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Abstract — This paper studies a class of algorithms
called Natural Gradient (NG) algorithms, and their
approximations, known as ANG algorithms. The
LMS algorithm is derived within the NG framework,
and a family of LMS variants that exploit sparsity is
derived.

Mean squared error (MSE) analysis of the family

of ANG algorithms is provided, and it is shown that if

the system is sparse, then the new algorithms will of-

ten converge faster for a given total asymptotic MSE.

Simulations are provided to confirm the analysis. In

addition, Bayesian priors matching the statistics of a

database of real channels are given. Actual channels

are identified by algorithms that exploit these priors

and by LMS, showing a realistic application of these

algorithms.

I. Introduction

Transmission channels are often sparse, meaning that most
of the taps are small and a few taps are large. Optimal equaliz-
ers often reflect this sparsity, and typical equalization methods
such as the Least Mean Square (LMS) algorithm, the Constant
Modulus Algorithm (CMA), and the Decision Directed (DD)
algorithm do not exploit this a priori information. Typical ap-
proaches to exploiting sparsity are motivated by complexity
reduction (at the expense of a small performance loss), which
is often accomplished by only updating a subset of the channel
model or equalizer taps [1], [2]. In constrast, the Exponenti-
ated Gradient (EG) algorithm [3] has recently been shown to
have better performance than typical gradient methods when
the target weight vector is sparse [4], [5], though it does not re-
quire fewer computations than LMS. We will study algorithms
that perform similar to the EG algorithm.

This paper studies a general class of algorithms known as
approximate natural gradient (ANG) algorithms, including
variants of the EG algorithm. Section II gives a few exam-
ples of these algorithms, and gives intuitive reasons for why
they are sometimes preferable to standard algorithms such as
LMS. Section III analyzes the asymptotic MSE of ANG al-
gorithms. Section IV shows how (Bayesian) prior knowledge
of the distribution of the unknown parameters can be used to
create natural gradient (NG) algorithms [6], and how a suit-
able approximation to the general NG algorithm yields the
ANG algorithms which we are studying. Section V uses this
framework to formally derive a few algorithms. Section VI
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shows the performance of ANG algorithms as used to identify
actual transmission channels, and Section VII concludes.

II. Motivation

The goal in this section is to motivate the study of EG-
like algorithms. The simplest of the EG algorithms (equation
(3.5) in [3]) estimates yk by

ŷk =
∑

i

wi
kxi

k. (1)

In this section, the weights are assumed positive, though this
assumption is relaxed in Section V. The weight vector wk =
[w1

k, ..., wN
k ] is updated at each iteration k by

wi
k+1 = wi

k + µ wi
k (yk − ŷk) xi

k (2)

where µ is a small positive stepsize. This can be derived from
the EG perspective by an approximation (discussed in section
4.4 of [3]) of the general update strategy

wi
k+1 = wi

k exp(µ
∂L(yk, ŷk)

∂wi
k

) (3)

where the loss (or cost) function is

L(yk, ŷk) =
1

2
(yk − ŷk)2, (4)

The approximation involves taking a Taylor series expansion
of the exponential and dropping terms of µ2 or higher.

One of the main contributions of this paper is showing how
EG-like algorithms can be derived as gradient descent algo-
rithms. Consider (2), for example. It can also be derived by
estimating yk by equation (1), but with

wi
k = γ(zi

k) =
1

4
(zi

k)2 (5)

for some parameter vector z. Now if we think of the algorithm
as adapting over z-space, we can use the Euclidean gradient
descent

zi
k+1 = zi

k − µ
∂L(yk, ŷk)

∂zi
k

. (6)

The gradient term becomes

∂L

∂(ŷk)

∂(ŷk)

∂wi
k

∂(wi
k)

∂zi
k

= −(yk − ŷk) xi
k γ̇(zi

k).

Substituting,

zi
k+1 = zi

k + µ γ̇(zi
k) (yk − ŷk) xi

k. (7)



What we are truly interested in is the effective update rule for
w, not z, since that is what is used to generate the estimate
ŷk in (1). Since

wi
k+1 = γ(zi

k+1) = γ(zi
k + small term),

a first order Taylor expansion gives the effective w update as

wi
k+1 = γ(zi

k) + γ̇(zi
k)(small term), (8)

which results in

wi
k+1 = wi

k + µ γ̇2(zi
k) (yk − ŷk) xi

k. (9)

For the γ given by (5), γ̇2(zi
k) = 1

4
(zi

k)2 = wi
k, which gives

us equation (2) once again. Thus the EG algorithm can also
be thought of as a Euclidean gradient descent algorithm, but
the gradient descent is taking place in z-space. This can be
contrasted with LMS by noting that LMS is of the form (9),
but with γ̇2(zi

k) = 1.
The effect of the extra factor of w in (2) is to scale the

stepsize independently for each parameter. When the current
estimate of wi

k is small, it’s update is small, and when the
current estimate of wi

k is large, it’s update is large. In terms
of sparsity, this means that small taps will contribute less to
the total Mean Squared Error (MSE), because they will not
be wiggling around as much.

This can be validated quantitatively. In [4], the MSE (de-
fined as E(|y − ŷ|2)) of a simple EG algorithm with a white
input signal is shown to be

ξ =

(
1 + µ

(
‖w∗‖1 − ‖w∗‖2

‖w∗‖1

)
σ2

x

)
σ2

n, (10)

where w∗ is the target weight vector, while the MSE for LMS
is

ξ =
(
1 + µNσ2

x

)
σ2

n, (11)

The key term is (||w||1 − ||w||2
||w||1 ), which provides a measure

of the sparsity of the target weight vector. When there is
considerable sparsity, this term is small, and the stepsize can
be made larger for faster convergence without adversely af-
fecting the excess MSE. When this term is large there is not
much sparsity, and the stepsize must remain small in order
not to increase the MSE. For example, consider the channel
[1, a, a, a, a, 0.5]. For |a| = 0.05, the “measure of sparsity”
equals 1.04, while for |a| = 0.5, it equals 3.07.

Again consider the alternative parameterization of the lin-
ear predictor given by (5). In most signal processing and com-
munications applications the weights are not constrained to be
positive, as is required by both methods above of deriving the
EG update rule (2). In [3], a modification called the EG± al-
gorithm is proposed for this task, but a simpler method (first
suggested in [7]) is to modify (5) to

wi
k =

1

2
sgn(zi

k) (zi
k)2 + εzi

k. (12)

The Euclidean gradient algorithm in z-space then becomes

zi
k+1 = zi

k + µ (|zi
k|+ ε) (yk − ŷk) xi

k. (13)

which allows both positive and negative values of z, and re-
tains the same kinds of sparsity and stepsize advantages as
(2). This also allows w to have positive and negative ele-
ments. The effective update rule for w is

wi
k+1 = wi

k + µ (2|wi
k|+ ε2) (yk − ŷk) xi

k. (14)

Compared to (2), the algorithm has hardly changed, though
it is now more useful for signal processing applications. The
reason for the ε is to keep the update term from vanishing
for small z. This allows initialization by zeros, and allows the
weights in the model to pass across zero if need be.

III. Analysis

This section derives a theoretical expression for the MSE
of the general class of algorithms introduced in section II, in
a fashion similar to that in [8] and [9]. Consider the vector
update rule (compare to [8]) of

wk+1 = wk + µ D (−5k +Γk), (15)

where 5k is the gradient of the cost surface at time k with
respect to wk; Γk is the gradient noise (the difference between
the true gradient and the estimate of the gradient used by the
algorithm), as in [8]; and D is a diagonal matrix. (In LMS,
D = I.) Examples of algorithms of this form can be found in
the previous section, as in equations (2), (9), and (14); and
a more general form is given in the next section, by equation
(32). In general, D depends on the current value of the weight
estimates, w, but in this section we will assume that w ∼= w∗,
which is reasonable when we are considering asymptotic MSE.

Using the definition of the error system vk = wk −w∗ and
the fact that the gradient can be expressed as 2Rvk where
R = E[XXT ] (see [9]),

vk+1 = vk + µ D (−2Rvk + Γk)

or
vk+1 = (I − 2µDR) vk + µ D Γk. (16)

At this point, [8] rotates the coordinate system by diagonaliz-
ing R. That is not feasible here, because if we diagonalize DR
to become Q−1DRQ for an appropriate Q, Q−1DQ will not
necessarily be diagonal.

To determine the MSE, we need to find the covariance ma-
trix of vk. Define C = E[vk vT

k ], and assume the system is
near convergence (hence cov(vk+1) ∼= cov(vk)), then

C = (I − 2µDR) C (I − 2µDR)T + µ2Dcov(Γk)D.

It is easily shown (see [8]) that cov(Γk) = 4ξminR, where
ξmin is the minimum MSE (the MSE for w = w∗ exactly, and
µ = 0). Inserting this and absorbing the 2’s and the 4 into µ
and µ2 gives

C = (I − µDR) C (I − µDR)T + µ2 ξmin DRD. (17)

The (µDR)2 term can be dropped on the grounds that µ is
very small. (An exact solution is given in [10].) Simplifying
yields

C(−DR)T + (−DR) C ∼= −(µ ξmin DRD). (18)

The negative signs have been included to cast Equation (18)
in the form of the Lyapunov equation [11]. In general, this
equation cannot be solved for C in closed form. However, due
to the structure of the right hand side, a solution is possible,
and is given by

C =
1

2
µ ξmin D. (19)

An exact computation of the solution to (17) without the
approximation leading to (18) is given in [10], namely

C =
1

2
µ ξmin D

(
I − µ

2
RD

)−1

, (20)



which holds provided that all eigenvalues of µ
2
RD are less than

one in magnitude. We see that for small µ, the solution given
by (19) is indeed valid. For simplicity, (19) will henceforth be
used instead of (20).

Widrow et. al. [9] show that the average excess MSE for
standard LMS is given by

E[v́T
k Λ v́k] =

n∑
p=1

λpE[(v́p,k)2]

where Q−1RQ = Λ, v́k = Q−1vk, and λp is the pth diagonal
element of Λ. To use this, note that cov(v́) = Q−1cov(v)Q =
Q−1CQ. From (19), the theoretical MSE ξ is then

ξ = ξmin (1 +
1

2
µ

n∑
p=1

λp[Q−1 D Q]p,p) (21)

where [.]p,p indicates the pth diagonal element.
In the special case when R is diagonal, Q reduces to I,

yielding

ξ = ξmin (1 +
1

2
µtr(DR)). (22)

When D is just the Jacobian used by [4], this simplifies to the
result derived in [4]. However, R is often not diagonal, such
as in an equalization setting.

Equation (21) provides a basis for a fair comparison be-
tween traditional LMS and ANG algorithms. For a given al-
gorithm and system, it is possible to compute the asymptotic
total MSE as a function of µ. The stepsizes for the different
algorithms can then be adjusted such that at convergence, all
have the same MSE. Then other factors (such as convergence
time) can be compared fairly.

IV. Exploiting Prior Knowledge

This section derives a general form of reparameterized gra-
dient algorithms that can be understood in terms of prior
knowledge or in terms of an underlying cost function. Let

wi
k = γ(zi

k) (23)

as in Equation 8 of [4], with γ(zi
k) invertible and differentiable

over its domain, though isolated points of discontinuity may
be allowed. Each of the different algorithms will have differ-
ent L(·, ·) and/or different γ(·) functions. The algorithms we
consider will be algorithms which update the entries of z, and
thus w.

Mahony and Williamson [7] provide a general discussion of
how to encode prior knowledge into learning algorithms using
a geometric “preferential structure.” The essence of this is to
define a metric so that the algorithm evolves over an error
surface that is shaped to incorporate the known prior infor-
mation. For instance, if the ith component is considered to
be reliable while the jth component is not, then the algorithm
should take larger steps in the jth direction.

Mathematically, the preferential metric is a family of func-
tions φi(z

i) which represent the a priori knowledge (the
Bayesian prior) of the ith parameter. The idea of a Bayesian
prior is that an unknown parameter that is to be estimated is
viewed as a random variable with a (known) probability den-
sity function [12]. In this case, φi(z

i) may be viewed as the
probability density function (pdf) for the unknown parameter
zi, although we will not insist that the integral of φi(z

i) be
normalizable to 1.

Using this concept of priors, Mahony and Williamson
[7] show that when the standard parameterization is used
(γ(zi

k) = zi
k, so w = z) the “natural gradient” (NG) algo-

rithm is

zi
k+1 = Φ−1

i ( Φi(z
i
k)− µ

∂L

∂zi
k

1

φi(zi
k)

) (24)

where Φ is the indefinite integral of φ.
The updates of the NG algorithm (24) can be quite com-

plicated due to the presence of the nonlinearities Φ and Φ−1.
A more tractable algorithm can be derived as a first order
approximation to (24) by rewriting the update as

Φi(z
i
k+1) = Φi(z

i
k)− µ

∂L

∂zi
k

1

φi(zi
k)

. (25)

Expanding Φi(z
i
k+1) in a Taylor Series about zi

k gives

Φi(z
i
k+1) = Φi(z

i
k) + φ(zi

k)(zi
k+1 − zi

k) + o(µ2),

When µ is sufficiently small, the higher order terms may be
neglected. Substituting into the left hand side of (25) gives

Φi(z
i
k) + φ(zi

k)(zi
k+1 − zi

k) = Φi(z
i
k)− µ

∂L

∂zi
k

1

φi(zi
k)

.

Finally, dividing both sides by φ(wi
k) and rearranging gives

the algorithm

zi
k+1 = zi

k − µ ∂L
∂zi

k

1
φ2

i
(zi

k
)
. (26)

At this point, we are still assuming γ(z) = z, so all of the
z’s in equation (26) are equivalent to w’s. This “approximate
natural gradient” (ANG) algorithm may be preferred to (24)
in applications since the updates are simpler and can be more
readily analyzed.

The use of (26) requires knowledge of the Bayesian prior of
the target weight vector, in the form of φi(z

i). For example,
the notion of sparsity can be captured by the supposition that
with high probability the tap will have have a small value,
while with low probability the tap will have a large value.
Still assuming z > 0, One prior that implies sparsity is

φ(z) =
1√
z
, (27)

since it is large for small z and small for large z. As will be
shown in Section V, this prior leads to algorithm (2).

Suppose we have an ANG algorithm of the form (26), with
γ(z) = z. The same ANG algorithm can also be derived as a
Euclidean gradient descent (φ(z) = 1) on a modified cost func-
tion (i.e. γ(z) not necessarily the identity). This is a bit subtle
– since the parameterizations are different, the algorithms may
be evolving over different z-spaces, but the effective evolution
in w-space will be the same. Thus, the prior can be stated
directly in terms of φ, indirectly in terms of γ, or as some
combination of the two. The following proposition makes this
precise.

Proposition IV.1 Let φ and γ represent the priors and pa-
rameterizations of an ANG algorithm (26) with ŷ parameter-
ized as in (23), and let the cost function be given by L(y, ŷ).
If there are functions γ̄ and φ̄ with

γ̇2

φ2
=

˙̄γ2

φ̄2
, (28)



then γ̄ and φ̄ are an alternate set of priors and parameteriza-
tions that yield the same effective update rule for w.

Proof: From (26), the ANG corresponding to φ, γ, and L(y, ŷ)
is

zi
k+1 = zi

k − µ
∂L

∂zi
k

1

φ2
i (z

i
k)

.

Applying the chain rule yields

zi
k+1 = zi

k − µ
∂L

∂ŷk

γ̇(zi
k)

φ2
i (z

i
k)

xi
k.

Note that γ appears here implicitly, since L is a function of ŷk,
which in turn is a function of γ. Since y is generated according
to ŷk =

∑
i
wi

kxi
k, what we ought to compare is the effective

change of w as z changes. Note that

wi
k+1 = γ(zi

k+1) = γ(zi
k + small term),

so a first order Taylor expansion gives

wi
k+1 = γ(zi

k) + γ̇(zi
k)(small term), (29)

which results in

wi
k+1 = wi

k + µ
∂L

∂ŷk
xi

k

(
γ̇2(zi

k)

φ2
i (z

i
k)

)
. (30)

Similarly, the ANG corresponding to γ̄ and φ̄ is

wi
k+1 = wi

k + µ
∂L

∂ŷk
xi

k

(
˙̄γ
2
(zi

k)

φ̄i
2
(zi

k)

)
. (31)

By (28), these are the same algorithm. ∆
Note that the left-hand and right-hand sides of (28) are

both functions of z, yet z is different for each side since the
parameterization is different. Thus, both sides of the equa-
tion must be separately represented as functions of w, then
compared. For example, the algorithm (2) can be thought of
as having the standard parameterization w = γ1(z) = z and
prior φ1(z) = 1√

z
. Thus,

γ̇1
2

φ2
1

=
1

φ2
1(z)

=
1

φ2
1(w)

= w.

On the other hand, if we reparameterize w via γ2(z) = 1
4
z2

and use the uniform prior of φ2(z) = 1, we have

γ̇2
2

φ2
2

= γ̇2
2(z) =

1

4
z2 = w.

These two ratios used z differently, but in terms of w, the
ratios are the same. Consequently, the update rules given by
equations (2) and (9) were the same.

In the course of our proof, we have shown that algorithms
incorporating priors and reparameterizations can be written
in the general form of (15) (compare to (30), where Dk is given
by

[Dk]i,j =

(
∂γi

∂(zj
k)

)2 (
1

φi(z
j
k)

)2

. (32)

This shows how ANG algorithms can be analyzed using the
framework of Section III. Also note the similarity between
Dk and what Equation (15) of [4] calls the Jacobian. The
difference is that the Jacobian in [4] only includes the first
factor from (32), whereas our use here is intended to capture
the effects of the prior as well.

Using this proposition, the ANG may be derivable from
an alternative prior φ using the standard parameterization
γ(z) = z. This prior will be called the ‘true’ prior because
it represents the prior beliefs without the confounding influ-
ence of the reparameterization function. Alternatively, the
ANG may be derivable from a reparameterization using the
standard prior φ = 1. In this case, γ can be used to give the
cost function over which the algorithm is evolving (in z-space)
under the standard Euclidean gradient. These are useful be-
cause sometimes it is easier to understand the behavior of an
algorithm from the viewpoint of priors, while sometimes it is
easier from the perspective of the cost function. This is an im-
portant feature of the ANG algorithms, since this translation
is not possible with the NG algorithms.

Even so, this proposition should be used with caution.
When we obtained equation (29), we ignored terms of order µ2

or higher. However, if γ̇(zi
k) is small compared to µ, which of-

ten occurs near z = 0, the higher order terms are of compara-
ble magnitude to the first order term, and the approximations
used in the proposition are invalid.

V. Algorithms

This section uses the framework of the previous section to
derive standard algorithms and new algorithms that exploit
sparsity. The prior belief that corresponds to the LMS algo-
rithm is that all parameter values are equally likely. Hence
φ(z) = 1, Φ(z) = z, and Φ−1(v) = v. The cost function is the
mean square cost L(yk, ŷk) = (yk−ŷk)2, and the parameteriza-
tion is the standard one, γ(z) = z. Hence ∂L

∂wi
k

= 2(yk− ŷk)xi
k.

Substituting into (24) or (26) gives the LMS algorithm. (In
general, when φ(z) = 1, there is no difference between the NG
and the ANG algorithms.)

Now consider the prior φ(z) = 1
z
. This means Φ(z) = ln(z)

and Φ−1(v) = exp(v). Using the standard MSE cost of (4)
and the standard parameterization γ(z) = z gives the NG
algorithm

zi
k+1 = exp(ln(zi

k) + µ(yk − ŷk)xi
kzi

k)

which can be rewritten

zi
k+1 = zi

k exp(µ zi
k (yk − ŷk) xi

k). (33)

This is called the exponentiated gradient algorithm in [5]. The
associated ANG algorithm is

zi
k+1 = zi

k + µ (zi
k)2 (yk − ŷk) xi

k. (34)

An equivalent way to derive this ANG algorithm is to let
γ(z) = exp(z) and φ(z) = 1. In this case, both the NG and
ANG algorithms are

zi
k+1 = zi

k + µ exp(zi
k) (yk − ŷk) xi

k. (35)

To see the equivalence of (34) and (35), convert them into
w-space. (34) is already in that format (since there we had
w = z), so expand (35) in a Taylor series as in (8). This yields

wi
k+1 = wi

k + µ (exp(zi
k))2 (yk − ŷk) xi

k.

Since w = γ(z) = exp(z), this is effectively

wi
k+1 = wi

k + µ (wi
k)2 (yk − ŷk) xi

k,

which is the same as equation (34).



Now consider an algorithm with γ(z) = z and a prior
φ(z) = 1√

z
. The prior is qualitatively similar to the previ-

ous example, but slightly different. The NG update is

zi
k+1 =

(√
zi

k +
1

2
µ
√

zi
k(yk − ŷk)xi

k

)2

,

and the simpler ANG update is

zi
k+1 = zi

k + µ zi
k (yk − ŷk) xi

k. (36)

This is exactly the example introduced in Section II, since
w = z. An equivalent way to derive this ANG algorithm
comes from setting γ(z) = 1

4
z2 and φ(z) = 1. This leads to

NG and ANG algorithms given by

zi
k+1 = zi

k + µ (
1

2
zi

k) (yk − ŷk) xi
k.

Converting the ANG algorithm into w-space as in (8) gives

wi
k+1 = wi

k + µ (
1

2
zi

k)2 (yk − ŷk) xi
k. (37)

Since ( 1
2
zi

k)2 = 1
4
(zi

k)2 = wi
k, equations (36) and (37) are the

same in w-space. This was also derived in Section II, although
the framework here is more formal.

Now we will modify γ(z) to allow both positive and negative
weights. Suppose that a prior form of φ(z) = 1√

z
(for posi-

tive weights) appears to fit well. Then the discussion above
suggests that an algorithm of the general form of (2) may be
effective in a sparse environment. As discussed in Section II,
this is equivalent to a Euclidean gradient descent in z-space
with γ(z) = 1

4
z2. In order to allow positive and negative

coefficients as well as to forbid the algorithm from becoming
locked at w = 0, the parameterization can modified to be

γ(z) =
1

4
sgn(z) (z)2 +

√
εz (38)

where ε > 0. What is the effect of this modification?
Since γ̇(z) = 1

2
|z| +

√
ε > 0, this is always an increas-

ing function, and equilibrium in the corresponding ANG al-
gorithm can only occur when yk = ŷk (or in the degenerate
case when x = 0). Specifically, ε keeps the update term from
vanishing for small z, which would have prevented coefficients
from changing sign. Now consider the question of how such
modifications influence the sparsity prior. The parameteriza-
tion given by (38) and a Euclidean gradient over z (φ(z) = 1)

is equivalent to ˙̄γ(z) = 1 and φ̄(z) =
√

1
|z|+ε

by Proposition

IV.1. This can be shown as follows. Note that

(γ̇(z))2 =
1

4
|z|2 +

√
ε|z|+ ε, (39)

and

|γ| = 1

4
|z|2 +

√
ε|z|. (40)

Thus, (
γ̇

φ

)2

= (γ̇(z))2 = |γ|+ ε = |w|+ ε, (41)

and we must also have
(

˙̄γ

φ̄

)2

= |w|+ ε. (42)

If we choose γ̄(z) = z, then ˙̄γ = 1 and w = z, so

1

(φ̄(z))2
= |z|+ ε. (43)
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This yields φ̄(z) =
√

1
|z|+ε

. Compared to the previous prior

of φ(z) =
√

1
z
, there is little difference. The ε is a small

modification that only changes the algorithm near z = 0. The
resulting ANG algorithm (which we will call “signed sparse
LMS”, since it allows for weights of either sign of ±) is

wi
k+1 = wi

k + µ (|wi
k|+ ε) (yk − ŷk) xi

k. (44)

Similar derivations can be done for algorithms using the
CMA or decision directed cost functions, or for algorithms
using ARMA model parameterizations. For a full treatment,
see [10].

VI. Performance on Measured Channels

In March 2000, researchers from Cornell University, Uni-
versity of Wisconsin, Australian National University, Applied
Signal Technology, and NxtWave Communications met in
Philadelphia for field measurements of digital television sig-
nals. The results have been compiled into a database of iden-
tified channels and associated MMSE decision feedback equal-
izers. The data from 47 of these channels were used to produce
histograms of the magnitudes of the equalizer coefficients. The
histograms of the forward filter of the equalizer are well mod-
eled by both exponential priors (c e−α|z|) and inverse power
law (IPL) priors ( c

|z|α+ε
). The feedback filter was well mod-

eled by an exponential prior, and the channel was well modeled
by an IPL prior.

The top plot in Figure 1 shows a histogram of the magni-
tudes of all the complex taps from the forward equalizers for
all of the channels. The bottom plot in Figure 1 is similar,
but it is for the (real) feedback equalizer.

Figure 2 shows the histogram of the magnitudes of the com-
plex channel taps, as well as exponential and IPL curves that
have been fitted to the histogram. Note the logarithmic scale.

The gain constant c appears in the update rule in such a
way that it can be absorbed by the stepsize. The parameter
ε in the IPL prior and the α that appears in the exponential
prior are both subject to changes in the scale of w. Thus,
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Figure 2: Histogram and curve fits for the channel.

a different receiver with a different automatic gain controller
will have different values for these parameters.

It is easy to extend the algorithms in this paper to the
complex case. Figure 3 shows an example of identification of
one of the complex channels used for the histogram. The top
plot shows the MSE versus time for both LMS and sparse LMS
(with an IPL prior), with a variety of values of α. The bottom
plot shows the complex channel in dB scale. A large value of
ε was used, so as to speed initial convergence (since the model
is initialized to zero). Similar simulations were done using
nine other channels from the database, with almost identical
results.

VII. Conclusions

We have motivated the study of EG-like algorithms by giv-
ing intuitive reasons why they often converge faster than tra-
ditional algorithms. An analysis of the asymptotic MSE was
provided to allow a fair comparison of the algorithms, and a
framework for algorithm development was presented. Using
this framework we have derived the LMS algorithm and LMS
variants that exploit sparsity. The new algorithms were shown
to have component-wise modifications to the step size, and the
important idea is how the ANG algorithms determine these
modifications.

Simulations verify that if one has accurate knowledge of the
prior (even without knowledge of the locations of the small
taps), then substantial performance gains can be achieved,
depending on the initialization. Conversely, if a false prior is
assumed, performance degradation often occurs.

Future work may involve a more detailed approach to
choosing the stepsize when the system is unknown, analyz-
ing the stability and convergence behavior of the algorithms
in greater detail, considering equalization applications in more
depth, examining sensitivities of the algorithms to incorrect
priors, and theoretically determining the priors of a channel
from statistical propagation models.
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