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ABSTRACT

The constant modulus algorithm (CMA) is an effective and
popular scheme for blind adaptive equalization. Delineation
of the regions of convergence of this multimodal algorithm
has remained as an unresolved problem in spite of its sig-
nificance with regard to CMA initialization strategies. In
this paper we present a qualitative analysis of convergence
regions of the fractionally spaced CMA (FS-CMA) equal-
izer based on a new geometrical understanding of the con-
stant modulus cost function. We characterize the location
and volume of the convergence regions of local minima, and
associate the volume of the convergence regions with their
MSE performance. The convergence regions of the local
minima with low noise gain expand near the origin, while
those of the local minima with high noise gain shrink. This
explains partly the robustness of FS-CMA and the MSE op-
timization achieved by the widely used center spike initial-
ization with constrained magnitude.

1. INTRODUCTION

Adaptive equalization based on the constant modulus (CM)
criterion, which exploits fourth order source statistics, is
perhaps the best well known practical blind adaptive equal-
izer. The fractionally spaced equalizer adapted to descend
the gradient of the CM criterion (FSE-CM) has been widely
used and studied intensively [4]. Recent study of the mean
squared error (MSE) performance of CM cost minimiza-
tion applied to a fractionally spaced receiver has empha-
sized proper initialization of FSE-CM equalizer [6]. Since
the knowledge of convergence regions is critical for initial-
ization strategies, a theoretical description of convergence
regions of local minima is desired.

We approach this problem with two novel “tricks”. First,
we decompose the FSE-CM cost function into a radial com-
ponent and a spherical component, which correspond to noise
gain and inter-symbol-interference (ISI) respectively. This
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provides a geometric understanding of FSE-CM and an im-
mediate derivation of a closed-form expression of conver-
gence regions in the system space. Second, we apply the
system space result to the equalizer space of an arbitrary
channel in a qualitative way. Just as with any (stochastic)
gradient descent based adaptive equalizer, the FSE-CM cost
function induces a gradient dynamic system on the equal-
izer space. Our analysis is focused on the dynamic system
instead of the cost function. The dynamic system in the
equalizer space of the given channel is represented by a lin-
ear coordinate transformed system (via the channel convo-
lution matrix) from that of the system space. The conver-
gence regions of the equalizer space of the FSE-CM for an
arbitrary channel are result from this transformation, which
performs rotation and dilation (determined by the singular
decomposition of the channel convolution matrix).

The study on the effect of dilation reveals our main re-
sult on the convergence regions of FSE-CM: The conver-
gence regions have a “exponential hypercone” structure and,
hence, the convergence regions of small noise gain minima
are (exponentially) expanded and those of large noise gains
are shrunk (exponentially) near the origin (vice versa for far
from the origin). The approximation we then use is moti-
vated by an observed result that the spherical deformation of
regions of convergence is ignorable in comparison to the ra-
dial (exponential) deformation. Thus, we use radial behav-
ior alone to approximate regions of convergence. Although
we assume a noise free model throughout our analysis, this
trend of convergence regions is still valid for the moderate
noise case, since below a certain SNR threshold noise sim-
ply causes smoothing effects on the FSE-CM error surface
[2]. This result helps explain the asymptotic mean square
error (MSE) optimization capabilities of a single spike ini-
tialization with constrained magnitude of FSE-CM.

2. SYSTEM MODEL

In Figure 1, We consider a fractionally spaced linear equal-
ization of a time invariant linear channel model c in the ab-



sence of noise.

System response h
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Figure 1 System Model

We utilize the so called perfect equalization assumptions
[4] so that the equalizer parameter vector f is determined by
the channel convolution matrix and overall system response
h[4]

f=C"h. €}

Let H be the space of all system responses (system space)
and F be the space of equalizers (equalizer space). Eq (1)
induces an isomorphism between two vector spaces

C:H=F @

In the next section we develop a full description on the con-
vergence regions of the FS-CMA in the system space, and
in section 4, we turn to the equalizer space.

3. REGIONS OF CONVERGENCE IN THE
SYSTEM SPACE

3.1. Deconiposition of FSE-CM cost function into Ra-
dial and Spherical terms

Fractionally spaced blind equalization using Constant Mod-
ulus Algorithm (FSE-CM) provides an adaptive algorithm
for finding the equalizer minimizing following cost function

J(f) = E{(y()I* = 1*} ®)
with the update equation
fnew=f—ﬂaéfj(f) C)

where 7y := my4/ms, the ratio of the fourth moment (my)
and the second moment (ms) of the source, is called the
dispersion constant. The goal of blind equalization in the
absence of noise is to obtain pure delays ([0---1-+-0]) in
H-space from the statistical information of the source. To
quantify this objective, we define a measure of inter symbol
interference (ISI) in H-space.

Definition 1 For any vector h = [ho - -hn-1]T € H, the
inherent ISI of h, I, is a real valued function on H defined
by;

N-1
In =) |hsl’|Rsl7,
i]

(&)

which is nonnegative definite.
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Observe that I, > 0 and I, = 0 if and only if A is a pure
delay.

Lemma 1 In the absence of channel noise, the FSE-CM
cost function on the system space H, denoted by Jg, for a
ciculary symmetric source (such as QAM) can be expressed
[2] as v

47g(h) = ma(IRl® = 1> +9* = ma +n5In,  (6)

where || - || is the £3-norm and )5 is defined as the kurtosis
deviation of the source from the Gaussian kurtosis ., (with
normalized kurtosis k5 := my/m%)

Ns i= KM — My = M2 (Ko — Ks)

Henceforth, we will assume a BPSK source and a real
channel. The cost function is simplified to

aig(h) = (1M =1 + 2L
e —— ~~
Radial term  Spherical term

Figure 2 illustrates an example of this decomposition for 2
dimensional case. ’
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a) Radial Component b) Spherical Component

c) FSE-CM cost function

Figure 2 Decomposition of FSE-CM cost function

3.2. Regions of Convergence in the System Space

Consider the gradient system on the system space defined
by the FSE-CM cost function

o
— 55 (h).

The simplicity of the radial component, (||4]|? — 1)?, results
in an important property of this vector field that local min-
ima and saddle points under a FSE-CM gradient system are
mostly characterized by the spherical term, more precisely,
the spherical term restricted to the unit sphere Ip|gnv-1. The
local minima consist of pure-delays [?] and the regions of
convergence are obtained by solving :—hI |gn-1, which can
be associated with a set of hyperelipsoids in a geometrical
representation.

Vi =

®)



Theorem 1 (Regions of Convergence on H) Let R(d;) de-
note the regions of convergence of a local minima of FSE-
CM, d; = [0, .., 0, 1(i-th place), 0...0]. Then R(d;) is a hy-
percone
'R(d,) = {h €H | h; >0, lh,l > !hkl forall k 75 i},
and R(—d;) = —R(d;).

illustrated in Figure 3.

Figure 3 Regions of convergence in the system space

3.3. Simplified Vector Field Model for FSE-CM on the
system space

Now we propose a simplified vector field model which ex-
tends the idea of decomposing FSE-CM into spherical and
radial terms. FSE-CM has a unique radial minima in every
direction & € SN which is given by

2 1
’I'(h) = 1—-{'7}:1—':,: )]

We define the set of radial minima {r(ﬁ)iz | he SN '1} as
the radial minima surface ® (2, 5]. We can interpret the
role of the radial term of FSE-CM roughly as bringing the
parameter h onto ®. The final stage of adaptation is often
motion “along” ¢. Since ® is bounded by 1//1+7; <
r(h) < 1, we approximate & with SV-1. The proposed
model is

B v® for|h| =1
VE={ ~h for|h|<1 (10)
h for ||hf| > 1

where V® denotes the vector field on @ derived from the
cost function I |g~-1. Notice that V¥ is not itself a vector

4. REGIONS OF CONVERGENCE OF FS-CMA

4.1. The Relation between System Space Vector Field
and Equalizer Space Vector Field

With C' a channel convolution matrix of a T'/2-spaced chan-
nel ¢, the relation between the vector field on the system
space and the FSE-CM vector field on the equalizer space
V}f is obtained from the relation h = C' f

0
af
From (11), we conclude every stationary point on the equal-
izer space is a C™*-transformed stationary point on the sys-
tem space. Therefore, the local minima of FSE-CM in equal-
izer space, denoted by f;, are {*C"'d; | i = 0,..,N-1}.
Notice that the norms of the local minima || f;|| are dis-
tributed corresponding to the eigenvalues of C™L.

In contrast to the stationary points, the regions of con-
vergence of g;, denoted by R(g;), cannot be obtained from
simple linear transformation, since the cost function is non-
linear. Therefore, we investigate the effects of a linear trans-
formed vector field on the convergence regions.

Let C = UAVT be the singular decomposition of C
(U, V are unitary matrix and A = diag(Ao, ..., An-1) with
Ao >, .oy > An-1 > 0). The vector field V¥ is rewritten as

Jg = —C'T~a—JH =CTVE,; 11)

F—...
Vi= Oh

vE = VATUTV{,yr, (12)

Let g; = C"1d;, be a local minimum on F' under V¥ . Then
the region of convergence of g;, R(g;), is obtained from
R(d}y) through the following process, which will be de-
scribed in the following subsections.

1. “Rotate” R(C'g;) under V¥ by the unitary matrix UT
2. “Dilate” UT(R(Cg;)) by diagonal matrix A

3. “Rotate” again the stretched region of convergence,
say S, by the unitary matrix V'

The chart below summarizes this process.

field. Figure 4 provides a comparison of a) V% and b) VH. Vector Field Local minima R.O.C.
OnH: VH UAVTg; R(CY)
uT vt uT
UTvH AV Ty, UT(R(C))
A Al A
| AUTVH vig s

a) Trajéctories of FS-CMA  b) Trajectories of simplified model \% v |4

Figure 4 Trajectories of FS-CMA and simplified model OnF: VAUTVH ... gi V(S)
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Example 1 Consider a T'/2-spaced channel
¢ = [0.11, 0.8779, 0.3762, 0.2751}]. Then

C—[ 0.8779 0.11 ] _ [ cos{n/8) —sin(n/8) ]
=| 02751 03762 | = | sin(n/8)  cos(n/8)
0.9487 0 cos(w/12) —sin(n/12)
[ 0 0.3162 ] [ sin(n/12) ~  cos(w/12) ]

and the process above unfolds as shown in Figure 5.

uT

a) ROC. on H-space b) after UT -rotation
C A

d) ROC. on‘ F-space ¢) after A-dilation

Figure 5 Regions of convergence of FSE-CM: Equalizer
space through System space

In following subsections, each of the steps in Figure 5
will be described in detail.

4.2. Regions of Convergence of FSE-CM - Rotation

Lemma 2 (Rotation) Let V be a given vector field on F'
and U be an unitary matrix. Denote V' as a vector field on
F induced by U in the following way

Y =UTVys

Then, for a local minima f under V, U™ f is a local minima
under V'. Denote the regions of convergence f as R(f) and
that of U™ f under V' as R(U* f). It holds that

RUF) = U (R(F))

4.3. Regions of Convergence of FSE-CM - Dilation

Unfortunately, the “dilation” part does not allow any closed
form expression. We are limited to sketching a general trend
by using an approximate model.

Let VH be the vector field model of FSE-CM on the sys-
tem space defined in section 3.3. Let V' be a U-transformed
vector field of VH (Lemma 2). Let {R;} denote the regions
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of convergence under V' and {BR;} denote those on ®. By
Lemma 2, {R;} are rotated hyper-cones and {BR;} equally
divide ®. We assume the rotation U is not so severe that
Ri C{F =UH| f; > 0} foreach .

Let A = diag(Ag, - -, Anv-1) be a diagonal matrix with
Ao > --- > An-1 > 0 and V denote the A-transformed
vector field model from V'. Since ATV, ¢ = £A%f for

féArte,

VAT for fe A D
Vi=<{ -A’f for|lAf]l<1 (13)
A%f for|jAf] <1

where VA™"® denotes the vector field on A"'® induced via
A’ from the V on ®. Under this model regions of conver-
gence are determined by the spherical term vATe,

Let s; be the local minima under V and S; be the con-
vergence region of s;, and BS; be that of s; on A" &. Then
the convergence region S; has the following form from (13)

Si={e"b|beBS; te (-0,00) ), (14)
Since every trajectory is an exponential curve and they meet
all at the origin, we label this an exponential hyper-cone.

Therefore, it is important to delineate BS; ¢ A™l®,
which is transformied by A™! from BR; C ®. From the
view of differential manifolds [1], the effect of At on &
under V is characterized by the effect of A;l on the m;®
under 7;(V) for¢ = 0,...,N-1, where A; = diag()o, ...,
Ai=1, Ait1, .-, An-1) and 7; is a projection map (7;(z) =
(.’I,'(), ey L1, Ty ey zN—l))- letz € ﬂ'i(q)) and y =
A7'z € A'm;®. Then, for a small step size y, the frajec-
tory of y under m;V is generated by

ynew = AN (z + pAImiVy)

The A? term introduces non-linear deformation, and thus
BS; does not agree with A1 BR; in general. However, the
deformation does not cause significant difference between
volumes of BS; and A* BR;, though it causes a “convex-
ing” effect on the shape as Example 2 shows. Hence, we
approximate BS; with A" BR; by ignoring this less signif-
icant deformation.

Example 2 Let

cos(m/8) —sin(w/8) O A0 0
U= sin(r/8) cos(n/8) O jl , A= l: 0 10 }
0 01 0 01

We consider the nonlinear deformation due to Ay = diag(}, 0).
When A = 1, my(BRs) is a rotated projection of the con-
vergence region in Figure 3 in Section 3.2 (Figure 6 a)). As

A increases the non-linear deformation starts (Figure 6 b)).

In the asymptotic case, when A = oo, we have a polygon
shape of which vertices consist of local minima and max-
ima (Figure 6 ¢)).



Convergence region of (0,0, 1)
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a) A=1

by A =50

A)A=o0

Figure 6 Deformation of Convergence on ® by various A

4.4. Noise gain and Regions of Convergence

We are interested in the volume of S; near the origin. Let
DS be the convergence region of s; on an a-radius sphere
aSNLof F ie.,

DSy = S;Nasht

First we consider the projections of A"BR; on SN via
straight rays '

DS; :=aSM 1 n{e"b|be AIBR;, t € (—o0,00)} (16)
Then, for \; > A;j, Vol DS; > Vol DS, . From a compari-
son of two trajectories

tAzb
ty =

€

2 2
[e”‘o bo, ..., etAn-1 bN-l]

[etb(), ...,eth-l]

for ¢ < 0, we can observe that DS{ is exponentially ex-
panded from DSy in all i(= 1,..., N-1)-th axises, while
DS$-, is shrunk from DSy, in all i(= 0, ..., N — 2)-th
axises. DS{ is exponentially expanded from T)—S:‘ in all
k(> i)-th axises and shrunk in all k(< 7)-th axises (Figure
7).

A'1<§ aSN
DSE

1
5N

a) ROC b)
Figure 7 Comparison between A\ BR;, DS, and DS$

Furthermore [|gs| : [lg;ll = A;' : A7, ie. [lgill < llgsll
if A; > A;. Therefore, we have

Theorem 2 (Regions of Convergence of FS-CMA) Letg;
be the local minima of FS-CMA for a T'/2-spaced channel ¢
and let C be the channel convolution matrix. Denote S(g;)
as the convergence region of g;.
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(15)
~ aSNIn {eWb |be ABR;, t € (~00,00)} .

1. S(g;) are exponential hyper-cones centered on g;

IL Let |gol] < llgall < -+ < |lgn-1]], then for @ < At

Vol DS§ > Vol DSE > -+ > Vol DSS.,  (17)
asa — 0. And for & > AR,
Vol DS§ < Vol DST < --- < Vol DS%.;  (18)

Notice that if we initialize CMA near the origin with single
or double spike (i.e, f = [0---01 (1) 0---0)), it is likely
that the initailization lies in a region of convergence of a
CM local minima with small noise gain by theorem 2.

5. CONCLUSION

We characterized the regions of convergence of FSE-CM
corresponding to the different system delays. The regions
of convergence are exponential hyper-cones. Near the ori-
gin, the CM solutions of small noise gain has an exponen-
tially large region of convergence. This result suggests that
a spike initialization with constrained magnitude would lie
in the ROC of a small noise gain with a high probability.
The implication of this result for noisy and undermodelled
systems is yet to be studied.
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