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e Analog viewpoint: signal is divided into bins. Bin ¢ is modulated by a

carrier at frequency 7 - f., where 0 < < N — 1.
e Digital viewpoint: efficient implementation by IFFT.

e Goal: change frequency selective channel into N parallel flat fading

channels.

e A bank of complex scalars, a Frequency-domain Equalizer, (FEQ)

inverts the flat fades.

o /




Richard K. Martin Cornell University

/VVhat is the cyclic prefix (CP)? \

X7 | X8 X9 | x10 x11| x12| x13 x14 x15 x16 x17| x18

=

e Before each block is transmitted, the CP is prepended.

Y \‘*v

8| x15 x1g x9 | x10 x11| x12 x13 x14| x15 x16| X23 x24| x17/ x18

e H is the channel convolution matrix (y = Hx)
o If we add the CP, H — ﬁ, a circulant matrix.

e Fact: DFT matrices diagonalize any circulant matrix.
FHFI = A= diagonal

e All of this is only true if the CP+1 is as long as the channel.

CP length is fixed. Sometimes the channel is longer. /
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/Parameter selection guidelines \

1. The block size must be short enough to minimize the channel’s time

variations within each symbol. (Keep N small.)

2. The guard interval must be long enough to exceed the delay spread of

most of the channels that will be encountered. (Keep v large.)

3. The throughput loss due to the use of the guard interval must be kept

as small as possible. (Keep v much smaller than N.)

These guidelines cannot always be satisfied.

Solution: ignore guideline #2, and use a channel shortening filter.
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e [, users or L transmit antennas

e P receive antennas or oversampling by P
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/I\/IERRY: some intuition \
o -
Data >l CP > Data >l P >l Data

-110)1]2]3|4|5|/6|78|9(10(111|12|13|14

| |

y(2) = cox(2) + c12(1) + cox(0) + c3x(—1) 4+ cqz(—2)
= cox(10) + c12(9) + [cox(0) + c3x(—1) + cqz(—2)]
y(10) = cpx(10) 4+ c12(9) + [c2x(8) + c32(7) + ca2(6)]

e The transmitted data in the CP and the end of the symbol are equal.

e If the channel is short enough, then the last sample in the received

CP equals the last sample in the received symbol.
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KI‘he MERRY algorithm

e Idea: try to force a particular sample in the CP to equal the

corresponding sample in the symbol.

e Algorithm: perform a (stochastic) gradient descent of

JvERRY = E Dy(V +A)—y(lv+ N+ A)ﬂ 7

for some A in the set {0,..., M — 1}, where M is the symbol length.
e A constraint is needed to prevent w = 0.

e Multicarrier Equalization by Restoration of RedundancY (MERRY):

i) =r(Mk+v+A) —r(Mk+v+ N + A)

Wik + 1) = w(k) — p e(k) ¥ (k)
. Wk +1)
EH )= R Dl

~

(1)
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Ghe FRODO cost function

=1 forceto zero| don't care forceto zero

| =2 forceto zero| don't care forceto zer

=3 forceto zero| don't care forceto zero

| =4=V forceto zero| don't care forceto zero
don’t care

summed forceto zero ' forceto zer

weighting | 4| 4|41 3(2,1{0]1]2|3/4|4|4

e Why not form more than one “cyclic difference” in MERRY?

e Result: variable window size, formed by an intersection of up to v
different MERRY windows

e FRODO: Forced Redundancy with Optional Data Omission

~
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/Division-free update rule: preliminaries \

e Instead of minimizing the “wall” with respect to the energy in the
channel shortener, we can minimize with respect to the energy in the

“window” of the effective channel.
e Recall that E [|y(u +A)—ylv+ N+ A)|2] equals the “wall” power.
e It turns out that E [y*(v + A)y(v + N + A)] is the “window” power.

e These two quantities are quadratic in the channel shortener, i.e. they

equal w/'Aw and w! Bw.

e We want to solve

window power w! Bw
Wopt = arg max = argmax — (3)
w  wall power w wiAw
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/FRODO: Division-free update rule \

e Chatterjee, et al. proposed an iterative algorithm for computing the

maximum generalized eigenvalue and its eigenvector:
w(k+1)=w(k) +u(Bw—Aw (WHBW)) (4)

e We can remove the expectations from A and B to get stochastic
approximations. Combining this with Chatterjee’s general algorithmic

form, we get an adaptive generalized eigen solver.

e The new update rule is:

Given A and i,, for symbol £k =0,1,2,...,
rk)=r(Mk+v+A)—r(Mk+v+ N+ A)
e(k) = w' (k) £(k)
Yio (k) = y(ME + i, + A)
w(k+1) =w(k) + p yi, (k) (" (ME +io + A) — yi, (k)e(k)F* (k))
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/Initialization \

e We have

A=E [(ry+A(k) —ryynN+alk)) (rupa(k) — Pu+N+A(/€))T}
B =E [r,4a(k) r))y nia(k)]

where k is the block number.

e We can initialize near the correct location by computing

K

A= % Z (ro4a(k) —roensa(k)) (royea(k) — ru+N+A(k)>T
k=1

1 &

B = e Z roa(k) v vy a(k)

&
I
—

and then computing the extreme eigenpair of matrices (;‘1, ]§>

e For a good estimate, K =~ L,, or greater.

/
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/Synchronization \

Hitherto, all equations presume a good choice of delay A.

Proposed heuristic choice: if Apeqr optimizes the energy in a window

of the channel, then choose

Ly
A = Apeakz + \‘7J (5)
To get Apeqk, first compute
K
Jn(A) =) |r(Mk+ v+ A) —r(Mk+v+ N+ A)’
k=1

Like the MERRY cost, this gives the “wall” energy of the channel.

The smaller the wall energy, the larger the window energy, so

)

peok = a5 _min_ Ji(A) )
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/Performance of a heuristic delay choice \

80 T T I T T T

m
©
A= i
"
Z
n S S
= ,
= — Optlma_l
2 - - - Heuristic | |
S
<
n
,I
45H 1
l, : :
40 | | | | | | |
0 20 40 60 80 100 120

\ TEQ length, in taps /

13




Cornell University

Richard K. Martin

/Design comparison
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/Performance of MIMO Merry \
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/Conclusions \

e We have extended MERRY in various ways, and dubbed the new
algorithm “FRODO.”

e FRODO avoids the computationally expensive square root and

division of other channel shorteners, including MERRY.

e FRODO allows MIMO channel shortening and multiple comparisons
between the CP and data.

e The use of more comparisons increases convergence speed but

degrades asymptotic performance.

e We proposed blind initialization and synchronization techniques for a

channel shortener.
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