
NSLMS: a Proportional Weight Algorithm
for Sparse Adaptive Filters

R. K. Martin and C. R. Johnson, Jr.∗

School of Electrical Engineering
Cornell University
Ithaca, NY 14853

{frodo,johnson}@ece.cornell.edu

Abstract
In this paper we discuss a proportional weight algo-

rithm that is similar to LMS. The distinction is that
the new algorithm (called normalized sparse LMS, or
NSLMS) has a time-varying vector stepsize, whose co-
efficients are proportional to the magnitudes of the
current values of the tap estimates.

We show that when the system to be identified is
sparse, NSLMS converges faster than LMS (to the
same asymptotic MMSE for both algorithms). We
also discuss the effect of the initialization on the
performance of NSLMS.

1 Introduction
Researchers in fields such as wireless communica-

tion, echo cancellation, and underwater acoustic com-
munication have noted that transmission channels are
often sparse [1], [2], [3]. Often, sparsity means that if
the channel is represented as a finite impulse response
(FIR) filter, then there will be a few large taps, sep-
arated by many much smaller taps, as exemplified by
Figure 1. In this paper, we will use a broader defini-
tion of sparsity, which is that a given tap in a sparse
channel has a high probability of being small and a
low probability of being high. When there is any am-
biguity, these two definitions can be called “conven-
tional sparsity” and “probabilistic sparsity,” respec-
tively, and in general we will use “sparsity” to refer
to the latter definition. A conventionally sparse filter
is also probabilistically sparse, but the converse is not
necessarily true.

Typical adaptive filter algorithms such as the Least
Mean Square (LMS) algorithm, the Constant Modulus
Algorithm (CMA), and Decision Directed (DD) algo-
rithms do not exploit this a priori information. Many

∗This work was supported in part by NSF grant ECS-
9811297, Applied Signal Technology, and NxtWave Communi-
cations.

0 50 100 150 200 250 300 350 400
−70

−60

−50

−40

−30

−20

−10

0

tap index

ta
p

m
ag

ni
tu

de
, i

n
dB

Figure 1: Example of a conventionally sparse channel.

researchers have tried to modify existing algorithms
or create new ones, with the intent to reduce the com-
plexity or to improve performance. A summary of this
work can be found in Chapter 2 of [4].

These approaches to sparsity can be divided into
two philosophies. Typical approaches to exploiting
sparsity are motivated by complexity reduction (at the
expense of a possible performance loss), which is of-
ten accomplished by only updating a subset of the
filter taps [1], [2], [3]. The alternate philosophy is
to improve performance at the expense of retaining a
possibly high complexity. For example, the Exponen-
tiated Gradient (EG) algorithm [5] has recently been
shown to have better performance than typical gradi-
ent methods when the target weight vector is sparse
[6], [7], though it does not decrease the required com-
plexity. Our approach in this paper is similar. We will
propose an algorithm similar in form to LMS (but with
slightly higher complexity) that performs better than
LMS when the target system is sparse.

2 System model and algorithm
Consider a standard channel identification (or

equalization) setting, where w is a length N vector
representing the channel estimate (or equalizer) and
w∗ is the optimal value of the unknown system. The
output of the adapted filter yk, the desired signal dk,
and the error signal are generated according to

yk = XT
k wk

dk = XT
k w∗

ek = dk − yk,

(1)

where Xk = [x(k) · · ·x(k −N + 1)] is the regressor of
the input to w and w∗. We need not assume dk is
generated by an FIR parameterization, but it greatly
simplifies the analysis. The most common algorithm
for determining w is the LMS algorithm,

wk+1 = wk − µ 5̂k

= wk + µ ekXk,
(2)

where 5̂k is the estimate of the gradient of the MSE
cost surface at time k with respect to wk. Now con-
sider the vector update rule

wk+1 = wk − µ D 5̂k, (3)

where D is a diagonal matrix which may depend on
the current value of the weight estimates, w. This is a
more general form of the LMS update rule (for which
D = I). Note that µD is effectively a time-varying
vector stepsize.

Many new algorithms of the form of (3) were intro-
duced in [8] and [4]. The algorithm we will consider in
this paper was introduced in [4], and is called “Nor-
malized Sparse LMS”, or NSLMS. The name was cho-
sen since the algorithm was found to perform well in
sparse environments, though in this paper we consider
non-sparse environments as well.

NSLMS is defined by the parameterization of D as

Dii =
|wi

k|+ ε

AVG(|wj
k|+ ε)

, (4)

where AVG(.) means 1
N

∑N
j=1(.), ε is a small constant,

and the off-diagonal elements of D are zero. The cor-
responding NSLMS algorithm is

wi
k+1 = wi

k + µ

(
|wi

k|+ ε

AVG(|wj
k|+ ε)

)
ek xi

k. (5)

The essential advantage of (5) is that large taps get
large updates, and small taps get small updates.

Heuristically, this says that the MSE should decrease
rapidly, since the taps currently perceived to be impor-
tant (i.e. the largest) get an advantage, though this is
at the expense of the less important (i.e. smaller) taps.
(Note that there is some similarity between NSLMS
and the EG± algorithm in equations (3) and (4) of
[6].) There is of course a disadvantage: if the optimal
weight vector changes drastically, then the estimate
will temporarily have the wrong impression of which
taps are important. Fortunately, gradual changes do
not cause such an effect.

There are three key points to note regarding (5).
First of all, the denominator in (4) was chosen to keep
the sum over i of the effective stepsizes (µDii) constant
as the actual weights vary. This keeps the sum of
the stepsizes from becoming small near the origin (as
it would without normalization). The second point
is that the term ε keeps the stepsizes of individual
taps from going to zero as individual taps go to zero.
The third point is that according to equations given
in [6], [8], and [9], NSLMS and LMS have the same
asymptotic MSE, so long as the stepsize µ is the same
for both algorithms.

Section 3 analytically characterizes the situations in
which NSLMS outperforms LMS, in terms of conver-
gence speed. Note that this is a fair comparison, since
the two algorithms have the same asymptotic MSE.
Section 4 compares the complexity of implementing
LMS versus NSLMS. Section 5 provides simulations
of situations in which NSLMS performs better and in
which LMS performs better, and Section 6 concludes.

3 Analysis
In this section, we will determine the regions of the

parameter space in which NSLMS moves faster than
LMS. We will perform this analysis in the error space,
vk = wk−w∗, and we will consider the average system
(i.e. replace the estimate of the gradient with the true
gradient). The general update equation becomes

vk+1 = (I − µDR) vk,

where D = I for LMS. Define the change in the error
vector from time k to time k + 1 by

∆vk = −µ D R vk.

The MSE’s at times k and k + 1 are [9]

ξk = vT
k R vk,

ξk+1 = (vk + ∆vk)T R (vk + ∆vk).
This means that if we are at wk at time k, then the
change in the MSE (ξk+1 − ξk) will be

(∆ξ)k = (vk + ∆vk)T R (vk + ∆vk)− vT
k R vk

= −µvT
k R(2D − µDRD)R vk.

(6)

If we assume µ is small, then we get

(∆ξ)k = −2µvT
k R D R vk. (7)

NSLMS will move faster than LMS when
(∆ξ)NSLMS < (∆ξ)LMS (remember ∆ξ < 0).
Dividing by −2µ, this occurs when

vT
k R (D − I) R vk > 0 (8)

Henceforth, we will drop the k’s for simplicity. To
visualize the results, consider the case N = 2. Let the
input autocorrelation be

R =
[

1 β
β 1

]
. (9)

The 1’s on the diagonal amount to assuming the in-
put has unit power, E

[
x2(k)

]
= 1. Since β =

E [x(k)x(k − 1)], we must have |β| ≤ 1, with equal-
ity only in the degenerate case. Then (8) becomes

[
v1 v2

] [
1 β
β 1

]((|w1| − |w2|
|w1|+ |w2|+ 2ε

)

·
[

1 0
0 −1

])[
1 β
β 1

] [
v1

v2

]
> 0

(10)

Since |w1| + |w2| + 2ε > 0, we can multiply it out.
Simplifying what remains yields

(|w1| − |w2|)
(
1− β2

) (
v2
1 − v2

2

)
> 0. (11)

Recall that |β| ≤ 1, so
(
1− β2

)
is always positive (or

zero in the degenerate case). Since vi = wi − w∗i , the
condition for NSLMS to be faster than LMS (for the
case n = 2) is

(|w1| − |w2|) ·
(
(w1 − w∗1)2 − (w2 − w∗2)2

)
> 0. (12)

Since
(
w2

1 − w2
2

)
has the same sign as (|w1| − |w2|), we

can factor this condition as

(w1 + w2) · [(w1 − w∗1) + (w2 − w∗2)]
· (w1 − w2) · [(w1 − w∗1)− (w2 − w∗2)] > 0.

(13)

For this to be positive, an even number of the factors
must be positive. Thus, the plane should be divided
by four lines:

w2 = w1,

w2 = −w1,

w2 = w∗2 + (w1 − w∗1),
w2 = w∗2 − (w1 − w∗1).

(14)

A plot of the region in which NSLMS is faster than
LMS is given in Figure 2, where the optimal weight

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

W
1

W
2

Region in which NSLMS is faster than LMS

Figure 2: Region (shaded) in which NSLMS outper-
forms LMS. The circle is the true weight vector w∗.

vector w∗ = [1, 0.1] is marked by a circle. If you are in
the shaded region at time k, then the decrease in MSE
from time k to time k + 1 will be larger for NSLMS.

There are two points to make regarding Figure 2.
The first is that if we initialize at the origin, the path
that NSLMS traces out on its way to the optimal so-
lution will be contained within the central shaded dia-
mond, indicating that NSLMS moves faster than LMS
along the entirety of the path, and thus converges
faster. The second point is that NSLMS displays a
directionality. That is, near the optimal solution, the
speed of the algorithm will depend upon which param-
eter has a larger error. If the large tap has a larger
error (i.e., an offset mostly in the horizontal direction),
then the algorithm will converge quickly. If the small
tap has a larger error (i.e., an offset mostly in the
vertical direction), then the algorithm will converge
slowly.

Now consider larger values of n. The analysis be-
comes intractable unless we assume R = I. By an
analysis similar to that above, it can be shown that
NSLMS is the faster algorithm when

n∑

i=1

(wi − w∗i)2
n∑

j=1

(|wi| − |wj |) > 0. (15)

(Compare to (11) with β = 0, n = 2.) In Figure 2,
the line connecting the origin and the optimal weight
vector is contained entirely within the shaded region.
This is also true for n > 2. To see this, note that the
line in question consists of all w such that w = αw∗.

Then (15) becomes

|α| (α− 1)2
n∑

i=1

(w∗i)2
n∑

j=1

(|w∗i | −
∣∣w∗j

∣∣) > 0. (16)

We can ignore |α| (α− 1)2 since it is non-negative. It
can then be shown that (16) is equivalent to

n∑

i=2

i−1∑

j=1

(|w∗i | −
∣∣w∗j

∣∣)
[
(w∗i)2 − (

w∗j
)2

]
> 0. (17)

Note that for a given term in the summation, the first
factor has the same sign as the second factor, so each
term in the summation is non-negative. Thus, the con-
dition is always met (except sometimes the summation
could be zero, meaning both algorithms move at the
same speed). What we have shown is that for arbi-
trary n, the NSLMS update is better than the LMS
update if the current weight vector estimate lies be-
tween the origin and the optimal weight vector. If
we initialize at the origin, the weight vector will be
relatively close to this line (and in fact when R = I,
LMS moves exactly along this line, and the similarity
of LMS and NSLMS suggests that NSLMS will stay
near this line), so this result suggests that for a zero
initialization, NSLMS will reach the optimal setting
faster than LMS (with the same asymptotic MSE).

4 Complexity
In a hardware implementation, we must consider

the number of additions, multiplications, and divisions
separately (rather than just counting “flops”, as in a
software simulation). In LMS, to compute yk and ek,
we must compute a dot product of size n and perform
an additional subtraction, which requires n additions
and n multiplications. The update rule for each time
step requires one multiplication to compute µ·ek, then
another n multiplications and n additions to multiply
this by Xk and add it to wk. The total complexity
(per iteration) of LMS is shown in Table 1.

We can rewrite the NSLMS update as

wi
k+1 = wi

k +

(
µ̂ ek∑

j |wj
k|+ ε̂

)
(|wi

k|+ ε
)

xi
k, (18)

where µ̂ = nµ and ε̂ = nε. We can store ε̂ in memory
to save 1 multiplication per iteration. Assuming the
parameters are real (which simplifies calculating |wj |),
we must expend an additional n additions and a single
division to determine the first quantity in parenthesis.
We also need an additional n multiplications and ad-
ditions to compute (|wi|+ ε) xi

k (one each for each i),
so NSLMS takes 2n additions, n multiplications, and

Table 1: Complexity per iteration.
LMS NSLMS

Additions 2n 4n
Multiplications 2n+1 3n+1

Divisions 0 1

0 1000 2000 3000 4000 5000 6000 7000

10
−3

10
−2

10
−1

10
0

Mean Squared Error for a sparse channel

Symbol Number

M
S

E

LMS

NSLMS

Channel

Figure 3: MSE vs. time for LMS and NSLMS for a
sparse channel.

a division in addition to the complexity of plain LMS.
This is shown in Table 1.

The use of a division is not wholly unprecedented
among the LMS family; normalized LMS (NLMS) [1]
uses normalization also, but with respect to the input
X rather than the weight vector w.

5 Simulations
Figure 3 shows the MSE vs. time for both

algorithms, when the channel is sparse: w∗ =
[0.1, 0, 1,−0.5, 0, 0, 0, 0, 0, 0.1]. Initialization was at
the origin, µ = 0.001, and ε = 1

16 = 0.0625. Ob-
serve that for this channel, NSLMS converges much
faster than LMS. We can think of NSLMS as dividing
its stepsize up among the different taps. If there are
only a few large taps, they get the lion’s share of the
stepsize, and can move very quickly. Of course the
large number of small taps will all move slowly, but
small taps are less significant in terms of reducing the
error (if their optimal values are also small).

Figure 4 shows the MSE vs. time for both algo-
rithms, averaged over 200 random ten-tap channels.
Each channel tap of each ensemble member was cho-
sen from a uniform distribution over [−1, 1], leading

0 5000 10000 15000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Mean Squared Error, averaged over 200 runs

Symbol Number

M
S

E

LMS
NSLMS

Figure 4: MSE vs. time for LMS and NSLMS, aver-
aged over 200 random (non-sparse) channels.

to non-sparse channels in general. The initializations
were all at the origin. The point of this plot is that
for non-sparse channels, NSLMS suffers a slight per-
formance loss compared to LMS. The reason NSLMS
does not excel for non-sparse channels is that the step-
size is rationed out to many large taps, so each large
tap only gets a small benefit. The small taps still move
slowly, so the small increase in speed of the large taps
is more or less matched by the small decrease in speed
of the smaller taps. For a visual interpretation, imag-
ine moving the circle in Figure 2 to (0.5, 0.5) (which
is a non-sparse system). Then the central diamond
disappears entirely, so NSLMS will move slower than
LMS along the path from the origin to (0.5, 0.5).

From these results, it is evident that NSLMS can
achieve performance gains over LMS in sparse environ-
ments. However, in non-sparse environments, NSLMS
may perform worse than LMS.

6 Conclusions
We have introduced the normalized sparse LMS al-

gorithm (NSLMS), which is obtained from LMS by
modifying the stepsize to be a time-varying vector
stepsize. We have shown analytically and via sim-
ulations that if the system is sparse and the initial-
ization is at the origin, then NSLMS will converge
to the optimal solution faster than LMS for the same
asymptotic total MSE; and if the system is not sparse,
NSLMS converges slower than LMS. The faster speed
of NSLMS is achieved at the expense of an increase in
complexity; notably, there is a division in each itera-
tion of the update routine, which can be anathema for
a hardware implementation.

Acknowledgments
The authors would like to thank Bill Sethares (Uni-

versity of Wisconsin) and Bob Williamson (Australian
National University) for their work on the precursor
to this paper [8], and Jai Balakrishnan and Wonzoo
Chung from the Cornell University Blind Equalization
Research Group for their comments.

References
[1] T. Aboulnasr and K. Mayyas, “Complexity Reduc-

tion of the NLMS Algorithm via Selective Coeffi-
cient Update,” IEEE Transactions on Signal Pro-
cessing, vol. 47, no. 5, pp. 1421–1424, May 1999.

[2] S. Ariyavisitakul, N. R. Sollenberger, and L. J.
Greenstein, “Tap-Selectable Decision-Feedback
Equalization,” IEEE Transactions on Communi-
cations, vol. 45, no. 12, pp. 1497–1500, Dec. 1997.

[3] T. J. Endres, R. A. Casas, S. N. Hulyalkar, and
C. H. Strolle, “On Sparse Equalization Using
Mean-Square-Error and Constant Modulus Crite-
ria,” in The 34th Annual Conference on Informa-
tion Sciences and Systems, Princeton, NJ, 2000,
vol. 1, pp. TA7b–7–12.

[4] R. K. Martin, “Exploiting Sparsity in Adaptive
Filters,” M.S. thesis, Cornell University, 2001.

[5] J. Kivinen and M. K. Warmuth, “Exponentiated
Gradient Versus Gradient Descent for Linear Pre-
dictors,” Information and Computation, vol. 132,
no. 1, pp. 1–64, Jan. 1997.

[6] S. I. Hill and R. C. Williamson, “Convergence
of Exponentiated Gradient Algorithms,” IEEE
Transactions on Signal Processing, vol. 49, no. 6,
pp. 1208–1215, June 2001.

[7] R. E. Mahony and R. C. Williamson, “Riemannian
Structure of Some New Gradient Descent Learning
Algorithms,” in Adaptive Systems for Signal Pro-
cessing, Communication and Control Symposium,
Lake Louise, Alberta, Canada, 2000, pp. 197–202.

[8] R. K. Martin, W. A. Sethares, R. C. Williamson,
and C. R. Johnson, Jr., “Exploiting Sparsity in
Adaptive Filters,” in The 2001 Conference on In-
formation Sciences and Systems, Baltimore, MD,
2001.

[9] B. Widrow, J. McCool, M. G. Larimore, and
C. R. Johnson, Jr., “Stationary and Nonstation-
ary Learning Characteristics of the LMS Adaptive
Filter,” Proceedings of the IEEE, vol. 64, no. 8,
pp. 1151–1162, Aug. 1976.

