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ABSTRACT

This paper introduces a blind adaptive carrier phase
offset recovery scheme based on the Constant Modulus
(CM) Algorithm and analyzes its behavior. The pro-
posed CM-Derotator (CMD) minimizes the dispersion
of the real projection of the derotated signal to remove
the phase offset of the signal. By analyzing the cost
function, the performance of the CMD is investigated in
various situations including its tracking ability, its be-
havior in the presence of Inter Symbol Interference, and
when there are statistical dependencies between the in-
phase and quadrature components.

1. INTRODUCTION

In modern communication systems, the demand for trans-
mitting increasing information over band-limited chan-
nels often prefers blind equalization over equalization
schemes based on a training sequence. However, in most
blind equalization schemes, the received signal suffers
from a phase offset [4] caused by the distortion of the
band-limited channel, or by a carrier phase error. This
phase offset decreases the efficiency of the equalization
since it may cause incorrect decisions to be made for two
dimensional signals, or it may distort the amplitude of
one dimensional signals such as in single sideband mod-
ulation. An adaptive approach to recover phase offset
was proposed and analyzed in [3] using a decision di-
rected MSE style algorithm. This paper proposes a blind
adaptive scheme called the Constant Modulus Derotator
(CMD) for removing this phase offset, which is based on
the CMA algorithm of [5]. Two applications are detailed:
the use of CMD as a pre-equalization module for real
(PAM) signal constellations such as the HDTV 8-VSB
standard, and the use of the CMD as a post-equalization
module for complex (QAM) constellations. The latter is
exploited as a key ingredient in a constellation identi-
fication procedure. Thus the CMD can be used either
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before or after equalization depending on the particular
system requirements.

Section 2 derives the CMD algorithm, and then ana-
lyzes its local minima and maxima by studying the cost
function. In section 3, the characteristics of the CMD
are specified for a number of signal constellations. Sec-
tion 4 investigates the tracking ability of the CMD under
the assumption that the phase offset varies linearly over
time. Finally in section 5, the behavior of the CMD is
investigated in less ideal situations; in the presence of
inter symbol interference and when there is a statistical
dependence between the in-phase and quadrature com-
ponents.

2. CONSTANT MODULUS DEROTATOR

2.1. Problem Description

Suppose that a complex random sequence s drawn from
a finite constellation with known statistical properties
suffers from an unknown constant phase offset @ in the
presence of white complex Gaussian noise w. Only the

output
y =se'® +w

1)

is measured. In order to estimate ® and directly remove
this offset, consider the single tap derotator shown in
Figure 1, where ¢ represents an estimate of ®, and the
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Figure 1: A Single Tap Derotator

arrow represents a way of (iteratively) updating ¢. This
can be viewed as the problem of equalizing a scalar chan-
nel, and conventional blind estimation techniques can be
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used for blind removal of ®. However, direct application
of the CM-algorithm, the most practical and popular
blind algorithm [2, 5}, is not feasible because of its phase
invariance {2]. The following sections derive the CMD, a
CM-based algorithm for the blind estimation of ®, and
analyze its behavior in a variety of situations.

2.2. Proposed Algorithm

In the absence of noise, and if ¢ were exactly equal to P,
then the projection of y onto the real axis would consist
of a collection of points at the (real part of) the symbol
values defined by the constellation from which s is drawn.
In the presence of noise, the projection will consist of
a number of clusters centered at these symbol values.
Similarly, when ¢ is offset somewhat from &, the clusters
widen. Thus, a sensible criterion for estimating ® is to
try and minimize the dispersion of the projection of the
constellation onto the real axis. Formally, consider the
cost function

J(¢) = E {(R(ye™**)* - )?} (2)

where <y is any real constant (possibly zero) and R(:)
denotes the real projection operator (i.e. R(a + bi) =
a). For many signal constellations, the ¢ that minimizes
J(¢) will be equal to @, but for some signal constellations
the dispersion can be made even smaller by projecting
onto a line other than the real axis. For example, section
4.2 shows that the V29 signal constellation minimizes
J(¢) when ¢ = & + 7.

Using a stochastic gradient algorithm to minimize (2)
gives the Constant Modulus Derotator (CMD) algorithm

P = 0= (R0 =) Bge™) Sy

which uses the fact that & R(ye*%*) = S(ye~"%*), where
3(-) denotes projection onto the imaginary axis, i.e.,
S(a + bi) = b.

2.3. Analysis of the Cost Function

One of the most revealing ways to understand the be-
havior of an algorithm such as (3) is to study the cost
function to examine the “error surface” over which the
algorithm evolves. Some assumptions on the statistical
properties of the sequence {s} are required to make this
concrete.

Assumptions: Let sg and sy denote the Real (in-phase)
part and the Imaginary (quadrature) part of the se-
quence s respectively.

i) {sgr} and {sr} are sub-Gaussian, i.e. their kur-
tosis, ks, and ks, are less than 3. (Recall that

the kurtosis of a random sequence s is defined as
Ky = E {s*} /E{sz}z)

i) (a) E{s}s?} = E{s}} E{s}}, and
(b) E{siksT} = 0 for all integers | and m with
I+m <3 (except I =m =2).

iii) E{s%} =E {s?}.

iv) w is a white circular complex Gaussian noise that
is independent from the sequence s.

We will later consider cases where some of conditions in
ii)-iii) are violated. For convenience, let ms := E {s}} =
E{s}}, mpy := E{s}} and my, := E {s}}. Let 6 :=
®—¢ represent the parameter error of the CMD. Without
loss of generality, the cost function (2) can be described

in terms of 4.

Property 1 (Stationary Points of the CMD) Under
assumptions i) through iv), the CMD has the following
stationary points:

Local Minima: 6 = 0, n/2, w, 31/2, and 2.

Local Maxima: 6 = £sin™! /(3 = k,,)/(6 — Ksg — Ks;)-
Proof: The cost function (2) can be rewritten as

J(@) = E{(R(se” +we )? —)?}

Because w is circular Gaussian, its statistics are the same
as those of we™*®. Hence

4 . 4 3mj .,
J(@) = mpgcos®0+mp,sin® 0+ -2—sm 20

—2v(my + %) + 04 + 7>

where 02 = E {w}} and 04 = E {w}}. The derivative
of J is

oJ
a6
Since ks < 3, ks, < 3, the stationary points of J occur
at @ for which sin 26 = 0 and
sinf = +/(3 — ks,)/(6 ~ Ksp — ks, ). The second deriva-
tive of J is

07
002

= 2mjsin 20{(ks, +ks, —6) sin® 0+3 — Ky} .

= 4mjcos20 {(Kep + ks, — 6)sin® 0 + 3 — Ky}
+2m3(Ksp + ks, — 6) sin® 26,
and it is easy to see that {#]sin 26 = 0} are minima while

{0[i\/(3—lisR)/(6—ligR —ns,)} are maxima. |

Notice that as ks, 55, — 3, —g% — 0, and thus the
performance may degrade as the kurtosis approaches 3.
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2.4. CMD Without Norm Constraint

The CMD, by adjusting only the value of ¢ in e es-
sentially constrains the magnitude of the tap to unity.
This causes the update term to require the calculation
of a sinusoid, which may involve some hardware com-
plexity. This constraint can be relaxed by using a single
tap complex CMA update with the cost function

J(f) = E{(R*)* - 1*}, 4)
leading to the stochastic descent algorithm
ferr = fi + p (ROYE)? — ) Ry Q)

This algorithm can be viewed as a one-tap implementa-
tion of the “modified constant modulus algorithm” inde-
pendently proposed in [1]. The “constant” + must now
be adjusted to keep the power gain of the derotator at
unity. Since the gradient system is the same whether rep-
resented in Cartesian or polar coordinates, let f = re®.
The cost can be analyzed as

2,4
J(f) = mpyr®cos'd+myyrtsint6 + —‘3m22T- sin? 26
+3rl0? — 2r2y(my + %) + 72
J
gg = 2m§r4 sin 260 {(K,gn + ks, — 6) sin20+ 3 — "535}
%i‘ = 4r[r’m} (ICSR cos* 8 + k,, sin® 4 + —Z—sin2 20

o? 2
+3 7_n_§ — v(mg + o?)].

In the radial direction, there is a local maximum at r = 0
and a minima surface at
2 _ y(1 + 0?/m3)

ma (ks cos? 8 + Ky, sin® § + $ sin® 20 + 302 /m3)’

r

By letting v = k;,m2 = mpy/my (which implies that
the real part is the reference direction of the constellation
derotation), this becomes

( 2
1+0°/my for0=0, 7
3o

1+

Ksm3

2
1+07/my for § = 7/2, 3n/2
Kg; + 3o

Ksm3

\ K’ER
Notice that when o2 = 0,

2 )1 for0=0, r
r= %—R for 6 =7/2, 3n/2
s

This indicates that by monitoring ||f||?, the possibly un-
desirable convergence to the local minima at 6 = /2
and at @ = 37/2 can be detected.

3. EXAMPLES

3.1. For QAM sources

For an ordinary QAM source, the real and the imaginary
components are independent, but with identical distribu-
tions. Thus the received signal satisfies the assumptions
after proper gain control, that is, when the gain of the
real channel and imaginary channel are equal. The cost
function in (2) can be simplified to

2
J= %3(3 — Ks)sin® 26 + my + 30° — 2y(mg + 02) + 42
(6)

which is plotted in Figure 2 as a function of the kurtosis
of the source. Notice that the cost surface is symmetric
about 7/2 rotation due to the statistical homogeneity
of the real and the imaginary components of the QAM
signal.
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Figure 2: The Cost function of the CMD for QAM sig-
nals as a function of source kurtosis

3.2. For signals with &,, # K,

Let assume a souce of which kurtosis of the imaginary
component is greater than that of its real component,i.e.
Ks; > Ksp In this case the asymmetry of source statistics
induces an asymmetry in the cost function as shown in
Figure 3.

4. CMD IN THE PRESENCE OF
NON-IDEALITIES

A received signal suffering from ISI, or one generated
from a source with an inherent In-phase/Quadrature de-
pendency may violate assumptions ii) and iii). How-
ever, for most communication source singals, we can as-
sume E {s}s1} = E{srs}} = E{srs;}=0 even in the
presence of ISI or when the in-phase components are
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Figure 3: The Cost function of CM derotator for k5, >

Ksg-

dependent on the quadrature components. With these
minimal assumptions on the source statistics, the cost
function of CMD expands as

J(8) = mpycos?B+my,sin® 0+ gE {s%s}} sin® 20
—2y(E {sh}cos’0 + E {s7}sin®8) +c. (7)
where ¢ is a constant independent of . For most com-
munication source signals, The following two subsections

focus on two important cases where the cost function suf-
fers from ISI and from such dependencies.

4.1. Inter-Symbol Interference

In the presence of ISI, the most significant distortion is
due to E {s%} # E {s?}, since the power loss of the real
channel and of the imaginary channel may be different.
In place of assumption iii), suppose that

(8)

due to the ISI. Then the cost function (4) in the presence
of ISI can be written as

mry = E {s%} = pE{s}} = my,

. 3 .
Jisr = mpqcos? 4 mpysint 0+ Epmngsmz%

signal for p = 1,0.85, and 0.7. Notice that when p = 0.7
local minima appear at undesirable locations. It is in-
teresting that the performance degradation of the CMD
does not depend on the severity of the ISI, but on the
power mismatch between the real channel and imaginary
channels.

Cost Function of CM derotator lor VSB singal under IS)
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I
Parameter Emor

Figure 4: The Performance of CMD for k5, > &4, ISI
channel

4.2. In-phase and Quadrature Dependency

Assume that the source has identical in-phase and quadra-
ture components but an inherent dependency between
them (such as in a modified QAM). Thus, assumption
ii)(a) is replaced by

E{s4s?} < E{s4} E {s?} =ml.

In this scenario, the cost function is

2 (3F {5262
Jaep = Ty (——-{—sgi}— - ng) sin® 20 + c. (12)

(11

2 mj;

When &, > 3E {s%s%}/m3, the sign of the sin® 20 term
in (12) changes to negative. Thus the cost function has
local minima at 8 = w/4 and at § = w/3. For example,
the V29 constellation for a telephone modem line (Figure

~2ympo(p ~ 1)sin’ @ + c. (9) 5-a) satisfies this condition, since for V29 sources
As before, set v = 0. Then mg =1/2, m4 = 3 9 ~ 0.5967,
87 E {s%s?} = 231 ~ 0.1125,
— = 2mpg3 sm?&{(n + Ser —6p)sin®0+3p— & }(10) §2 52
6 2 e " ks % 2.3868 > 3——{ —- ~1.3498
m;

Recall that ks, and k,, are the kurtosis of the received
signal, thus are often larger than those of the original
QAM source. As p — 0, the sign of 8Jrs1/86 in (10)
changes. This swaps the local minima and local maxima,
and thus can result in a catastrophic performance degra-
dation. Figure 4 shows the cost surface of a non-QAM

Thus, when using a constellation such as V29, the
value of ¢ which minimizes the cost J(@) of (12) is offset
from the projection onto the real axis by 45 degrees, that
is, ¢ = ® + 7. Hence when applying the algorithm to
such a constellation, this offset can be accounted for a



priori. Alternatively, it is possible to change the sign
on the stepsize of the algorithm, effectively searching for
the direction which maximizes the dispersion rather than
minimizing it. This simply inverts the cost function,
turning the peaks of Figure (Figure 5-a) into valleys,
and the valleys into peaks. In this situation, ¢ again
converges to &.

Conptettion of v29 Gost Funeion of M derotor ot Y29 ookt
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Figure 5: The CMD cost for V29 signal

5. TRACKING ABILITY OF THE CMD

In many applications, the phase offset may drift over
time due to the frequency offset of the carrier loop. This
subsection investigates the tracking ability of the CMD
in the presence of a linear phase offset.

Assume the phase offset is drifting linearly at a rate
Q, i.e. the true phase offset at the k-th update is given
by ® + kQ. Define

Ok := @ + kQ — o, (13)

the deviation of the estimated parameter of the CMD ¢
from the true phase offset. From the update equation,
(wlog. v=0)

B + 0 — uR(ye )" Rye™ )3 (ye™ %)
Br + Q — pR(sei% )2 R(se*)S(sei%). (14)
By taking the ensemble average of the above non-linear
dynamic system

EBka1) = E(6k) + 9 + uE {R(s'%)*R(se%)S(se™%) }

Or+1

2
E(0:) + Q- p%gE{sin s ((Kop, + Ks,
—6)sin® 0 + 3 — Ksp) }-

Assume a steady state of the above system as shown in
Figure 6-a) so that E(f+1) = E(8:), and furthermore
assume that ( is small enough to validate the first order
approximation in the expectation term in (15). Then

EBr) ~ —gr

~ /-‘mg(?’ - 'i-?R).

Il

(16)

T el W

(15)

This agrees well with simulation results for small 2 (for
example Figure 6-b).
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Figure 6: Tracking ability of CMD for QPSK

6. CONCLUSION

The ability to simply and accurately accomplish phase
rotation may be useful in a variety of situations. We have
proposed a simple phase derotation algorithm inspired
by the ideas of the constant modulus property restoral
algorithm. We have confirmed that the proposed CMD
works as expected in ideal situations, and studied its
behavior in less ideal situations.
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