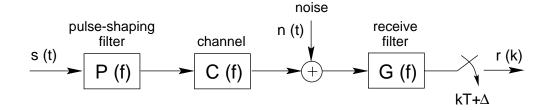
Blind and Semi-Blind Channel Equalization

for Wireless Broadcast Channels


Rick Johnson and Lang Tong
School of Electrical and Computer Engineering
Cornell University
Ithaca, NY USA
{johnson,ltong}@ee.cornell.edu
http://backhoe.ee.cornell.edu/BERG/

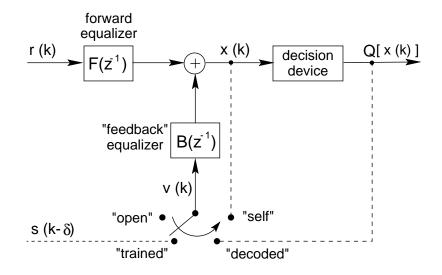
http://www.ee.cornell.edu/~ cris/grup/

Overview

- Baseband Communication System
- Baud-Timing
- Equalization
 - Linear Finite Impulse Response (FIR)
 - Linear Infinite Impulse Response (IIR)
 - Decision Feedback Equalizer (DFE)
- Trained Adaptation
 - ISSUE 1: Training Signal Design
- Blind Adaptation
 - ISSUE 2: DFE Acquisition Strategies
 - ISSUE 3: Equalizer Sparsity
 - ISSUE 4: Unified Synchronization and Equalization
- Closing Observations on Adaptive Signal Processing

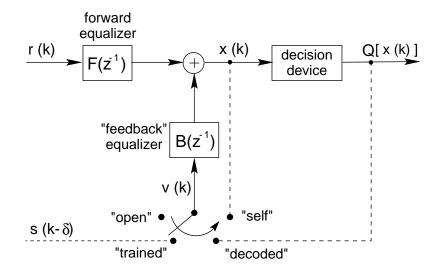
Baseband Communication System

$$s(t) = \sum_{i=-\infty}^{\infty} s(i)\delta(t - iT - \epsilon)$$

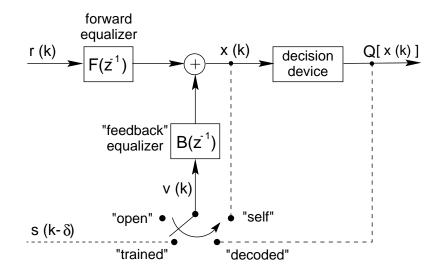

with real digital source, e.g., $s(i)=\pm 1$ or ± 3 or complex digital source, e.g., $s(i)=\pm 1\pm j$

- Impairments:
 - intersymbol interference
 - timing offset
 - channel noise
- Noise-Free Objective: distortionless delay with flat magnitude spectrum and linear phase spectrum
- Solution: adjust Δ and process $\{r\}$.

Baud Timing Recovery


- Matched Filter Output Maximization: The choice of Δ over $-T/2 < \Delta < T/2$ that maximizes the power of the matched receive filter output achieves baud timing synchronization without (and with some) intersymbol interference.
- Resampling for Δ Adjustment: Assuming sampling frequency exceeds twice the highest frequency present in the receive filter output and using sinc functions as a basis for reconstruction of the analog receive filter output from $\{r(k)\}$, we can effectively adjust Δ without actually altering the sampler timing.
- Separability from Equalization: Baud timing is typically assumed to be performed prior to onset of successful $\{r\}$ filtering.

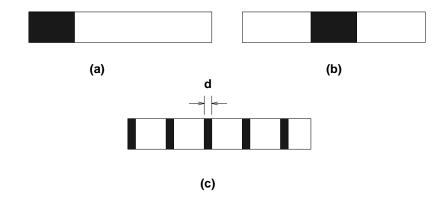
Linear FIR Equalizer


- Switch Setting: "open"
- Feature:
 - perfect zero-forcing equalization possible with oversampling
- Issues:
 - channel noise gain
 - long enough for accurate IIR delayed channel inverse approximation

Linear IIR Equalizer

- Switch Setting: "self"
- Feature:
 - parsimonious equalizer parameterization for minimum phase zeros in FIR channel
- Issues:
 - (temporary) instability
 - channel noise gain
 - delayed inverse approximation of maximum phase zeros in FIR channel

Decision Feedback Equalizer (DFE)


- Switch Setting: "decoded"
- Features:
 - parsimonious parameterization
 - reduced noise gain
 - in ideal case desired feedback polynomial matches that of IIR linear configuration
- Issues:
 - error propagation
 - design without perfect decision assumption

Trained Adaptivity

- Circumstance-Dependence: The "best" fixed filtering depends on the "channel" model.
- Time Variation: The channel model is expected to be time-varying.
- *Indirect Strategy*: First identify the channel, and then solve for the appropriate equalizer filter.
- Need Input-Output Data: Common system identification algorithms rely on the system's input-output data records.
- Training: In a communication system, a training phase when the source signal is known at the receiver, offers up such an input-output record.
- *MSE*: The most popular adaptive algorithm minimizes the mean squared output prediction error.

ISSUE 1: Training Signal Design

• Which placement distribution is best?

- By which criterion?
 - minimizing average squared DFE recovery error
 - minimizing mean squared error over all channel estimators
 - minimizing Cramér-Rao lower bound on the mean square channel estimation error
 - maximizing channel capacity
 - minimizing bit error rate

Blind Direct Adaptivity

- Direct Strategy: MMSE channel identification algorithm can be converted to direct equalizer "identification" by using (delayed) training source as "system" output and received signal as "system" input.
- Decision-Directed Adaptation: When a training episode, or some other procedure, results in an acceptable, but not perfect, equalizer setting the decision device output can be used as a replica of the source sequence.
- Tracking Versus Acquisition: A decision-directed scheme can offer tracking capability, but will perform poorly if the close "initialization" assumption is violated.
- Dispersion Minimization: Dispersion minimization is a blind proxy for mean squared prediction error minimization.

ISSUE 2: Acquisition Strategies

- Linear FIR Equalizer Cost Function Shape:
 - Trained mean-squared error with known delay: ice cream cone
 - Trained simultaneous mean-squared error and delay optimization: egg carton
 - Blind dispersion minimization: egg carton,
 with minima near mean squared error egg
 carton minima
- Multimodal Surface Gradient Descent:
 - saddle stall and long convergence times
 - initialization dependent asymptotic performance
- Blind DFE Cost Function Shape: Much less is known about the blind DFE cost function surface, though it is also undeniably multimodal making initialization-acquisition strategies a key practical issue.

ISSUE 3: Sparsity Exploitation

- Performance Benefits: Fewer active taps can lead to faster convergence and less misadjustment.
- Performance Cost: Zeroing out taps useful in intersymbol interference (ISI) reduction increases minimum achievable performance.
- Practical Occurence: In a variety of settings, acceptable performance can be obtained with a few nonzero, nonuniformly spaced equalizer taps.
- *Tap Allocation*: How can you find which taps should be clamped to zero short of effectively solving for full answer and removing "unnescessary" ones?

ISSUE 4: Unified Syncronization and Equalization

- Single Versus Multi-Tap Adjustment: In those cases when adjustment of a single receiver variable can fully correct for some channel change, adapting a single parameter is far more efficient and robust than adjusting all of the equalizer tap weights.
- Unification Claim: To assist unified synchronization and equalization, a single common cost function should be used.
- Blind Cost of Choice: Several tasks can be phrased as (blind) dispersion minimization problems, including
 - equalization
 - timing recovery
 - phase derotation for carrier phase
 synchronization of complex sources

Adaptive Signal Processing

- APPLICATION
- ALGORITHM DEVELOPMENT
- BEHAVIOR ANALYSIS
- REALIZATION

IEEE Societies

- Circuits and Systems
- Communications
- Signal Processing
- Information Theory
- Control Systems
- Vehicular Technology