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Abstract — This paper proposes the application of
traditional blind, adaptive algorithms to the per tone
structure for equalization in multicarrier receivers.
It is shown that the per tone structure lends itself
more readily than the TEQ structure to the appli-
cation of the Constant Modulus Algorithm (CMA)
and Decision-Directed LMS (DD-LMS). The result
is that CMA and DD-LMS type algorithms can be
derived for the per tone structure, resulting in low-
complexity multicarrier equalization algorithms that
are both blind and adaptive.

The CM cost function is derived, and the effect of
the symbol synchronization on the cost function is ex-
plored. Simulations are used to compare the perfor-
mance of CMA and DD-LMS to the optimal solution
(as derived by Van Acker, et al.), and to illustrate the
situations in which these algorithms excel or falter.

I. Introduction and System Model

Due to the ever-present demand for higher bit rates, re-
searchers are constantly developing new techniques for in-
creasing spectral efficiency. Multicarrier modulation (MCM)
is one such technique [1], and its popularity has been increas-
ing steadily. One reason for this is that MCM can easily com-
bat channel dispersion, as long as the cyclic prefix is longer
than the channel delay spread.

As a description of the cyclic prefix, consider the baseband
model of a typical multicarrier modulation system, as shown
in Figure 1. Each block of bits is divided up into N bins, and
each bin is viewed as being modulated by a different carrier.
An efficient means of implementing the modulation is to use
an inverse fast Fourier transform (IFFT). After transmission
and reception, an FFT can be used for the demodulation.

In order for the subchannels to be independent, the convo-
lution of the signal and the channel must be a circular con-
volution. It is actually a linear convolution, so it is made to
appear circular by adding a cyclic prefix (CP) to the start
of each data block [2], which is obtained by prepending the
last ν samples of each block to the beginning of the block. If
the channel is shorter than the CP, then the output of each
subchannel is equal to the input times a scalar gain factor.
The signals in the bins can then be equalized by a bank of
complex scalars, referred to as frequency domain equalizers
(labeled “FEQs” in Figure 1).

If the CP is not as long as the channel delay spread, then
inter-channel interference (ICI) and inter-symbol interference
(ISI) will be present, and a channel-shortening (time-domain)
equalizer, or TEQ, is needed. The TEQ is chosen such that
the convolution of the channel and TEQ has almost all of
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Figure 1: Traditional (TEQ-based) system model.
(I)FFT: (inverse) fast Fourier transform, P/S: parallel to
serial, CP: add cyclic prefix, xCP: remove cyclic prefix.

its energy in a time window no longer than the CP length.
TEQ design (for a static environment) has been well explored,
notably in [3, 4, 5, 6, 7, 8]. A blind, adaptive equalizer was
proposed in [9], but their approach assumes no cyclic prefix;
i.e. complete equalization is attempted, rather than channel
shortening.

Mathematically, the received signal vector y is obtained
from the transmitted data X via
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where h is a row matrix containing the physical channel, and
n is additive noise or interference. The effective channel H
includes the physical channel h, the addition of the cyclic
prefix (inserted by P), and the IFFT (implemented by IN );
and X contains the symbol of interest as well as the preceding
and succeeding symbols. The matrices 0(1,2) are large zero
matrices, the sizes of which are determined by the symbol
synchronization parameter δ.

Van Acker et al. [10] have proposed an alternate equal-
ization structure, called per tone equalization, which accom-
plishes the same task as the TEQ/FEQ in Figure 1 but with
improved performance and comparable complexity. The full
details of the per tone structure can be found in [10]. Briefly,
demodulation is accomplished by an FFT of size N , which is



done by premultiplying y by FN . Per tone equalization of bin
i is accomplished by forming a linear combination of the ith

FFT output and T-1 difference terms of the pre-FFT signal,
y:
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i ·
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| {z }
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The linear combiner (not a tapped delay line) v̄i is the equal-
izer for tone i, and zi is the equalized data for tone i. The
notation in (1) and (2) was introduced in [10], but is repeated
here for reference.

Determination of the per tone equalizer coefficients has
been explored in [10] and [11]. In [10], the optimal coefficients
(in terms of bit rate) are calculated in a least-squares man-
ner, based on knowledge of the transmission channel, and the
signal and noise statistics. In [11], the coefficients are deter-
mined in a less computationally-intensive fashion through the
use of recursive least-squares (RLS), which requires training
throughout the adaptation. These approaches are well-suited
to a system that has plentiful training and computational
power. The proposed algorithms in this paper are designed
for situations in which neither condition is true, and in which
the environment is modestly time-varying.

This paper is organized as follows. Section II discusses
why we are considering the per tone structure instead of the
TEQ structure. Section III proposes the per tone CMA (PT-
CMA) and per tone DD-LMS (PT-DDLMS) algorithms. The
topography of the CM cost function is explored in Section IV.
Simulations are given in Section V, and Section VI concludes.

II. CMA for a TEQ

One might consider directly adapting the TEQ to minimize
the constant modulus cost at the output of the FFT, i.e.

JCM =

NX
i=1

βi E
h�|Yi(k)|2 − γi

�2i
, (3)

where Yi(k) is the output of bin i at time k, and where βi is
a weighting coefficient1. This section briefly discusses why we
avoid this approach, and instead investigate blind, adaptive
per tone equalizers. Consider a stochastic gradient descent of
(3).
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The gradient with respect to a complex vector is defined as
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where the subscripts R and I refer to the real and imagi-
nary components, and ∗ denotes complex conjugation. After
a modest amount of algebra, this yields
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1If there are different numbers of bits on each subcarrier, then
the cost can be weighted in favor of the bins with more bits.

where y(j) means the jth element of the vector y, as defined
in (1). The resulting stochastic gradient descent algorithm is

w(k + 1) = w(k)− µ
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where the N different N -vectors ∆i are obtained by a “sliding
FFT,” 264 ∆T
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This “sliding FFT” can be implemented efficiently, using little
more computational power than a single FFT [10].

There are several problems with this approach. First of
all, the sliding FFT adds enough complexity to bring this ap-
proach on par with a per tone structure (which ultimately has
a higher performance bound), so it makes more sense to pur-
sue per tone CMA. More importantly, the cost (3) will be very
large unless all of the FEQs are properly initialized and can
successfully track the variation of the channel and the adapta-
tion of the TEQ. The interaction between the adapting TEQ
and the adapting FEQ in this regard is difficult to determine
explicitly. Instead, we will favor adaptive per tone equalizers,
in which the equalizer for each tone absorbs the FEQ for that
tone. Readers who prefer the TEQ structure are referred to
[12], in which the CM cost and related cost functions are con-
sidered for adapting both the TEQ and the carrier frequency
estimate.

III. Proposed Algorithms

There are many existing algorithms for multicarrier equal-
ization, as discussed in Section I. However, none of the ex-
isting solutions for channel shortening or per tone equaliza-
tion are both blind and adaptive, and most of them are high-
complexity. (We exclude [9] here, as it is not applicable to
channel shortening in a system with a cyclic prefix.) We pro-
pose to use Decision-Directed LMS (DD-LMS) and the Con-
stant Modulus Algorithm (CMA), as applied to the per tone
structure, to fill this void.

The DD-LMS algorithm is obtained by performing a
stochastic gradient descent of

E
�|zi(k)−Q [zi(k)]|2� (9)

for each bin i, where Q [·] is the quantization operator (decision
device). The resulting algorithm is:
For i = 1, . . . , N and k = 1, 2, 3, . . .,

DD-LMS:

zi(k) = v̄T
i (k) Fi y(k)

ei(k) = (Q [zi(k)]− zi(k))

v̄i(k + 1) = v̄i(k) + µ ei(k) F∗i y∗(k).

(10)

The constant modulus algorithm is a popular alternative to
decision-directed algorithms. A detailed review of its conver-
gence behavior in single-carrier systems can be found in [13].
CMA attempts to minimize the dispersion of the equalized
symbols by performing a stochastic gradient descent of

JCM,i = E
h�|zi(k)|2 − γi

�2i
(11)



for each bin i. The resulting algorithm is:
For i = 1, . . . , N and k = 1, 2, 3, . . .,

CMA:
zi(k) = v̄T

i (k) Fi y(k)

v̄i(k + 1) = v̄i(k)− µ zi(k)
�|zi(k)|2 − γi

�
F∗i y∗(k)

(12)
Structurally, the only difference between CMA and the DD-
LMS algorithm in this application and single-carrier equaliza-
tion is the presence of the F∗i matrices. The computation of
Fi y(k) is not actually implemented as a matrix-vector mul-
tiply. Rather, the last element is obtained directly from the
output of the FFT, and the other T−1 elements are computed
via a single subtraction each (c.f. equation (2)).

A point to emphasize is that these single-carrier techniques
and others are readily applicable to the per tone structure, but
not as easily to the TEQ/FEQ structure, due to the coupling
between the TEQ and FEQs. This is because for per tone
equalization, there are no separate FEQs.

IV. Topography of the CM Cost Surface

This section derives the CM cost function (11) as a function
of the equalizer parameters v̄i and the symbol synchronization
parameter δ, in a fashion similar to that in [13]. Then a low-
dimensional example is used to build intuition.

The first step is to decide on appropriate values for the
dispersion constants γi. Our approach is analogous to the
approach taken by Godard [14], i.e. the dispersion constant for
tone i will be chosen such that when equalization is achieved,
the gradient of the cost function for tone i with respect to the
equalizer will be zero. This will lead to dispersion constants
that can be independently chosen for each subchannel. The
gradient of (11) is

5v̄iJ = E
�
4zi
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�
F∗i y

∗� . (13)

To make this zero, we require that
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∗
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When equalization has been achieved, we will have zi
∼= Xi.

We will use this assumption and (1) to get
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Denote the vector ej as the vector of all zeros except for a 1
in position j. Assuming that the input data is uncorrelated
between symbols and between tones, (15) becomes
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Thus, an appropriate choice for γi is
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�
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� (17)

This was to be expected, since it closely matches Godard’s
choice. The difference is that we are now free to assign differ-
ent statistics to each subchannel. This is necessary for trans-
mission schemes that use bit loading (such as DSL), since
E
�|Xi|4

�
will generally vary with the bin number i, even if

the power E
�|Xi|2

�
is held constant.

Now we can discuss the CM cost function. Recall that
y = HX + n and zi = v̄T

i Fiy. Thus,
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In the definitions of c and f , the subscript i has been dropped
for simplicity. We will make use of these definitions momen-
tarily.

We can expand (11) to
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which requires a calculation of E
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�
and E
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�
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ing that the noise and the data are uncorrelated and the noise
is stationary,
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(The hat on the i is used to distinguish the summation index
î from the tone index i.) This will produce 16 cross-terms.
The first cross-term corresponds to the noiseless case, and the
last term will have a similar structure. The 8 cross-terms with
an odd number of noise factors drop out. Of the remaining 6
terms, two are such that the signal and noise are paired with
their unconjugated counterparts, so they also drop out (as-
suming that the source is QAM, as in DSL or IEEE 802.11a);
and the remaining four of these terms are identical. After an
extensive amount of algebra, we arrive at the following general
form of the CM cost function,
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The subscripts on X are all tone indices, and the subscripts
on c and f are tap indices. If we were to remove these tone
subscripts on X, this would simplify (22) to the result in equa-
tion (61) in the appendix of [13]. Alternatively, (22) could be
simplified by assuming that at least the power E

�|Xk|2
�

does



not vary with the bin index k. That is valid in most applica-
tions. However, [15] and [16] have shown that if the transmit
power is optimized across the bins, then slight performance
gains can be achieved, so that assumption does entail a loss
of generality.

The most important conclusion we can reach from our anal-
ysis of the CMA cost function is that its similarity with the
traditional CM cost function in [13] suggests a similarity of
behavior. Furthermore, the inputs to the IFFT are gener-
ally white (across both symbols and frequency bins), which
is analogous to the assumption made in most single-carrier
CMA papers, in which the source symbols are assumed to be
white. The full details are not treated here, but assuming the
appropriate assumptions are verified for the multicarrier case
(corresponding to the assumptions made in the single carrier
case), mutatis mutandis, the rich literature for single-carrier
CMA can be applied here. In particular, we cannot obtain a
closed form solution for the locations of the global minima.

In order to view this cost function, we consider low-order
examples. Figure 2 shows the CM cost function (and the
amalgamated MSE, which is a composition of the MSE’s for
different delays [13]) for tone 2 (the plots for tone 1 are sim-
ilar). The variables were: a 3-tap channel, a cyclic prefix
length of ν = 1, and a 2-tap equalizer on each of the 2 tones.
The three plots represent different values of the symbol syn-
chronization, and the axes on each of the plots represent the
equalizer taps for tone 2. The CM cost function is periodic in
δ, with period N + ν = 3 in this case (hence only three plots
are needed).

Figure 2 provides intuition regarding the effects of the sym-
bol synchronization. It is clear that the parameter δ drasti-
cally changes the shape of the cost surface, the depth of the
minima, and even the number of minima. For this reason, it
is expected that the performance of per tone CMA will vary
significantly with δ, so symbol synchronization must be done
with care. However, if N = 8196, as in the European HDTV
standard [17], there might be a more gradual transition be-
tween the cost surfaces as δ varies, and we must be cautious
when generalizing from such a low order example.

V. Simulations

The toy problem in Section IV is useful for gaining intu-
ition, but a practical study requires much larger dimensions.
For the following simulations the parameters were chosen to
approximately match those in the IEEE 802.11a standard [18],
though this was done to provide a realistic set of parameters
rather than to focus on that particular application. Specifi-
cally, we used an FFT size of N = 64, 12 null carriers, a CP
length of ν = 16, an equalizer of T = 16 taps per tone, and
an SNR of 40 dB (noise was modeled as AWGN).

Figure 3 shows the SNR obtained at the output of the re-
ceiver for tone 2 (the first tone that is not a null carrier),
with the symbol synchronization on the horizontal axis. The
dashed line is the SNR of the equalizer settings determined in
Section V.A in [10], the dotted line is the SNR at initializa-
tion (corresponding to no equalizer), and the solid line is the
SNR of the CMA settings after convergence. The poor per-
formance for −40 ≤ δ ≤ 0 is not of importance because those
values of δ corresponding to picking a symbol synchronization
such that each received block is a significant mixture of two
trasnmitted blocks, i.e. such values of δ would not be used in
any practical system. Figure 4 shows similar plots, but for the
CM cost rather than the SNR, and the same comments apply.
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Figure 2: The CM (solid) and amalgamated MSE
(dashed) cost functions as a function of equalizer taps
(v1, v2) and symbol synchronization (δ).

There are several features to note from these results. First,
for a reasonable range of values of δ around the optimal value,
the performance of per tone equalizers is relatively insensitive
to the choice of δ (in our example, this is the region 4 ≤ δ ≤ 16
or 4 ≤ δ ≤ 35, depending on how much variation in the SNR is
considered acceptable). Second, note that the performance of
CMA (after convergence) closely matches the performance of
[10], especially for the “good” choices of δ. Also note that the
performance is periodic in δ, with period equal to the symbol
size s = N + ν = 64 + 16 = 80.

Figure 5 shows the SNR for tone 2 as a function of time.
The symbol synchronization parameter δ was chosen to be
within the range discussed above, i.e. δ = 12. Observe that
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−60 −40 −20 0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5
CM cost vs. symbol synchronization

δ, symbol synchronization parameter

J C
M

 fo
r 

to
ne

 2

max SNR

CMA init.

CMA fin.

Figure 4: CM cost for CMA and the optimal MMSE so-
lution as a function of symbol synchronization.

most of the convergence takes place within 1000 symbols, and
optimal performance is achieved asymptotically.

Figure 6 and Figure 7 show the same simulation, but per-
formed using DD-LMS as the adaptive algorithm. A different
step size was used for DD-LMS than for CMA under the same
conditions. In each case, the stepsize was chosen to be as large
as possible without significant asymptotic performance degra-
dation. Observe that DD-LMS exhibits better convergence
speed.

One might ask why DD-LMS would not always be favored
over CMA. Conventional wisdom states that DD-LMS can
only converge to a good answer if the initial decisions are
fairly accurate. If the channel is severe enough, this may not
be the case. In such a situation, CMA should be used for the
first stage of adaptation, then a switch should be made to
DD-LMS [19].
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Figure 5: SNR (for tone 2) over time, using CMA.
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Figure 6: SNR for DD-LMS and the optimal MMSE so-
lution as a function of symbol synchronization.

VI. Conclusions

We have proposed the use of “traditional” blind, adaptive
algorithms for use in per tone equalization for multicarrier re-
ceivers. A theoretical treatment of the CM cost function has
been provided, and the feasibility of CMA and DD-LMS has
been shown via simulations. We have demonstrated that the
asymptotic performance of CMA and DD-LMS approaches
that of Van Acker’s solution, and that near-optimal perfor-
mance can be achieved within 10 to 100 symbols per equalizer
tap.

References

[1] J. A. C. Bingham, “Multicarrier Modulation for Data Transmis-
sion: An Idea Whose Time Has Come,” IEEE Communications
Magazine, vol. 28, no. 5, pp. 5–14, May 1990.

[2] A. Peled and A. Ruiz, “Frequency Domain Data Transmission
Using Reduced Compuational Complexity Algorithms,” in The
proceedings of the 1980 International Conference on Acoustics,



0 1000 2000 3000 4000 5000
10

11

12

13

14

15

16

17
Tone 2, δ = 12, µ = 0.3

symbol index k

S
N

R
, i

n 
dB

, f
or

 to
ne

 2

max SNR settings

DDLMS

Figure 7: SNR (for tone 2) over time, using DD-LMS.

Speech, and Signal Processing, Denver, Colorado, Apr. 1980,
pp. 964–967.

[3] J. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “Equalizer
Training Algorithms for Multicarrier Modulation Systems,” in
IEEE International Conference on Comm., May 1993, pp. 761–
765.

[4] P. J. W. Melsa, R. C. Younce, and C. E. Rohrs, “Impulse Re-
sponse Shortening for Discrete Multitone Transceivers,” IEEE
Trans. on Comm., vol. 44, pp. 1662–1672, Dec. 1996.

[5] G. Arslan, B. L. Evans, and S. Kiaei, “Equalization for Discrete
Multitone Receivers To Maximize Bit Rate,” IEEE Trans. on
Signal Processing, vol. 49, no. 12, pp. 3123–3135, Dec. 2001.

[6] B. Farhang-Boroujeny and M. Ding, “Design Methods for
Time-Domain Equalizers in DMT Transceivers,” IEEE Trans.
on Comm., vol. 49, no. 3, pp. 554–562, Mar. 2001.

[7] W. Henkel and T. Kessler, “Maximizing the Channel Capac-
ity of Multicarrier Transmission by Suitable Adaptation of the
Time-domain Equalizer,” IEEE Trans. on Comm., vol. 48, no.
12, pp. 2000–2004, Dec. 2000.

[8] N. Lashkarian and S. Kiaei, “Optimum Equalization of Multi-
carrier Systems: A Unified Geometric Approach,” IEEE Trans.
on Comm., vol. 49, pp. 1762–1769, Oct. 2001.

[9] M. de Courville, P. Duhamel, P. Madec, and J. Palicot, “Blind
equalization of OFDM systems based on the minimization of a
quadratic criterion,” in Proceedings of the Int. Conf. on Com-
munications, Dallas, TX, June 1996, pp. 1318–1321.

[10] K. Van Acker, G. Leus, M. Moonen, O. van de Wiel, and
T. Pollet, “Per Tone Equalization for DMT-Based Systems,”
IEEE Trans. on Comm., vol. 49, no. 1, pp. 109–119, Jan. 2001.

[11] K. Van Acker, G. Leus, M. Moonen, and T. Pollet, “RLS-
based initialization for per tone equalizers in DMT-receivers,”
in Proceedings of the European Signal Processing Conference
(Eusipco 2000), Tampere, Finland, Sept. 2000.

[12] W. Chung and C. R. Johnson, Jr., “Blind, Adaptive Carrier
Frequency Offset Correction for Multicarrier Systems,” in Pro-
ceedings of the 2002 Conference on Information Sciences and
Systems, Princeton, NJ, Mar. 2002.

[13] C. R. Johnson, Jr., P. Schniter, T. J. Endres, J. D. Behm,
D. R. Brown, and R. A. Casas, “Blind Equalization Using the
Constant Modulus Criterion: A Review,” Proceedings of the
IEEE, vol. 86, pp. 1927–1950, Oct. 1998.

[14] D. N. Godard, “Self-Recovering Equalization and Carrier
Tracking in Two-Dimensional Data Communication Systems,”
IEEE Trans. on Comm., vol. COM-28, pp. 1867–1875, Nov.
1980.

[15] N. Al-Dhahir and J. M. Cioffi, “Bandwidth optimization for
combined equalization and coding trancievers with emphasis
on the MMSE-DFE,” IEEE Milcom, vol. 2, pp. 471–475, Oct.
1993.

[16] P. Chow, Bandwidth optimized digital transmission techniques
for spectrally shaped channels with impulse noise, Ph.D. thesis,
Stanford University, 1993.

[17] The European Telecommunications Standards Institute, “Dig-
ital Video Broadcasting (DVB); Framing Structure, Channel
Coding and Modulation for Digital Terrestrial Television. ETSI
EN 300 744 V1.4.1,” 2001 Edition.

[18] The Institute of Electrical and Electronics Engineers, “Wire-
less LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. IEEE Std. 802.11a,” 1999 Edition.

[19] J. R. Treichler, M. G. Larimore, and J. C. Harp, “Practical
Blind Demodulators for High-Order QAM Signals,” Proceed-
ings of the IEEE, vol. 86, pp. 1907–1926, Oct. 1998.


