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Exploiting Sparsity in Adaptive Filters
Richard K. Martin, William A. Sethares, Robert C. Williamson, and C. Richard Johnson, Jr., Fellow, IEEE

Abstract—This paper studies a class of algorithms called natural
gradient (NG) algorithms. The least mean square (LMS) algorithm
is derived within the NG framework, and a family of LMS variants
that exploit sparsity is derived. This procedure is repeated for other
algorithm families, such as the constant modulus algorithm (CMA)
and decision-directed (DD) LMS.

Mean squared error analysis, stability analysis, and convergence
analysis of the family of sparse LMS algorithms are provided, and
it is shown that if the system is sparse, then the new algorithms
will converge faster for a given total asymptotic MSE. Simulations
are provided to confirm the analysis. In addition, Bayesian priors
matching the statistics of a database of real channels are given, and
algorithms are derived that exploit these priors. Simulations using
measured channels are used to show a realistic application of these
algorithms.

Index Terms—Adaptive filters, Bayesian priors, measured chan-
nels, natural gradient, sparse channels.

I. INTRODUCTION

T RANSMISSION channels are often sparse, that is, most
of the taps are small, and only a few taps are large. This

includes the traditional notion of sparsity as a few large taps
separated by many negligible taps. Optimal equalizers often re-
flect this sparsity, yet equalization methods such as the least
mean square (LMS) algorithm, the constant modulus algorithm
(CMA), and decision directed (DD) algorithms do not exploit
thisa priori information. Typical approaches to exploiting spar-
sity are motivated by complexity reduction (at the expense of a
small performance loss), which is often accomplished by only
updating a subset of the channel model or equalizer taps [1]–[5].
For example, [4] uses a least-squares based technique performed
on the filter input and output to determine if each tap is ac-
tive (nonzero). If an “activity measure” exceeds a threshold, the
tap is considered active and is updated; otherwise, it is not up-
dated. In [5], Sugiyamaet al. keep a queue of indices of inac-
tive taps and allow an inactive tap to become active once it exits
the queue. However, if the newly active tap remains small, it
will shortly be returned to the end of the queue. In this way,
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the taps that are in the queue are not updated. In contrast to
these approaches, the exponentiated gradient (EG) algorithm [6]
does not try to reduce computational complexity, yet it has been
shown to have better performance than typical gradient methods
when the target weight vector is sparse [7], [8].

This paper rederives the EG algorithm as an approximate
“natural” gradient (NG) descent algorithm [9] and interprets the
improved performance under sparsity in terms of a reparame-
terization of the underlying linear process. The MSE and con-
vergence properties of EG-like algorithms are studied, and al-
gorithms are derived that make use of the CMA and DD cost
functions.

Section II introduces the EG algorithm. Section III provides
a theoretical analysis of the excess MSE and convergence prop-
erties of EG-like algorithms. Section IV gives a framework for
deriving algorithms that exploit prior knowledge of the param-
eters to be estimated, and Section V applies this framework to
a variety of traditional algorithms. Sections VI and VII demon-
strate the performance of these algorithms for synthetic and real
data, respectively, and Section VIII concludes the paper.

II. PROBLEM SETUP AND MOTIVATION

A data sequence is assumed to be generated from input
data in a linear manner. The simplest of the EG algorithms
[6, eq. (3.5)] estimates by

(1)

In the EG framework, the weights are typically assumed pos-
itive. The weight vector is updated at
each iteration by

(2)

where is a small positive stepsize. This was derived by an ap-
proximation (which is discussed in [6, Sec. 4.4]) of the general
update strategy

(3)

where the cost (or loss) function is

(4)

Alternatively, (2) can be derived by estimating by (1) but
with

(5)
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for some parameter vector . If we think of
the algorithm as adapting over the underlying-space, we can
use the Euclidean gradient descent

(6)

If we absorb constants into the stepsize, this yields

(7)

What we are truly interested in is the effective update rule for
and not since that is what is used to generate our estimate
in (1). The effective update to is approximately

(8)

(9)

Since is , the approximation in (8) leading to (9) be-
comes increasingly accurate for small. For the given by (5),

, which gives us (2) once again.
Thus, the EG algorithm can also be thought of as a Euclidean
gradient descent algorithm, but the gradient descent is taking
place in -space.

The algorithm (2) can be contrasted with the standard LMS
algorithm

(10)

which can be formally derived using the Euclidean gradient de-
scent strategy of (6). The only difference between (2) and (10)
is the presence of the multiplying the stepsize. In essence,
when the current estimate of is small, its update is small, and
when the current estimate of is large, its update is large.

Duttweiler [10] has proposed an algorithm called propor-
tionate normalized LMS (PNLMS) that has similar features.
That is, PNLMS modifies NLMS by multiplying the update
terms by the tap weights, resulting in faster convergence. The
difference between [10] and our work is that we provide a
framework for deriving many variations of these algorithms
with a means for fitting the algorithm to the environment.
However, the results and intuition in [10] should be useful
when implementing the variants found in our paper.

Some insight into the effects of the nonlinear modifications
we have added to LMS can be obtained by theoretically ana-
lyzing the steady-state mean square error (MSE). In [7], the
steady-state MSE of (3) when driven with a white input se-
quence with variance in the presence of white noise
with variance was shown to be

(11)

where is the target weight vector, and

, whereas the MSE for LMS is

(12)

The key term is , which provides a
measure of the sparsity of the target weight vector. When there is
considerable sparsity, this term is small, and the step size can be
made larger for faster convergence without adversely affecting
the excess MSE. When this term is large there is not much spar-
sity, and the step size must remain small in order not to increase
the MSE. For example, consider the channel .
For , the “measure of sparsity” equals 1.04, whereas
for , it equals 3.07.

In Section V, we will relax the assumption that the weights are
positive, allowing for more practical algorithms. First, however,
we will consider the MSE and stability behavior of EG-like al-
gorithms (algorithms with component-wise modifications to the
stepsize).

III. A NALYSIS

This section derives theoretical expressions for the MSE and
stability criteria of the class of algorithms introduced in Sec-
tion II in a fashion similar to that in [11] and [12].

A. Asymptotic Mean Squared Error

Consider the vector update rule of

(13)

where
gradient of the cost function at timewith respect to

;
estimate of this gradient;
gradient noise, as in [11];
diagonal matrix that depends on the current value of.

(In this section, we will assume that since we are
considering asymptotic MSE.) This is a more general form of
the LMS update rule (in which ). The EG algorithm (2)
is an example of an algorithm of this form, and a more general
form is given in Section IV by (33).

The reason that we want to determine the asymptotic MSE
is that the result of the next theorem provides a basis for a fair
comparison between LMS and algorithms of the form of (13).
For a given algorithm and system, it is possible to compute the
asymptotic MSE as a function of. The step sizes for the dif-
ferent algorithms can then be adjusted such that at convergence,
all have the same MSE. Then simulations can be run, and the
convergence time can be compared fairly.

Theorem III.1: The asymptotic MSE of (13) for a small step
size is given by

(14)

where (diagonalization), , and
(the th diagonal element of , where is simply

the index for the summation).
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Proof: Using the definition of the error system
and the fact that the gradient can be expressed as ,

where (see [12])

(15)

At this point, [11] rotates the coordinate system by diagonal-
izing . That is not feasible here because if we diagonalize
via , then may not be diagonal.

To determine the MSE, we need to find the covariance matrix
of . Define , and assume that the system is
near convergence [hence, cov cov ]. Then

cov

From [11], cov , where is the minimum
MSE not counting misadjustment (which is defined in [12]).
Inserting this and absorbing the 2s and the 4 intoand gives

(16)

The approximate solution for (which is obtained by ignoring
the term) is

(17)

and the exact solution, which is derived in the Appendix, is

(18)

which holds provided that all eigenvalues of are less
than one in magnitude. For simplicity, whenis small, we
prefer (17) over (18).

Widrow et al. [12] show that for an FIR filter with weight
error vector , the MSE is

where (so that is the th element of this
vector at time ), and and are as defined in Theorem III.1.
In our case, cov cov . From (17),
the theoretical MSE is then

(19)

where indicates the th element on the main diagonal.
If both and are diagonal, ; therefore

tr (20)

where tr denotes the trace of . When is just the Jaco-
bian used by [7], this simplifies to the result derived in [7]. In
this paper, is always diagonal. Although [7] shows that
is nondiagonal for the regular EG algorithm, itis diagonal for
the approximate algorithm studied in Section II. However,is
often not diagonal, such as in an equalization setting.

B. Stability Criteria

Using methods similar to those in [12], one can derive sta-
bility criteria for EG-like algorithms. This analysis is standard;
therefore, only the highlights will be given here. Since (13) is
very similar to LMS, one of the criteria for stability of the av-
erage system is that

(21)

for all , where is the largest eigenvalue of (for
, this reduces to the LMS stability criterion). It should

be emphasized that (21) refers to the more general time-varying
system, rather than the steady-state system, hence, the inclusion
of the time index in the eigenvalues and in . Equation (21)
can be enforced by applying a clipping function to the weights
to bound the elements of , ensuring that is bounded
as well. However, since we now have a time-varying system
(characterized by ), we must invoke the “slow time
variation lemma” of [13]. This says that if (21) is met, and if
the rate of time variation of the system is slow (quantitatively,

is small for some finite time ), then
the system is stable. Since we have been assuming that the step
size is small, this guarantees stability.

C. Directionality of Convergence

In this section, we will see that the speed of convergence (in
particular, near the true weight vector) depends heavily on the
direction of the parameter error vector; in fact, it is more so
than in LMS, which only exhibits directionality if the input is
correlated.

Again, consider the average error system, with update rule

where , and . The MSEs at
times and are

This means that if we are at at time , then the change in the
MSE will be

(22)

(23)

assuming is small. To proceed further, we must make some
simplifying assumptions. First, assume that . Second, as-
sume so that we can visualize our results. For concrete-
ness, we will assume [this leads to an algorithm
similar to (2), which is called signed sparse LMS (SSLMS),
which will be elaborated on in Section V]. We would like to
compare values of (23) for LMS and SSLMS. To do that, we
must choose the step sizes to equate the asymptotic MSE. Using
(20), we have

tr
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Fig. 1. Region (shaded) in which SSLMS outperforms LMS. The circle
denotesw .

Thus

(24)

(25)

When , SSLMS will have a larger
decrease in MSE (since ). Even for this simple case,
it is difficult to compute a simple expression for the region in
which this is true. However, we can compute it numerically. A
plot is given in Fig. 1, with . In the shaded region,
SSLMS is faster than LMS in terms of .

Fig. 1 shows that in the two-tap case, if we initialize at the
origin, LMS will have an advantage at first, but as we approach

, SSLMS will go faster. Since LMS is faster over most of
the route, it could do better than SSLMS in this particular case.
However, in Section VI, we will examine an example of a system
that is more dramatically sparse. In that case, LMS still moves
faster at first, but SSLMS gains an advantage more quickly than
Fig. 1 implies. The qualitative effects are similar, however.

Of more importance is the fact that near the right answer, the
speed of convergence depends on which parameter is in error.
If more of the error is in , then SSLMS will go faster, and
if more of the error is in , then SSLMS will be slower than
LMS. This shows that there is a directionality to this algorithm,
even though the input is uncorrelated. This is in contrast to LMS,
which has isotropic convergence when the input is uncorrelated.

These results imply that algorithms of the form (13) are not
globally faster than standard algorithms. Rather, it depends on
in what region of the parameter space the comparison is per-
formed. The critical region will vary with the algorithm and with
the true weight vector . The next section offers an interpreta-

tion of EG-like algorithms that shows how to exploit prior infor-
mation to derive algorithms (such as SSLMS) that are logically
more suited to certain situations than LMS.

IV. EXPLOITING PRIOR INFORMATION

This section derives a general form of reparameterized gra-
dient algorithms that can be understood in terms of prior knowl-
edge or in terms of an underlying cost function. Each algorithm
will be characterized by a cost function , a reparame-
terization function , and by a prior distribution of the unknown
parameters. Specifically, let

(26)

as in [7, Eq. 8], and is assumed to be invertible and dif-
ferentiable except possibly at a finite number of points. We will
consider algorithms that update the entries ofand, thereby, .

Mahony and Williamson [14] provide a general discussion of
how to encode prior knowledge into learning algorithms using
a geometric “preferential structure.” The essence of this is to
define a metric so that the algorithm evolves over an error sur-
face shaped to incorporate the known prior information. For in-
stance, if the th component is known to be reliable, whereas
the th component is not, then the algorithm should take larger
steps in the th direction. This is accomplished by warping the
underlying space.

Mathematically, the preferential metric is a family of func-
tions that represent thea priori knowledge (the Bayesian
prior) of the th parameter. The idea of a Bayesian prior [15]
is that an unknown parameter (in our case,) is viewed as a
random variable with a known probability density function [in
our case, ]. Note that in common with most Bayesian rea-
soning [15], the prior can beimproper, i.e., it is not required that

integrated over the whole domain is unity; in fact, the integral
can even be infinite.

Using this concept of priors, Mahony and Williamson [14]
show that when the standard parameterization is used

, the NG algorithm of [9] is

(27)

where is the indefinite integral of . If we interpret as a (pos-
sibly improper) probability density function that is always pos-
itive, then its integral will be strictly monotonically increasing,
and will always exist. However, if is zero over any range
of , then will not exist.

Unfortunately, the updates of the NG algorithm (27) can be
quite complicated due to the presence of the nonlinearitiesand

. A kinder, gentler algorithm can be derived as a first-order
approximation to (27) by rewriting the update as

(28)

Expanding in a Taylor series about gives
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which uses the fact that . When is
small and we are reasonably close to convergence,
will also be small. In that case, the higher order terms may be
neglected. Substituting the remainder into the left-hand side of
(28) gives

Finally, dividing both sides by and rearranging gives the
algorithm

(29)

This approximate natural gradient (ANG) algorithm may be pre-
ferred to (27) in applications since the updates are simpler, and
the resulting algorithms can be more readily analyzed using
standard techniques such as averaging theory [16] and local sta-
bility [17]. Furthermore, the differences between the NG and
ANG algorithms are generally minor.

When prior information is available about the desired target
weight vector, it is desired to design an algorithm exploiting that
knowledge. For example, the notion of sparsity can be captured
by the supposition that with high probability, the tap will have
a small value, whereas with low probability, the tap will have a
large value. One such prior is . As will be shown
in Section V-B, this prior leads to algorithm (2).

Suppose is a (possibly improper) probability density func-
tion representing prior beliefs about a parameter. Then, (27) is
the NG algorithm that incorporates this prior, and (29) is the
first order ANG algorithm, both assuming that the parameteri-
zation function of (26) is the identity. The same algorithm can
also be derived (or interpreted) as a Euclidean gradient descent

on a modified cost function [i.e., not neces-
sarily the identity]. The next proposition makes this precise.

Proposition IV.1: Let and represent the priors and param-
eterizations of an ANG algorithm (29) withparameterized as
in (26), and let the cost function be given by . If there
are functions and with

(30)

then and are an alternate set of priors and parameterizations
that yield the same effective update rule for, as long as is
sufficiently small.

Proof: From (29), the ANG corresponding to, , and
is

Applying the chain rule yields

Since , this becomes

Since is generated according to , what we
ought to compare is the effective change ofas changes.
For small , , and therefore

(31)

assuming we drop terms in the Taylor series expansion of order
or higher. Thus, the proof requiresto be sufficiently small,

which is a standard assumption. The resulting effective update
to is

(32)

Similarly, the ANG corresponding to and is

Since by assumption, these are the same
algorithm.

The left and right sides of (30) are both functions of, yet
is different for each side since the parameterization is different.
Thus, both sides of the equation must be separately represented
as functions of and then compared. For example, consider
the motivating example of Section II. The algorithm as initially
presented in (2) can be thought of as having the standard param-
eterization and prior . Thus

On the other hand, if we reparameterizevia
and use the uniform prior of , we have

These two ratios useddifferently, but in terms of , the ratios
are the same. Consequently, the update rules given by (2) and
(9) were the same.

In the course of the proof, we have shown that for sufficiently
small , algorithms incorporating priors and reparameteriza-
tions can be written in the general form of

where is given by

(33)

This shows how ANG algorithms can be analyzed using the
framework of Section III. Note the similarity between and the
Jacobian in [7, equation (15)]. The difference is that the Jacobian
in [7] only includes the first factor from (33), whereas our use
here is intended to capture the effects of the prior as well.

The ANG may be derivable from an alternative priorusing
the standard parameterization . This prior will be
called the “true” prior because it represents the prior beliefs
without the confounding influence of the reparameterization
function. Alternatively, the ANG may be derivable from a
reparameterization using the standard prior (which
corresponds to a belief that all parameter values are equally
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TABLE I
ALGORITHMS USING THESTANDARD COSTFUNCTION OF(y � ŷ ) AS IN (4). NOTE THAT WHEN �(z) = 1, THE NG AND THE ANG UPDATESARE IDENTICAL.

NOTE THAT THESEALGORITHMS ARE IN z-SPACE, BUT WHEN 
(z) = z, THE w-SPACE UPDATESARE THE SAME

likely). In this case, can be used to give the cost function over
which the algorithm is evolving under the standard Euclidean
gradient. These multiple interpretations are useful because
sometimes it is easier to understand the behavior of an algo-
rithm from the point of view of priors, whereas sometimes it is
easier from the perspective of the cost function. Imposition of
the requirement that remain invariant allows translation
of an algorithm to both frameworks. This is an important
feature of the ANG algorithms since this translation is not
possible with the nonlinear NG algorithms.

A third possible interpretation (following Amari and Douglas
[9], [18]) considers the function [which is mathemati-
cally equivalent to ] to be a Riemannian metric of dis-
tance measure imposed on the underlying space. This can be
used, for instance, when signal measurements are corrupted by
additive noise (and the probability distribution function of the
noise is known) to create a Fisher-efficient learning algorithm.
The main difference between this paper and [9] and [18] is that
they explicitly assume they know the likelihood function of the
noise (and, hence, a noise model) and then effectively use the
uniform prior ( ) and standard parameterization ( ),
although we make no assumptions about the noise, and we use
nonstandard priors and/or parameterizations.

V. ALGORITHMS

This section derives a number of NG and ANG algorithms.
The first two examples show how special choices ofand
result in familiar algorithms, whereas the remaining subsec-
tions derive new algorithms specifically for signal processing
and communications problems when prior information (such as
sparsity) is available. The new algorithms include blind CMA
and DD algorithms and an ARMA model algorithm that cor-
responds to the “equation error” [19] form of standard ARMA
model adaptive filters. The parameterizations, priors, costs, and
update rules for these algorithms are displayed in Tables I and II.

A. Least Mean Squares

The prior belief corresponding to the LMS algorithm is that
all parameters are equally likely to achieve any value. Hence,

, , and . The appropriate
cost function is the mean square cost ,
and the parameterization within is the standard one (1) with

. Hence, . Substituting
into either (27) or (29) yields the LMS algorithm of (10). Note
that because , there is no difference between the NG
and the ANG algorithms.

B. Exponentiated Gradient Algorithm

Consider the prior , , which corresponds to
a high likelihood that the parameter value is small and a small
chance that the parameter is large. Accordingly, ,
and . Using the standard cost of
(4) and the standard parameterization gives the NG
algorithm

(34)

(35)

This is the exponentiated gradient algorithm of [8]. The associ-
ated ANG algorithm is

(36)

An equivalent way to derive this ANG algorithm is to let
and . In this case, both the NG and

ANG algorithms are

(37)

To see the equivalence of (36) and (37) as a concrete example
of Proposition IV.1, convert them into-space. Equation (36)
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TABLE II
ALGORITHMS USING MISCELLANEOUSCOST FUNCTIONS. WHEN �(z) = 1, THE NG AND ANG UPDATESARE IDENTICAL

is already in that format (since there we had ); therefore,
consider expanding (37) in a Taylor series as in (8). This yields

Since , this is effectively

which is the same as (36).
Now, consider an algorithm with and a prior

, which is qualitatively similar to the prior in the previous
example (i.e., ). The corresponding NG update is

and the simpler ANG update is

(38)

This is exactly the example introduced in Section II since
. Recall that an equivalent way to derive this ANG algorithm

comes from setting [and ].
In Section V-C, we will modify to allow both positive

and negative weights. Using the duality of priors and parameter-
izations, we will show how such modifications affect the priors.

C. Practical LMS for Sparsity

Suppose that the “sparse” prior of ,
appears to fit well (assuming no reparameterization). Then, the
discussion in Section V-B suggests that an algorithm of the gen-
eral form of (2) may be particularly effective. As discussed in
Section II, this is equivalent to a Euclidean gradient descent in
-space with . We would like to allow positive

and negative coefficients and remove the stationary point that
occurs at . This can be done by modifying the parame-
terization (as first suggested in [14]) to

(39)

where . What is the effect of this modification?
Since , equilibrium in the corre-

sponding ANG algorithm can only occur when . Specif-
ically, keeps the update term from vanishing for small, which
would have prevented coefficients from adapting across zero.
Now, consider the question of how suchad hocmodifications
influence the sparsity prior. The parameterization given by (39)
and a Euclidean gradient overis equivalent to and

by Proposition IV.1. This is because

(40)

and

(41)

which imply

(42)

If we choose (thus redefining ), then and
so that

(43)

This yields . Compared with the previous
prior of , there is little difference. Theis a small
modification that only changes the algorithm near . The



1890 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 8, AUGUST 2002

algorithms are listed in Table I as “Sparse LMS” and “Signed
Sparse LMS.”

Analogous designs result from other choices of priors. The
parameterization leads to the Euclidean de-
scent algorithm

(44)

As with all Euclidean gradient algorithms, . To deter-
mine the corresponding sparsity prior, invoke (30) to obtain the
equivalent ANG algorithm. This gives and

.
For the general case of fractional power priors, consider

for and for which
and . Under the

standard parameterization , the NG algorithm is

(45)

whereas the ANG algorithm is

(46)

By Proposition IV.1, this corresponds to a Euclidean gradient
descent with and some . To find , note that

Since

giving the parameterization function

(47)

Both (45) and (46) are only appropriate for positive target
weights . To create a practical algorithm, the parameterization
can be modified to

(48)

which corresponds to the algorithm (both NG and ANG)

(49)

Understandably, it might be undesirable to implement an algo-
rithm this complicated.

All the above derivations occur for individual weights. If dif-
ferent priors are available for different weights, then different
algorithm updates can be used. This might be useful in an equal-
izer design problem, where the center taps are likely to be large,
whereas the tails of the equalizer are likely to be small and
sparse.

D. Blind Adaptation With CMA

The previous sections assumed that the cost function was the
standard squared error function (4). However, other cost func-

tions can be treated analogously. For example, the CMA [20]
uses the cost function

(50)

where is a constant appropriate for the given signal constella-
tion. This leads to algorithms that do not require knowledge of

and can be used to adapt the weights even in the absence of
a training signal. Such algorithms are called “blind.”

To derive the CMA algorithm, use the cost function in (50),
the parameterization , and the uniform prior .
This leads to NG and ANG algorithms that are both given by

(51)

which is the standard CMA of [20].
Suppose, however, that prior knowledge suggests a prior of

and . Then, the NG algorithm is

whereas the simpler ANG update gives

As in Section V-C, to be practical, these updates must be mod-
ified to allow both positive and negative weights and to re-
move the stationary point at . Modifying the prior to

results in the ANG algorithm

Equivalently, Proposition IV.1 shows that this algorithm results
from a Euclidean descent in-space on the cost function (50)
with and the reparameterization given by (39).

More generally, for fractional power priors, , for
, , and .

Under the standard parameterization and the cost
function (50), the NG algorithm is

(52)

whereas the ANG algorithm is

By Proposition IV.1, this corresponds to a Euclidean gradient
descent with and given by (47). Again, to create
a practical algorithm, the parameterization can be modified as
in (48) (with the uniform prior), producing the NG and ANG
algorithms

(53)
The true prior is too difficult to compute in this case.

Variations on are also common, such as general-
izing (50) to
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where and take on various values. This can be combined with
prior information leading to a generalized CMA for sparsity.
The procedure is similar to that for standard CMA.

E. Other Extensions

Another important class of algorithms are DD blind algo-
rithms designed for use with a finite alphabet. The DD algorithm
can be viewed as Euclidean descent over the cost function

(54)

where the memoryless quantizes the argument to the
nearest symbol in the alphabet. [In such a derivation, one ig-
nores the fact that is discontinuous and formally replaces
its derivative with zero.] All of the analysis done for the MSE
cost function also applies here. Simply replacewith
in any of the NG or ANG update rules.

Another use of EG-like algorithms is for systems with
ARMA model parameterizations. Many system modeling and
signal processing applications require that estimates be made
of autoregressive (as well as moving average) parameters. One
algorithm that makes use of an ARMA model parameterization
is the “equation error” algorithm. Details can be found in
[21]. The standard equation error algorithm and its sparse
counterpart are listed in Table II.

VI. SIMULATIONS

This section gives experimental performance curves in sev-
eral system identification scenarios that compare the perfor-
mance of LMS to that of signed sparse LMS (SSLMS in Table I)
in terms of MSE, convergence rates, and tracking ability. For the
comparisons to be fair, the step sizes are chosen to equate the
MSE after convergence, using Theorem III.1.

A. Performance in a Sparse Environment

This set of simulations was run in a sparse environment.
The first channel had ten taps, with nonzero taps of values

located in positions . The
second channel had 100 taps, with nonzero taps of the same
values located in positions . The parameters
we used were , (for channel 1),

(for channel 2), ,
(the parameter in SSLMS), and .

Fig. 2 shows the MSE versus time for both algorithms. The
MSE was computed by taking the ensemble average ofover
100 runs. These experiments suggest that when the environment
is sufficiently sparse, the sparse version of LMS converges much
faster.

B. Performance in a Nonsparse Environment

The next set of simulations was run in a nonsparse environ-
ment. The channels were changed from four out of ten (and four
out of 100) to nine out of ten (and nine out of 100) nonzero
taps, but the ANG algorithm was run assuming (falsely) that the
sparse conditions were still present.

Fig. 3 shows the MSE versus time for both algorithms. In
these cases, the performance of sparse LMS is worse than reg-
ular LMS. In this example, the performance loss in a nonsparse

Fig. 2. MSE curves for LMS and sparse LMS in a sparse environment.

Fig. 3. MSE curves for LMS and sparse LMS in a nonsparse environment.
Note the different scales.

environment (by a “sparse” algorithm) is comparable with the
performance gain in a sparse environment, as compared with
LMS.

C. Tracking Ability

The next simulation was run on a 20–tap channel with two
taps set to vary sinusoidally in time. The actual channel con-
sisted of the first channel from the sparse simulation in Sec-
tion VI-A with ten zeros appended. Then, taps 15 and 16 were
set to vary as and , respec-
tively, where is the iteration number. Again, the step sizes were
chosen to equate the asymptotic MSE.

Fig. 4 shows the tracking ability of both algorithms. The
upper plot shows the values of the actual taps and the estimates
as the taps fluctuate. As expected, sparse LMS is better at
tracking the change in the large taps but not the small taps.
The lower plot shows the MSE when only the larger tap is
fluctuating. When only the large tap is fluctuating, the sparse
algorithm has a lower MSE than LMS.
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Fig. 4. Comparison of the tracking ability of the two algorithms.

Fig. 5. Histograms of the DFE.

VII. M EASUREDCHANNELS

In March 2000, researchers (including three of the authors)
from Cornell University, University of Wisconsin-Madison,
Australian National University, Applied Signal Technology,
and NxtWave Communications met in Philadelphia for field
measurements of digital television channels [22]. The data
collected there have been compiled into a large database of
identified channels and associated MMSE decision feedback
equalizers. The data from 47 of these channels were used to
produce histograms of the magnitudes of typical equalizer co-
efficients. The histograms of the forward filter of the equalizer
are well modeled by both exponential priors ( ) and
inverse power law (IPL) priors . The feedback
filter was well modeled by an exponential prior, and the channel
itself was well modeled by an IPL prior. The exponential and
IPL update algorithms for channel identification are given in
Table I.

Fig. 6. Histogram and curve fits for the channel.

Fig. 7. Measured complex channel and plot of convergence rates for channel
identification.

The top plot in Fig. 5 is a histogram of the magnitudes of all
the complex taps from the forward equalizers for all of the chan-
nels. The bottom plot is a histogram of the tap magnitudes of all
of the (real) feedback equalizers. Fig. 6 shows the histogram of
the magnitudes of the complex channel taps, as well as expo-
nential and IPL curves that have been fitted to the histogram.

The gain constant appears in the update rule in such a way
that it can be absorbed by the step size. The parameterin the
IPL prior and the that appears in the exponential prior are
both subject to changes in the scale of. Thus, a different re-
ceiver with a different automatic gain controller will have dif-
ferent values for these parameters.

This paper has focused on the real case, although it is a simple
matter to extend the algorithms to the complex case. Fig. 7
shows an example of identification of one of the complex chan-
nels used for the histogram. The top plot shows the MSE versus
time for traditional LMS and sparse LMS with a variety of
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values of (for the IPL prior). The bottom plot shows the com-
plex channel in decibel scale. The same simulation was done
using ten different channels from the database, and the resulting
MSE curves were almost identical to those in Fig. 7.

The value of that we used was larger than specified by the
curve fit to speed initial convergence (since the model is ini-
tialized to zero). This is justified because this only affects the
algorithm in the vicinity of the origin so locally (near the op-
timum), the performance should not change much. The actual
value of was chosen because it resulted in faster convergence
than the other values we tried.

In practice, values for and (as well as the functional
form of the curve) will depend somewhat on the application
and the physical environment. To choose the parameters, one
must measure many channels, form a histogram of the tap
magnitudes, and then fit curves to the histograms. Another
approach is to simply run algorithms corresponding to different
parameter values and observe which parameter values offer
fastest convergence (in the mean).

VIII. C ONCLUSIONS ANDFUTURE WORK

We have derived the LMS algorithm and a wide range of
variants through the framework of the natural gradient algo-
rithms. In a similar fashion, other algorithms (such as CMA and
DD-LMS) and their variants were derived. Using the concepts
of reparameterization and priors, it is possible to exploit prior
knowledge of the probability density function of the unknown
parameters with particular attention to the case of a sparse distri-
bution of taps. The modifications to the algorithms were shown
to be component-wise modifications to the step size, and the
ANG algorithm philosophy provides a strategy for designing
these modifications.

An analysis of the mean-square-error, convergence rates, and
stability has been provided, along with simulations that support
the results. It was shown that if one has accurate knowledge of
the prior, then substantial performance gains can be achieved.
Conversely, if a false prior is assumed, performance degradation
occurs. More details can be found in [21].

Future work may involve a more detailed approach to
choosing the stepsize when the system is unknown, analyzing
the stability and convergence behavior of the algorithms in
greater detail, considering equalization applications (a DFE in
particular) in more depth and comparing bit error rate curves
to the MSE curves, examining sensitivities of the algorithms to
incorrect priors, and theoretically determining suitable priors
of channels from common statistical propagation models.

APPENDIX

This appendix derives (18). Starting from (16), postulate that
the solution for is in the form of the approximate solution
[which is obtained by ignoring the term in (16)],
plus an order error term :

(A.1)

Substituting into (16) and simplifying yields

(A.2)

Now, postulate that the error term is of the form

(A.3)

where is an order- error term. Substitution of (A.3) into
(A.2) yields

Thus, at each step, the remaining error term is of the form of
the solution obtained by ignoring the term of highest order of,
plus a yet higher order error term.

Continuing this process indefinitely produces the infinite se-
ries

which converges if and only if every eigenvalue of
has a magnitude less than one. The infinite series can then be
expressed as

(A.4)

which is the desired result.
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