted of the first channel from the sparse simulation in Sec-
faster. tion VI-A with ten zeros appended. Then, taps 15 and 16 were
settovary ag +0.2 sin(kw/256) and0.2 sin(kn /256), respec-
tively, wherek is the iteration number. Again, the step sizes were
The next set of simulations was run in a nonsparse envirahosen to equate the asymptotic MSE.
ment. The channels were changed from four out of ten (and fourFig. 4 shows the tracking ability of both algorithms. The
out of 100) to nine out of ten (and nine out of 100) nonzeropper plot shows the values of the actual taps and the estimates
taps, but the ANG algorithm was run assuming (falsely) that tlas the taps fluctuate. As expected, sparse LMS is better at
sparse conditions were still present. tracking the change in the large taps but not the small taps.
Fig. 3 shows the MSE versus time for both algorithms. Ifihe lower plot shows the MSE when only the larger tap is
these cases, the performance of sparse LMS is worse than fagstuating. When only the large tap is fluctuating, the sparse
ular LMS. In this example, the performance loss in a nonsparalgorithm has a lower MSE than LMS.

B. Performance in a Nonsparse Environment
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Fig. 5. Histograms of the DFE. Fig. 7. Measured complex channel and plot of convergence rates for channel

identification.

VII. M EASURED CHANNELS
The top plot in Fig. 5 is a histogram of the magnitudes of all

In March 2000, researchers (including three of the authokgle complex taps from the forward equalizers for all of the chan-
from Cornell University, University of Wisconsin-Madison,ne|s. The bottom plot is a histogram of the tap magnitudes of all
Australian National University, Applied Signal Technologyof the (real) feedback equalizers. Fig. 6 shows the histogram of
and NxtWave Communications met in Phlladelphla for f|e|ﬂ~|e magnitudes of the Comp|ex channel tapS, as well as expo-
measurements of digital television channels [22]. The dat@ntial and IPL curves that have been fitted to the histogram.
collected there have been compiled into a large database ofpe gain constant appears in the update rule in such a way
identified channels and associated MMSE decision feedbagist it can be absorbed by the step size. The paramétethe
equalizers. The data from 47 of these channels were usedp prior and thea that appears in the exponential prior are
produce histograms of the magnitudes of typical equalizer dgoth subject to changes in the scalewaf Thus, a different re-
efficients. The histograms of the forward filter of the equalizeteiver with a different automatic gain controller will have dif-
are well modeled by both exponential priors=t**!) and ferent values for these parameters.
inverse power law (IPL) priorgc/(|z|* + ¢)). The feedback  This paper has focused on the real case, although it is a simple
filter was well modeled by an exponential prior, and the channelatter to extend the algorithms to the complex case. Fig. 7
itself was well modeled by an IPL prior. The exponential anshows an example of identification of one of the complex chan-
IPL update algorithms for channel identification are given inels used for the histogram. The top plot shows the MSE versus
Table I. time for traditional LMS and sparse LMS with a variety of
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values ofw (for the IPL prior). The bottom plot shows the com-Substituting into (16) and simplifying yields
plex channel in decibel scale. The same simulation was done 5
using ten different channels from the database, and the resultiqgr g, + £, RD = pDRE\RD + ol £minDRDRD. (A.2)
MSE curves were almost identical to those in Fig. 7. 2

The value of that we used was larger than specified by thidow, postulate that the error terfy is of the form
curve fit to speed initial convergence (since the model is ini- 9
tialized to zero). This is justified because this only affects the E = il minDRD + E» (A.3)
algorithm in the vicinity of the origin so locally (near the op- 4
timum), the performance should not change much. The actualereE, is an orders® error term. Substitution of (A.3) into
value ofe was chosen because it resulted in faster converger(ge2) yields
than the other values we tried. 5

In practice, values forr and ¢ (as well as the functional DRE> + EsRD = nDRE>RD + N—SmmD(RD)?’-
form of the curve) will depend somewhat on the application 4
and the physical environment. To choose the parameters, ginis, at each step, the remaining error term is of the form of
must measure many channels, form a histogram of the té#e solution obtained by ignoring the term of highest order,of
magnitudes, and then fit curves to the histograms. Anothglus a yet higher order error term.
approach is to simply run algorithms corresponding to different Continuing this process indefinitely produces the infinite se-
parameter values and observe which parameter values offes
fastest convergence (in the mean).

C= %NgminD i (g RD)i
=0

which converges if and only if every eigenvalue(pf/2)RD
We have derived the LMS algorithm and a wide range dfas a magnitude less than one. The infinite series can then be
variants through the framework of the natural gradient algexpressed as
rithms. In a similar fashion, other algorithms (such as CMA and

VIIl. CONCLUSIONS AND FUTURE WORK

—1
DD-LMS) and their variants were derived. Using the concepts C= %ug"minD (I — g RD) (A.4)
of reparameterization and priors, it is possible to exploit prior
knowledge of the probability density function of the unknowivhich is the desired result. u
parameters with particular attention to the case of a sparse distri-
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