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Abstract — Channel shortening is often necessary

for demodulation of multicarrier signals, complexity

reduction of maximum likelihood sequence estimation

(MLSE), and can be used to suppress interference

in multiuser detection. The Maximum Shortening

SNR (MSSNR) and Minimum Mean Squared Error

(MMSE) designs for channel shortening are popular

in the literature due to their ease of implementation

and near-optimality. This paper proposes a method

to reduce the complexity of computing the matrices

in the MSSNR design by a factor of 140 (for typi-

cal ADSL parameters) relative to the methods of Wu,

Arslan, and Evans, for a total reduction of a factor

of 4000 relative to the brute force approach, with-

out degrading performance. A similar technique is

presented for the MMSE design, reducing the matrix

computation by a factor of 16 (for typical ADSL pa-

rameters).

I. Introduction

Channel shortening first became an issue in receivers em-
ploying maximum likelihood sequence estimation (MLSE) [1].
MLSE is the optimal estimation method in terms of mini-
mizing the error probability of a sequence. However, for an
alphabet of size A and an effective channel length of Lc + 1,
the complexity of MLSE grows exponentially as ALc . One
method of reducing this enormous complexity is to employ a
prefilter to shorten the channel to a manageable length [2].

More recently, channel shortening has been proposed for
use in multiuser detection [3]. Consider a direct-sequence code
division multiple access (DS-CDMA) system that has L users,
with a flat fading channel for each user. The optimum mul-
tiuser detector is the MLSE, yet complexity grows exponen-
tially with the number of users. “Channel shortening” can be
employed to suppress L−K of the scalar channels and retain
the other K channels, effectively reducing the number of users
from L to K. Then the MLSE can be employed to recover the
signals of the remaining K users [3]. In this context, “chan-
nel shortening” means reducing the number of scalar channels
rather than reducing the number of channel taps.

Channel shortening has found its most widespread use in
systems employing multicarrier modulation (MCM) [4]. MCM
techniques like orthogonal frequency division multiplexing
(OFDM) and discrete multi-tone (DMT) have been deployed
in applications such as the wireless LAN standards IEEE
802.11a and HIPERLAN/2, Digital Audio Broadcast (DAB)
and Digital Video Broadcast (DVB) in Europe, and asym-
metric and very-high-speed digital subscriber loops (ADSL,
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VDSL). MCM can easily combat channel dispersion, provided
the channel delay spread is not greater than the length of the
cyclic prefix (CP). However, if the cyclic prefix is not long
enough, inter-carrier interference (ICI) and inter-symbol in-
terference (ISI) will be present.

A well-known technique to combat the ICI and ISI caused
by an inadequate CP length is the use of a time-domain
equalizer (TEQ) in the receiver front end. The TEQ is a
finite impulse response (FIR) filter that shortens the chan-
nel in such a manner that the delay spread of the combined
channel-equalizer impulse response is not longer than the CP
length. The TEQ design problem has been extensively stud-
ied in the literature [2] – [19]. In [2], Falconer and Magee
proposed a minimum-mean-square-error (MMSE) method for
channel shortening, which was designed to reduce the com-
plexity in maximum likelihood sequence estimation. More re-
cently, Melsa, Younce, and Rohrs [7] proposed the maximum
shortening SNR (MSSNR) method, which attempts to mini-
mize the energy outside the window of interest while holding
the energy inside fixed. The MSSNR method is essentially a
zero-forcing version of the MMSE equalizer [12]. The MSSNR
approach was generalized to the min-ISI method in [14], which
allows the residual ISI to be shaped in the frequency domain.
A blind, adaptive algorithm that searches for the TEQ maxi-
mizing the SSNR cost function was proposed in [17].

This paper examines the MSSNR and MMSE methods of
channel shortening. The structure of each solution is exploited
to dramatically reduce the complexity of computing the TEQ.
Previous work on reducing the complexity of the MSSNR de-
sign was presented in [9]. This work observed that the matri-
ces involved are almost Toeplitz, so the (i+1, j+1) element can
be computed efficiently from the (i, j) element. Our proposed
method makes use of this, but focuses rather on determining
the matrices and eigenvector for a given delay based on the
matrices and eigenvector computed for the previous delay.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model and notation. Section III
reviews the MSSNR and MMSE designs. Section IV discusses
methods of reducing the computation of each design without
a performance loss. Section V provides a complexity com-
parison to illustrate the gains of the proposed methods, and
Section VI concludes the paper.

II. System Model and Notation

The multicarrier system model is shown in Fig. 1, and the
notation is summarized in Table 1. The input stream is sepa-
rated into blocks of length N , then the N symbols are placed
in parallel bins. Each bin is viewed as a QAM signal that
will be modulated by a different carrier. An efficient means
of implementing the modulation in discrete time is to use an
inverse fast Fourier transform (IFFT), which converts each
bin (which acts as one of the frequency components) into a
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Figure 1: Traditional multicarrier system model. (I)FFT: (inverse) fast Fourier transform, P/S: parallel to serial,
S/P: serial to parallel, CP: add cyclic prefix, and xCP: remove cyclic prefix.

Table 1: Channel shortening notation
Notation Meaning

x(k) transmitted signal (IFFT output)

n(k) channel noise

r(k) received signal

y(k) signal after TEQ

N FFT (block) size

ν CP length

∆ delay of effective channel

N∆ number of possible values of ∆

h = [h0, · · · , hLh ] channel impulse response

w = [w0, · · · , wLw ] TEQ impulse response

c = [c0, · · · , cLc ] effective channel (c = h ? w)

b = [b0, · · · , bν ] target impulse response

L̃h = Lh + 1 channel length

L̃w = Lw + 1 TEQ length

L̃c = Lc + 1 length of the effective channel

H L̃c × L̃w channel convolution matrix

Hwin middle ν + 1 rows of H

Hwall H with middle ν + 1 rows removed

A = HT
wallHwall L̃w × L̃w real matrix

B = HT
winHwin L̃w × L̃w real matrix

IN N ×N identity matrix

[A](i,j) Element i, j of matrix A

A∗, AT , AH conjugate, transpose, and Hermitian

time-domain signal. After transmission, the receiver can use
an FFT to recover the data within a bit error rate tolerance,
provided that equalization has been performed properly.

In order for the subchannels to not interfere with one an-
other, the convolution of the signal and the channel must be a
circular convolution. It is actually a linear convolution, so it is
made to appear circular by adding a cyclic prefix to the start
of each data block. The cyclic prefix is obtained by prepending
the last ν samples of each block to the beginning of the block.
If the CP is at least as long as the channel, then the output of
each subchannel is equal to the input times a scalar complex
gain factor. The signals in the bins can then be equalized by
a bank of complex gains, referred to as a frequency domain
equalizer (FEQ) [20].

Transmitting the CP wastes time that could be used to
transmit data, reducing the throughput by a factor of N

N+ν
.

Thus, the CP is usually set to a reasonably small value, and a
TEQ is used to shorten the channel to this length. In ADSL
and VDSL, the CP length is 1

16
of the block (symbol) length.

As discussed in Section I, TEQ design methods have been well
explored [2] – [19].

III. Review of the MSSNR and MMSE designs

This section reviews the MSSNR and MMSE designs for
channel shortening.

A. The MSSNR solution

Consider the maximum shortening SNR (MSSNR) TEQ de-
sign [7], which attempts to maximize the ratio of the energy
in a window of the effective channel over the energy in the
remainder of the effective channel. Following [7], we define

Hwin

=

264 h(∆) h(∆− 1) · · · h(∆− L̃w + 1)
...

. . .
...

h(∆ + ν) h(∆ + ν − 1) · · · h(∆ + ν − L̃w + 1)

375
(1)

and

Hwall

=

26666666664

h(0) 0 · · · 0
...

. . .

h(∆− 1) h(∆− 2) · · · h(∆− L̃w)

h(∆ + ν + 1) h(∆ + ν) · · · h(∆ + ν − L̃w + 2)
...

. . .

0 · · · 0 h(Lh)

37777777775
(2)

Thus, cwin = Hwinw yields a length ν + 1 window of the
effective channel, and cwall = Hwallw yields the remainder
of the effective channel. The MSSNR design problem can be
stated as “minimize ‖cwall‖ subject to the constraint ‖cwin‖ =
1,” as in [7]. This reduces to

min
w

�
wT Aw

�
subject to wT Bw = 1, (3)

where
A = HT

wallHwall, B = HT
winHwin. (4)

A and B are real, symmetric L̃w×L̃w matrices. However, A is
invertible, but B may not be. An alternative formulation that
addresses this is to “maximize ‖cwin‖ subject to the constraint
‖cwall‖ = 1,” which works well even when B is not invertible
[8]. The alternative formulation reduces to

max
w

�
wT Bw

�
subject to wT Aw = 1, (5)

where A and B are defined in (4). Solving (3) leads to a TEQ
that satisfies the generalized eigenvector problem,

Aw = λ̃Bw, (6)
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Figure 2: MMSE system model: h, w, and b are the
impulse responses of the channel, TEQ, and target, re-
spectively. Here, ∆ represents transmission delay. The
dashed lines indicate a virtual path, which is used only
for analysis.

and the alternative formulation in (5) leads to a related gen-
eralized eigenvector problem,

Bw = λAw. (7)

The solution for w will be the generalized eigenvector cor-
responding to the smallest (largest) generalized eigenvalue λ̃
(λ). Section IV shows how to obtain most of B (∆ + 1) from
B (∆), how to obtain A (∆) from B (∆), and how to initialize
the eigensolver for w (∆ + 1) based on the solution for w (∆).

B. The MMSE solution

The system model for the minimum mean-squared error
(MMSE) solution [2] is shown in Fig. 2. It creates a virtual
target impulse response (TIR) b of length ν +1 such that the
MSE, which is measured between the output of the effective
channel and the output of the TIR, is minimized. In the ab-
sence of noise, if the input signal is white, then the optimal
MMSE and MSSNR solutions are identical [12].

The MMSE design uses a target impulse response (TIR) b
that must satisfy [2], [5], [11]

Rrxb = Rrw, (8)

where

Rrx = E

264264 r(k)
...

r(k − Lw)

375 �x(k −∆) · · · x(k −∆− ν)
�375
(9)

is the channel input-output cross-correlation matrix and

Rr = E

264264 r(k)
...

r(k − Lw)

375 �r(k) · · · r(k − Lw)
�375 (10)

is the channel output autocorrelation matrix. Typically, b is
computed first, and then (8) is used to determine w. The
goal is that h ? w approximates a delayed version of b. The
target impulse response is the eigenvector corresponding to
the minimum eigenvalue of [2], [5], [11]

R (∆) = Rx −RxrR
−1
r Rrx.

Section IV addresses how to determine most of R (∆ + 1) from
R (∆), and how to use the solution for b (∆) to initialize the
eigensolver for b (∆ + 1).

IV. Efficient computation

There is a tremendous amount of redundancy involved in
the brute force calculation of the MSSNR design. Wu, Ar-
slan, and Evans [9] proposed a method to exploit some of the
redundancy to greatly decrease the cost of computing A and
B. This approach was based on exploiting the fact that the
matrices are nearly Toeplitz, so the (i + 1, j + 1) element can
be obtained from the (i, j) element. However, there are also
two other forms of redundancy: redundancy over delay, and
redundancy between A and B. This section discusses meth-
ods to exploit this, reusing even more of the computations to
dramatically decrease the required complexity. Specifically,
for a given delay ∆,

• A (∆) can be computed from B (∆) almost for free.

• B (∆ + 1) can be computed from B (∆) almost for free.

• A shifted version of the optimal MSSNR TEQ w (∆)
can be used to initialize the generalized eigenvector so-
lution for w (∆ + 1) to decrease the number of iterations
needed for the eigenvector computation.

• R (∆ + 1) can be computed from R (∆) almost for free.

• A shifted version of the optimal MMSE TIR b (∆) can
be used to initialize the generalized eigenvector solu-
tion for b (∆ + 1) to decrease the number of iterations
needed for the eigenvector computation.

We now discuss each of these points in turn.

A. Computing A (∆) from B (∆)

Let C = HT H, and recall that A = HT
wallHwall and B =

HT
winHwin. Note that

H =

24 H1

Hwin

H2

35 , Hwall =

�
H1

H2

�
. (11)

Thus,

C = HT
1 H1 + HT

winHwin + HT
2 H2 (12)

=
�
HT

1 H1 + HT
2 H2

�| {z }
A

+
�
HT

winHwin

�| {z }
B

. (13)

To emphasize the dependence on the delay ∆, we write

C = A (∆) + B (∆) (14)

Since H is a tall convolution matrix, C is symmetric and
Toeplitz. Thus, it is fully determined by its first row or col-
umn:

C(0:Lw,0) = HT
h
hT ,0(1×Lw)

iT

=
�
H(0:Lh,0:Lw)

�T
h. (15)

C can be computed using L̃hL̃w multiply adds, and its first
column can be stored using L̃w memory words. Since C is
independent of ∆, we only need to compute it once. Then
each time ∆ is incremented and the new B (∆) is computed,
A (∆) can be computed from A (∆) = C−B (∆) using only
L̃2

w additions and no multiplications. In constrast, the “brute
force” method requires L̃2

w (Lh − ν) multiply-adds to com-
pute A for each delay, and the method of [9] requires about
L̃w (Lw + Lh − ν) multiply-adds per delay.



B. Computing B (∆ + 1) from B (∆)

Recall that B (∆) = HT
win(∆)Hwin(∆), where

Hwin(∆) =264 h(∆) h(∆− 1) · · · h(∆− L̃w + 1)
...

. . .
...

h(∆ + ν) h(∆ + ν − 1) · · · h(∆ + ν − L̃w + 1)

375
(16)

The key observation is that

[Hwin(∆ + 1)](0:ν,1:Lw) = [Hwin(∆)](0:ν,0:Lw−1) . (17)

This means that

[B (∆ + 1)](1:Lw,1:Lw) = [B (∆)](0:Lw−1,0:Lw−1) (18)

so most of B (∆ + 1) can be obtained without requiring any
computations. Now partition B (∆ + 1) as

B (∆ + 1) =

�
α gT

g B̂

�
, (19)

where B̂ is obtained from (18). Since B (∆ + 1) is almost
Toeplitz, α and all of the elements of g save the last can be
efficiently determined from the first column of B̂ [9]. Com-
puting each of these Lw elements requires two multiply-adds.
Finally, to compute the last element of g,

g(ν−1) =
�
[Hwin](0:ν,Lw)

�T

[Hwin](0:ν,0) , (20)

requiring ν + 1 multiply-adds.
Thus, a fast MSSNR design algorithm is as follows:

1. Compute B = HT
win (∆min)Hwin (∆min).

2. C(0:Lw,0) =
�
H(0:Lh,0:Lw)

�T
h.

3. Fill in the rest of the symmetric, Toeplitz matrix C.

4. A = C−B.

5. Solve Bw = λAw for the generalized eigenvector cor-
responding to the largest eigenvalue, as in [7].

6. For ∆ = ∆min + 1 : ∆max, do the following:

(a) [B](1:Lw,1:Lw) = [B](0:Lw−1,0:Lw−1)

(b) [B](0:Lw−1,0) = [B](1:Lw,1)

+ h(∆ + ν) · h(∆ + ν − [0 : Lw − 1])
− h(∆− 1) · h(∆− 1− [0 : Lw − 1])

(c) [B](Lw,0) =
�
[Hwin](0:ν,Lw)

�T

[Hwin](0:ν,0)

(d) [B](0,1:Lw) = [B]T(1:Lw,0)

(e) A = C−B.

(f) Solve Bw = λAw for the generalized eigenvec-
tor corresponding to the largest eigenvalue.

(g) If this delay produces a larger shortening SNR
λ than the previous delay, save w.

Note that in step (b), the indices may become negative, in
which case the corresponding elements are zero. It should be

stressed that the gains will not be as apparent in an environ-
ment such as Matlab, since the brute force method is matrix
based, and the proposed approach is an element-by-element
approach. Matlab is optimized for the former, but embedded
DSPs may not be.

C. Computing R (∆ + 1) from R (∆)

Recall that for the MMSE design, we must compute

R (∆) = Rx −RxrR
−1
r Rrx,

where

Rx = E

264264 x(k −∆)
...

x(k −∆− ν)

375 �x(k −∆) · · · x(k −∆− ν)
�375

(21)
and

Rrx = E

264264 r(k)
...

r(k − Lw)

375 �x(k −∆) · · · x(k −∆− ν)
�375
(22)

Note that Rx does not depend on ∆, and that it is Toeplitz.
Thus,

[Rx(∆ + 1)](0:ν−1,0:ν−1) = [Rx(∆)](0:ν−1,0:ν−1)

= [Rx(∆)](1:ν,1:ν) .
(23)

Let P(∆) = RxrR
−1
r Rrx. Observing that

[Rrx(∆ + 1)](0:Lw,0:ν−1) = [Rrx(∆)](0:Lw,1:ν) , (24)

we see that

[P(∆ + 1)](0:ν−1,0:ν−1) = [P(∆)](1:ν,1:ν) . (25)

Combining (23) and (25),

[R (∆ + 1)](0:ν−1,0:ν−1) = [R (∆)](1:ν,1:ν) (26)

The matrix Rr is symmetric and Toeplitz. However, the in-
verse of a Toeplitz matrix is, in general, not Toeplitz [21]. This
means that R (∆) has no further structure that can be easily
exploited, so the first row and column of R (∆ + 1) cannot
be obtained from the rest of R (∆ + 1) using the tricks in [9].
Even so, (26) allows us to obtain most of the elements of each
R (∆) for free, so only ν+1 elements must be computed rather
than (ν + 1) (ν + 2) /2 elements. In ADSL, ν = 32; in VDSL,
ν can range up to 512; and in DVB, ν can range up to 2048.
Thus, the proposed method reduces the complexity of calcu-
lating R (∆) by factors of 17, 257, and 1025 (respectively) for
these standards.

D. Intelligent eigensolver initialization

Let w (∆) be the MSSNR solution for a given delay. If we were
to increase the allowable filter length by 1, then it follows that

ŵ (∆ + 1) = z−1w (∆) =
h
0,wT (∆)

iT

(27)

should be a near-optimum solution, since it produces the same
value of the shortening SNR as for the previous delay. Expe-
rience suggests that the TEQ coefficients are small near the



Table 2: Computational complexity of various MSSNR
implementations. MACs are real multiply-and-
accumulates and adds are real additions (or subtractions).
For the example, L̃h = 512, L̃w = 32, L̃c = 543, ν = 32,
and N∆ = 511.

brute force Wu, et al. [9]

step MACs MACs

C 0 0

B (∆min) L̃2
w (ν + 1) L̃w (Lw + ν)

A (∆min) L̃2
w (Lh − ν) L̃w (Lc − ν)

Each B (∆) L̃2
w (ν + 1) L̃w (Lw + ν)

Each A (∆) L̃2
w (Lh − ν) L̃w (Lc − ν)

Total: L̃2
wL̃hN∆ L̃w (Lw + Lc) N∆

Example: 267,911,168 9,369,696

proposed

step MACs adds

C L̃hL̃w 0

B (∆min) L̃w (Lw + ν) 0

A (∆min) 0 L̃2
w

Each B (∆) 2Lw + ν + 1 0

Each A (∆) 0 L̃2
w

Total:
�
2L̃w + ν

�
(N∆ − 1) L̃2

wN∆

+L̃hL̃w

Example: 66,850 523,264

edges, so the last tap can be removed without drastically af-
fecting the performance. Therefore,

ŵ (∆ + 1) =

�
0,
h
wT (∆)

i
(0:Lw−1)

�T

(28)

is a fairly good solution for the delay ∆ + 1, so this should be
the initialization for the generalized eigenvector solver for the
next delay. Similarly, for the MMSE TIR,

b̂ (∆ + 1) =

�h
bT (∆)

i
(1:ν)

, 0

�T

(29)

should be the initialization for the eigenvector solver for the
next delay.

V. Complexity comparison

Table 2 shows the (approximate) number of computations
for each step of the MSSNR method, using the “brute force”
approach, the method in [9], and the proposed approach. Note
that N∆ refers to the number of values of the delay that are
possible (usually equal to the length of the effective channel
minus the CP length). For a typical downstream ADSL sys-
tem, the parameters are L̃w = Lw+1 = 32, L̃h = Lh+1 = 512,
Lc = Lw + Lh = 542, ν = 32, and N∆ = L̃c − ν = 511. The
“example” lines in Table 2 show the required complexity for
computing all of the A’s and B′s for these parameters using
each approach. Observe that [9] beats the brute force method
by a factor of 29, the proposed method beats [9] by a factor of
140, and the proposed method beats the brute force method
by a factor of 4008.

Table 3 shows the (approximate) computational re-
quirements of the “brute force” approach and the

Table 3: Computational complexity of various MMSE im-
plementations. MACs are real multiply-and-accumulates.
For the example, L̃w = ν = 32, and N∆ = 511.

brute force proposed

step MACs MACs

R (∆min)
(ν+1)(ν+2)L̃2

w
2

(ν+1)(ν+2)L̃2
w

2

Each R (∆)
(ν+1)(ν+2)L̃2

w
2

(ν + 1)L̃2
w

Total:
N∆(ν+1)(ν+2)L̃2

w
2

L̃2
w(ν + 1) ((N∆ − 1)+

1
2
(ν + 2)

�
Example: 293,551,104 17,808,384

proposed approach for computing the MMSE matrices
R (∆) , ∆ ∈ {∆min, · · · , ∆max}. The “example” line shows
the required complexity for computing the R (∆) matrices us-
ing each method for the same parameter values as the example
in Table 2. The proposed method yields a decrease in com-
plexity by a factor of approximately ν+2

2
, which in this case

is a factor of 16.

VI. Conclusions

The computational complexity of two popular channel
shortening algorithms, the MSSNR and MMSE methods, has
been addressed. A method was proposed which reduces the
complexity of computing the A and B matrices in the MSSNR
design by a factor of 140 (for typical ADSL parameters) rel-
ative to the methods of Wu, Arslan, and Evans [9], for a to-
tal reduction of a factor of 4000 relative to the brute force
approach, without degrading performance. A similar tech-
nique was proposed to reduce the complexity of computing
the R (∆) matrix used in the MMSE design by a factor of 16
(for typical ADSL parameters).
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