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Abstract: Although blind, adaptive algorithms for equalization are widely studied,
hitherto there has been little academic attention given to blind, adaptive algo-
rithms for channel shortening. Channel shortening is needed to preserve subcarrier
orthogonality in multicarrier modulation, and it can be used to dramatically
reduce the complexity of maximum likelihood sequence estimation and multiuser
detection. This paper reviews the channel shortening problem from a tutorial
perspective, and shows how it is an extension of traditional equalization. It is
shown that traditional methods of devising blind, adaptive equalization algorithms
cannot be easily applied to the channel shortening problem. The paper concludes
with a discussion of several new property restoral algorithms that enable blind,
adaptive channel shortening. Copyright c© 2003 IFAC
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1. INTRODUCTION

The ordinary objective of communication chan-
nel equalization is to reproduce at the equalizer
output a delayed version of the channel input
sequence, with the channel output the equalizer
input. When using a linear, baud-spaced equal-
izer, this translates, in the channel-noise-free case,
to a channel and equalizer combination with a
transfer function of z−δ with δ a positive integer
and z−1 a unit sample delay.

In various applications, such as multicarrier com-
munication systems for wired (e.g. DMT for
xDSL) and wireless (e.g. OFDM for DVB and
WLAN) scenarios, the impulse response of the
channel equalizer combination need not be just a
single nonzero term. Instead a channel-equalizer
combination with an impulse response of suitably
limited duration, e.g.

∑P
i=0 hiz

−(i+δ), can be ade-

1 This work was supported in part by Applied Signal

Technology.

quate for desired system performance. The specific
values of the hi are less important (as long as
some are nonzero) than the fact that outside this
P + 1 sample window the impulse response coef-
ficients are all (nearly) zero. Generally, channel-
shortening can be achieved with a shorter equal-
izer and with less noise gain than equalization to
a single spike. An extreme example is a finite im-
pulse response (FIR) channel containing a zero on
the unit circle. A zero-forcing linear FIR equalizer
would have infinite gain at the frequency of the
channel null, thereby catastrophically amplifying
any channel noise. However, the single zero on
the unit circle could be retained in a shortened
channel.

While adaptive channel shorteners relying on
training have been developed and implemented,
prior to last year (2002) no blind method for
direct adaptive channel shortening existed. This
paper describes the channel-shortening problem
formulation as a metamorphosis from a traditional
channel equalization problem first into a model-



following inverse controller, then into a channel-
shortener. Trained adaptive algorithms for the
linear combiner format that emerges in each case
are readily proposed. The inappropriateness of es-
tablishing blind channel shortening schemes based
on decision-direction or dispersion minimization,
which were successful in producing blind channel
equalizers, will become apparent.

This paper discusses several blind, adaptive chan-
nel shorteners proposed in 2002. These algo-
rithms arose from exploitation of transmitted
signal properties found in practical communica-
tion systems; in one case whiteness (Balakrishnan
et al., 2002) and in the other an inclusion of
replicated segments (Martin et al., 2002a). Using
a classical stochastic gradient descent approach,
these algorithms are based on cost functions that
penalize deviation from some property of the sig-
nal to be recovered, and require only the equalizer
input and output to form their parameter updates
(and are therefore considered blind).

Other researchers have proposed blind, adap-
tive algorithms for systems that require channel
shortening, although these efforts have focused
on equalization, rather than channel shortening.
However, since channel shortening is the goal
rather than equalization, the use of an equalizer
is expected to yield suboptimal performance com-
pared to a channel shortener. In (Jones, 2003),
a time domain approach similar to (Martin et

al., 2002a) was proposed, but the algorithm leads
to full equalization rather than just channel short-
ening. (de Courville et al., 1996) makes use of
the common practice with OFDM of transmis-
sion of zeros on some carriers as a substitute for
training data on those carriers, again leading to a
single-spike equalization algorithm. (Romano and
Barbarossa, 2003) extended this method through
the use of frequency-hopping in the transmitter to
allow for blind, adaptive channel shortening.

2. ADAPTIVE PARAMETER ESTIMATION
PROBLEM MUTATION

We keep the description basic in drawing a thread
from traditional channel equalization to channel
shortening via model-following. The intent is to
draw attention to the issue of adaptive channel
shortening and the need for new approaches to
blind solutions.

2.1 Traditional Channel Equalization

In traditional channel equalization the goal is to
process the channel output sequence to reproduce
the channel input sequence, as depicted in Figure
1. The source s, a delayed version of which is to
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y(2) = h0s(2) + h1s(1) + h2s(0) + h3s(−1) + h4s(−2)
= h0s(10) + h1s(9) + [h2s(0) + h3s(−1) + h4s(−2)]

y(10) = h0s(10) + h1s(9) + [h2s(8) + h3s(7) + h4s(6)]

Fig. 1. Traditional Channel Equalization

be recovered so that E[e2] is minimized, takes on
values from a discrete set, e.g. {±1} or {±1,±3}.
The linear channel is presumed to have a causal,
FIR model

r(k) =
M−1
∑

j=0

cjs(k − j) (1)

with transfer function C(z−1). The output of the
channel is the received signal in the noise-free
idealization of Figure 1. The equalizer also has
a causal FIR model

y(k) =

N−1
∑

i=0

fir(k − i) (2)

with transfer function F (z−1) that filters the
received signal r(k) and produces the output y(k)
we would like to have match s(k−δ). The delayed
source recovery error e(k) for delay δ and fi values
at time k is

e(k) = s(k− δ)− y(k) = s(k− δ)−

N−1
∑

i=0

fir(k− i)

(3)

The recovery error description of (3) fits the
format of a linear combiner’s prediction error

e(k) = d(k)−XT (k)θ(k) (4)

with its difference between the desired combiner
output d and its actual output formed by the inner
product of the regressor vector X and the adapted
parameter vector θ. The definitions that match (3)
to (4) are d(k) = s(k − δ),

X(k) = [r(k) r(k − 1) ... r(k −N + 1)]T , (5)

and

θ(k) = [f0(k) f1(k) ... fN−1(k)]
T . (6)

For the linear combiner error of (4), the LMS
algorithm (Widrow and Stearns, 1985)

θ(k + 1) = θ(k) + µe(k)X(k) (7)

is a classic adaptive approach to minimization of
E[e2].

Implementing (7) requires knowledge of s(k −
δ) at the recevier. This is accomplished by the
(periodic) transmission of a prearranged training
sequence. We can use the property that the source
signal takes on only certain values, e.g. ±1, to
produce blind alternatives that do not require
explicit knowledge at the receiver of s(k − δ).
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Fig. 2. Model-Following

One strategy presumes that the (initial) equalizer
setting, while not perfectly recovering s(k − δ),
generates a signal y(k) that is close to s(k −
δ). In fact, we assume that it is close enough
so a quantizer produces error-free delayed source
recovery, i.e. Q[y(k)] = s(k − δ). For s ∈ {±1},
a sign operator serves as the quantizer Q, and
sign[y(k)] replaces s(k − δ) in e in (3) which is
substituted in (7) to produce the blind decision-
directed LMS (DDLMS) algorithm

θ(k + 1) = θ(k) + µ (Q[y(k)]− y(k))X(k). (8)

Another blind channel equalization algorithm can
be created by differently exploiting the discrete
alphabet nature of the source to be recovered.
For example, with s either 1 or −1, s2 is al-
ways 1. This suggests the cost function E[(1 −
y2(k))2]. A stochastic gradient descent minimizing
this dispersion cost yields the constant modulus
algorithm (CMA) (Treichler et al., 2001, Ch. 6)

θ(k + 1) = θ(k) + µ(1− y2(k))y(k)X(k) (9)

where y(k) = XT (k)θ(k). CMA in (9) is termed
blind because it does not need knowledge of the
specific source sequence {s} that {y} is to match.
Dispersion minimization also works for multilevel
discrete alphabet sources.

2.2 Model-Following Inverse Control

Now we will mutate the problem into a ver-
sion reminiscent of inverse control (Widrow and
Stearns, 1985, Ch. 11). Rather than cause the
transfer function of the channel-equalizer combi-
nation C(z−1)F (z−1) to equal z−δ, we will choose
to have it match a prespecified model transfer
function B(z−1), as in Figure 2. Writing the error
as

e(k) = v(k)−

N−1
∑

i=0

fir(k − i) (10)

reveals a linear combiner format. With this e,
but the same definitions of θ and X as in the
traditional channel equalization problem, LMS in
(7) provides a trained adaptive solution.

The blind algorithms DDLMS and CMA do not
survive the mutation because the signal to be
matched by y, i.e. v in Figure 2, is not drawn
from the same alphabet as the source.

2.3 Channel Shortening

We again mutate the problem. Though the model-
following schematic of Figure 2 still applies, we
no longer preselect B(z−1). Instead the objective
is only to have the channel-equalizer combination
FIR response have nonzero values only in a win-
dow P samples wide. This task only presents a
challenge if P is less than the sample width M

of the channel. Hence, the labeling of this task as
channel shortening.

If we judge our success by minimizing the mean of
the square of the model-following error e in Figure
2, we must not admit the trivial solution with the
coefficients of both F (z−1) and B(z−1) set to zero.
A simple way to enforce this constraint is to fix
bζ = 1 for some ζ. Thus,

e(k) =

P−1
∑

j=0

bj(k)s(k − j − δ)−

N−1
∑

i=0

fir(k − i)

= s(k − ζ − δ) +

P−1
∑

j=0,j 6=ζ

bj(k)s(k − j − δ)

−
N−1
∑

i=0

fir(k − i)

= s(k − ζ − δ)−XT (k)θ(k) (11)

where

X(k) = [−s(k − δ), ..., −s(k − δ − ζ + 1),

−s(k− δ − ζ − 1), ..., −s(k − δ − P + 1),

r(k), ..., r(k −N + 1)]T (12)

and

θ(k) = [b0, ..., bζ−1, bζ+1, ..., bP−1, f0, ..., fN−1]
T

(13)
Under the assumption that the preselection of
δ and ζ leads to an acceptable solution, these
definitions of e, X, and θ and (7) provide a
trained adaptive channel shortener similar to that
in (Falconer and Magee, 1973). But, just as noted
in the case of model-following, the desired output
y is no longer drawn from the source alphabet and
loses the finite-alphabet property exploited by de-
cision direction and dispersion minimization. Can
other signal properties can be used to establish a
blind channel shortener?

3. THE NEED FOR BLIND CHANNEL
SHORTENING

A primary application of channel shortening
occurs in multicarrier communication systems
(Pollet et al., 2000) present in wired digital sub-
scriber loop (DSL) and wireless local area net-
work (LAN) standards. These standards use a



cyclic prefix in the transmitted sequence. Each
data block of a prespecified length has its last
several samples prepended to the front of the
block prior to transmission. Intersymbol (and in-
tercarrier) interference is removed as long as the
length of this cyclic prefix segment is greater than
the delay spread of the channel-equalizer combi-
nation. Adaptation will be needed if the channel
is time-varying. Blind adaptation will be desirable
if the downtime for (re)training represents a large
portion of system operating activity.

Currently, in the DSL application the cyclic pre-
fix set in transmission standards is acknowl-
edged to be much shorter than the channel de-
lay spread encountered in practice. This sub-
stantiates the use of a channel shortener. How-
ever, the channel is presumed time invariant
(aside from glacially-paced, temperature-induced,
performance-degrading channel parameter drifts
which occur in practice), which obviates the need
for periodic retraining and the primary motivation
for a blind channel shortener.

In the wireless LAN application, there is general
agreement that the channel model is time-varying.
However, so far, the belief is that such schemes
will not be deployed in circumstances in which
the channel delay spread exceeds the standards-
mandated cyclic prefix. Thus, while adaptation
would be needed in a channel shortener, and a
blind scheme would be welcome, the need for a
channel shortener is typically denied.

The compelling need for a blind channel shortener
remains in the future. Based on a similar experi-
ence in the adoption of blind implementation of
traditional channel equalization, our contention is
that such a need will arise. The previous lack of
blind channel shortening schemes and our belief
in their eventual utility motivated our search for
candidate algorithms for blind channel shortening.

4. TWO PROPERTY RESTORAL
ALGORITHMS

Two signal properties that can be exploited in-
clude the traditonally assumed whiteness of the
transmitted source sequence (especially common
with coded and scrambled signals) and the cyclic
prefix mentioned that is common with multicar-
rier system application of a channel shortener.
Restoring each of these two properties generates
a candidate blind channel shortener.

4.1 The MERRY and FRODO Algorithms

The MERRY algorithm (Multicarrier Equaliza-
tion by Restoration of Redundancy) makes use
of the redundancy of the data introduced by the

−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CP CP
Data DataData
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Fig. 3. Illustration of the difference in the ISI at
the received CP and at the end of the received
symbol.

cyclic prefix (CP). When the CP is added, the last
P samples in the length N block are prepended
to the start of the block, which makes the trans-
mitted data appear periodic over those N + P

samples (called a “symbol”). This periodicity is
necessary for maintaining the orthogonality of the
subcarriers (Pollet et al., 2000). After the CP is
added, the last P samples are identical to the first
P samples in the symbol, i.e.

s (Mk + i) = s (Mk + i+N) , i ∈ {1, . . . , P} ,
(14)

where M = N + P is the total symbol duration
and k is the symbol index. Figure 3 shows an
example of this, withN = 8, P = 2, andM = N+
P = 10. The symbol pictured is for k = 0. The
received data r is obtained from s by

r(Mk+i) =

Lc
∑

l=0

cl ·s(Mk+i−l)+n(Mk+i), (15)

and the equalized data y is obtained from r by

y(Mk + i) =

Lf
∑

j=0

fj · r(Mk + i− j). (16)

The effective channel is h = c ? f .

The channel destroys the relationship analogous
to (14) in the received data, because the ISI that
affects the CP is different from the ISI that affects
the last P samples in the symbol. Consider the
example in Figure 3. The transmitted samples 2
and 10 are identical. However, at the receiver, the
interfering samples before sample 2 are not all
equal to their counterparts before sample 10. If h2,
h3, and h4 were zero, then y(2) = y(10). Trying to
force y(2) = y(10) should force h2 = h3 = h4 = 0,
thus forcing the effective channel to be as short as
the CP. The location of the window of P non-zero
taps can be varied by comparing y(3) to y(11), or
y(4) to y(12), etc.

The MERRY cost function is

J = E |y(Mk + P + δ)− y(Mk + P +N + δ)|
2
,

δ ∈ {0, . . . , M − 1} , (17)



where δ is the desired delay. A stochastic gradi-
ent descent of (17) leads to the blind, adaptive
MERRY algorithm:

For symbol k = 0, 1, 2, . . . ,

r̃(k) = r(Mk + P + δ)

− r(Mk + P +N + δ)

e(k) = fT (k) r̃(k)

f̂(k + 1) = f(k)− µ e(k) r̃∗(k)

f(k + 1) =
f̂(k + 1)

‖f̂(k + 1)‖

(18)

where r(i) = [r(i), r(i − 1), . . . , r(i − Lf )]
T , and

∗ denotes complex conjugation. Note that a con-
straint (e.g. ‖f‖ = 1) must be enforced in order to
prevent the trivial solution f = 0.

The MERRY algorithm in (18) finds the minimum
eigenvector of the matrix A = E

[

r̃r̃H
]

. Let C be
the channel convolution matrix (so that h = Cf)
and let Cwall be obtained from C by removing
rows δ through δ + P − 1. If the input s(k) is
white, then A = CT

wallCwall, and

Jδ = 2 σ
2
s





δ−1
∑

j=0

|hj |
2
+

Lh
∑

j=δ+P

|hj |
2



+ 2 fTRnf
∗,

(19)
the energy of the effective channel outside the
window plus the noise gain (Martin et al., 2002b).

If a blind, non-adaptive channel shortener is re-
quired, then the matrix A = E

[

r̃r̃H
]

can be
estimated from the data, and its eigenvector cor-
responding to its minimum eigenvalue can be
computed. This may also provide an initialization
technique that avoids slow modes of convergence.

MERRY can be extended to compare multiple
samples in the CP to multiple samples at the
end of the symbol. As shown in Figure 4, each
difference term that is added to the cost function
produces a different window with a different delay,
and the (somewhat smaller) overall window is
the union of the individual windows. This allows
the option of using more data, increasing the
convergence rate at the expense of over-shortening
the channel. This cousin to MERRY is called
Forced Redundancy with Optional Data Omission
(FRODO). Figure 4 shows an example in which
P = 4. In this case, comparing three of the four
points in the CP to their brethren at the end of
the symbol yields a union of three “don’t care”
windows, in which the impulse reponse doesn’t
matter so long as it is non-zero. Thus, three
times as much data can be used per update, but
the shortened channel will be much smaller than
necessary. Since the best solution can be found
by constraining the filter as little as possible, the
“over-shortened” FRODO solution is sub-optimal.
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Fig. 4. The relation of the “don’t care” windows
in the different terms of the FRODO cost
function, for P = 4. The line “summed”
indicates the effect of considering three terms
at once, and the line “weighting” indicates
how much emphasis the total cost function
places on forcing each tap to zero.

4.2 The SAM Algorithm

The SAM algorithm (Sum-squared Auto-correlation
Minimization) relies on fourth-order statistics of
the received data rather than on properties of
multicarrier modulation. The idea is that if the
effective channel (h = c ? w) is short, its auto-
correlation should be short:

Rh(l) =

Lh
∑

k=0

hkhk−l ∼= 0, |l| > P. (20)

This suggests the cost function

Ĵ =

Lh
∑

l=P+1

|Rh(l)|
2, (21)

again with a constraint such as ‖f‖ = 1 to prevent
f = 0. If the source s(k) and channel noise w(k)
are white, and if Lf ≤ P , then

Ry(l) = E[y(n)y(n− l)] = Rh(l), |l| > P, (22)

allowing use of the cost function

Jsam =

Lh
∑

l=P+1

|Ry(l)|
2. (23)

If Lf > P , (22) is still approximately true so long
as the noise is small.

A gradient descent of (23) leads to

f(n+ 1) = f(n)− µ

Lh
∑

l=P+1

E [y(n)y(n− l)]

· E [y(n)rn−l + y(n− l)rn]

(24)
For implementation, the expectations can be re-
placed with instantaneous, moving average, or
auto-regressive estimates. The latter yields the
fastest convergence rate for the lowest computa-
tional cost (Balakrishnan et al., 2002).
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Fig. 5. Contours of the SAM cost function. The
two circles are the global maxima of the
shortening SNR.

Since (23) involves fourth-order statistics of the
data, it is multimodal and difficult to analyze.
The auto-correlation is invariant to flipping the
filter’s zero locations over the unit circle, so there
are as many as 2Lf minima that all have the same
value of the SAM cost. However, they have very
different values of whetever the true cost function
is, e.g. MSE, bit rate, or bit error rate. When the
filter length is reasonably long 2 , the convergence
of SAM does not appear to be troubled by the
multimodality. One odd effect is that the filter
f is generally symmetric, perhaps because time-
reversing f is equivalent to flipping its zeros over
the unit circle (which does not change the cost).

A plot of the SAM cost function is shown in
Figure 5. The channel is c = [1, 0.3, 0.2], P =
1 (so a 2-tap channel is desired), there is no
noise, and the 3-tap filter f satisfies ‖f‖ = 1.
f can be represented in spherical coordinates as

f0
4
= fx = cos(θ) sin(φ), f1

4
= fz = cos(φ),

f2
4
= fy = sin(θ) sin(φ). Then time-reversing f is

equivalent to reflecting θ over π4 or
5π
4 , and f → −f

is equivalent to the combination of reflecting φ

over π
2 and adding π to θ (mod 2π). The four

minima all have equivalent values of the SAM
cost, due to the equivalencies of f ⇔ −f and of
time-reversing f .

The circles in Figure 5 correspond to the Max-
imum Shortening SNR (MSSNR) design (Melsa
et al., 1996), which maximizes the ratio of the
energy inside the window to the energy outside
the window. Two of the global minima of the SAM
cost nearly match the global maxima of the SSNR.
The other two minima can be avoided by reversing
the order of taps in the final settings for f .

2 “Reasonably long” here means possibly shorter than the

channel, but comfortably longer than the minimum length

needed to achieve a “good” solution.

5. CONCLUSION

Although blind, adaptive equalization algorithms
are widely studied, hitherto there has been little
academic attention given to blind, adaptive chan-
nel shortening algorithms. Traditional approaches
to making adaptive equalization algorithms blind
cannot be applied to channel shortening, since
a channel shortener’s output has different signal
properties than an equalizer’s output. This paper
has reviewed some of the salient points of several
new blind channel shortening algorithms.
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