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Abstract—This paper analyzes the performance of the linear
parallel interference cancellation (LPIC) multiuser detector in
a synchronous multiuser communication scenario with binary
signaling, nonorthogonal multiple access interference, and an
additive white Gaussian noise channel. The LPIC detector has
been considered in the literature lately due to its low computa-
tional complexity, potential for good performance under certain
operating conditions, and close connections to the decorrelating
detector. In this paper, we compare the performance of the
two-stage LPIC detector to the original multistage detector
proposed by Varanasi and Aazhang for CDMA systems. The
general -stage LPIC detector is compared to the conventional
matched filter detector to describe operating conditions where
the matched filter detector outperforms the LPIC detector in
terms of error probability at any stage . Analytical results are
presented that show that the LPIC detector may exhibit divergent
error probability performance under certain operating conditions
and may actually yield error probabilities greater than 0.5 in
some cases. Asymptotic results are presented for the case where
the number of LPIC stages goes to infinity. Implications of the
prior results for code division multiple access (CDMA) systems
with random binary spreading sequences are discussed in the
“large-system” scenario. Our results are intended to analytically
corroborate the simulation evidence of other authors and to
provide cautionary guidelines concerning the application of LPIC
detector to CDMA communication systems.

Index Terms—Code division multiple access (CDMA), commu-
nication theory, interference cancellation, multiaccess communi-
cation, multiuser detection.

I. INTRODUCTION

PARALLEL interference cancellation (PIC) is a multiuser
detection [1] technique where a desired user’s decision

statistic is formed by subtracting an estimate of the multiple-ac-
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cess interference from the original observation of the desired
user. PIC is applicable to a wide range of asynchronous or
synchronous multiuser communication systems with interfering
users and is justified by the intuition that if the multiple-access
interference is estimated perfectly then the resulting decision
statistic for the desired user contains no multiple-access in-
terference and single-user performance is achieved. PIC also
lends itself to a multistage structure where concatenated
PIC stages are employed to generate a set of final decision
statistics. Each stage uses the prior stage’s tentative decision
outputs to generate new multiple-access interference estimates
and subtracts these interference estimates from the original
observation to produce new tentative decision outputs with
presumably lower multiple-access interference. The first PIC
detector for code division multiple access (CDMA) communi-
cation systems was derived by Varanasi and Aazhang in [2] and
[3] where their PIC detector was called a multistage detector.
The multistage detector was shown to have close connections to
the optimum maximum-likelihood detector and also to possess
several desirable properties including the potential for good
performance, low computational complexity, and low decision
latency.

Varanasi and Aazhang’s multistage detector is a particular
implementation of PIC where each stage generates an output
of tentativehard bit decisions for each user. Using the tenta-
tive hard bit decisions from the prior stage, the next stage gen-
erates its multiple-access interference estimates by multiplying
these tentative decisions by the corresponding user amplitudes
and appropriate crosscorrelation factors. These interference es-
timates are then subtracted from the original observation and
the result is passed through a hard-decision device to form new
tentative hard bit decisions for the next stage. If the multistage
detector has perfect knowledge of the user amplitudes and cross-
correlation factors, and if the prior stage’s bit decisions are all
correct, then the multiple-access interference can be perfectly
cancelled and single-user performance is achieved at that stage.
If, on the other hand, the prior stage’s outputs lead to a bit de-
cision error for the th user then the th user’s interference
estimate will have the wrong sign and subtraction of this in-
terference estimate from the original observation will result in
a doubling of the interference caused by theth user on the
other users’ decision statistics. It has also been observed in [1,
p. 363] that Varanasi and Aazhang’s multistage detector may
not converge to a fixed solution as the number of stages ap-
proaches infinity. In these cases, the hard-decision outputs at
each stage exhibit limit cycle behavior with one or more tenta-
tive hard-decisions toggling between and . It was shown
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in [4] that this limit-cycle behavior can be explained by the mul-
tistage detector’s relationship to the Hopfield neural network
where limit cycles of length were shown to exist in a class of
special cases that includes the multistage detector [5]. Despite
these shortcomings, analytical and simulation evidence suggests
that the multistage detector often yields significant performance
improvements over the conventional matched-filter detector in
typical operating scenarios. For the remainder of this paper, we
will avoid notational confusion with other multistage detectors
by denoting the Varanasi and Aazhang multistage detector as
the “hard PIC” (HPIC) detector based on the hard tentative de-
cisions provided at the output of each stage.

More recently, Kaul and Woerner [6] proposed and analyzed
an alternative PIC detector which we call the “linear PIC”
(LPIC) detector. The LPIC detector is also a multistage detector
but, in contrast to HPIC, each stage of the LPIC detector gener-
ates soft tentative decision outputs and a hard-decision device
is not used until the final stage. The soft tentative decisions of
the prior stage are used to generate multiple-access interference
estimates for each user and these estimates are subtracted from
the original observations to form new soft tentative decision
outputs for the current stage. The first stage of the LPIC detector
is specified to be a conventional matched-filter bank. Since all
operations in the generation of the final decision statistics are
linear, the total operation on the original observations is linear;
hence the name LPIC.

Unlike HPIC, the LPIC detector does not need to know the
user amplitudes since the soft stage outputs are used as esti-
mates for the product of each user’s bit and amplitude. In fact,
as will be shown later in this paper, the first stage of the LPIC
detector provides unbiased estimates for this bit–amplitude
product, whereas the first stage of the HPIC detector outputs
biased estimates. Furthermore, since the LPIC detector does
not form a hard decision until the last stage, the LPIC detector
does not inherently possess the interference doubling problems
found in the HPIC detector. These features combined with
LPIC’s analytical tractability and good performance under
certain operating scenarios have led to increased attention in the
literature lately. The asymptotic multiuser efficiency (AME) of
the -stage LPIC detector was derived in [7] and convergence
to the decorrelating detector as was shown in [8]
when the spectral radius of the user crosscorrelation matrix
is less than two. The convergence behavior of both the LPIC
and HPIC detectors was studied in [9]. A generalization to the
LPIC detector was reported in [10] where the LPIC detector
is shown to be a special case of the class of linear multiuser
detectors expressible as a polynomial function of the signature
crosscorrelation matrix.

This paper focuses on analyzing the behavior of the LPIC
detector in a synchronous multiuser communication scenario
with binary signaling, nonorthogonal transmissions, and an ad-
ditive white Gaussian noise (AWGN) channel. Our communi-
cation system model and notation are identical to the basic syn-
chronous CDMA model described in [1]. The number of users in
the system is denoted by and all detectors considered in this
paper operate on the-dimensional matched-filter bank output
given by the expression

(1)

where is the symmetric matrix of normalized user
crosscorrelations such that for and

for all , is the diagonal matrix
of positive-real amplitudes, is the vector of binary
user symbols where , is the standard deviation of
the channel noise, and represents a matched filtered,
unit variance AWGN process where E and E .
The conventional matched-filter detector forms hard decisions
given by . The multistage LPIC detector is given
as

(2a)

(2b)

(2c)

Under this notation it is evident that the two-stage1 LPIC de-
tector is equivalent to theapproximate decorrelator
[1] which has received some attention in the literature recently
[11] due to its low computational complexity and good perfor-
mance under certain operating conditions. Hence, the analytical
results in [11] apply here to the case when .

The goal of this paper is to develop a better understanding of
the behavior and performance of the LPIC detector. Other au-
thors have noted limitations in LPIC performance including the
original paper by Kaul and Woerner [6], where the authors no-
ticed that there existed conditions where interference cancella-
tion actually degraded system performance. Since then, several
authors have proposed various improvements to the LPIC de-
tector including [12]–[16]. We do not propose to fix the LPIC
detector in this paper but rather to understand it better so that
we can bound the operating regions where the LPIC detector
exhibits good or bad performance. In that spirit, this paper is
presented as a collection of related analytical results that com-
pare the LPIC detector to the HPIC and matched-filter detectors
as well as expose the asymptotic behavior of the LPIC detector
as the number of stages approaches infinity.

The remainder of this paper is organized as follows. Section II
compares the performance of two-stage HPIC and LPIC detec-
tors in order to gain a better understanding of the significant
performance differences between these detectors observed by
other authors. Section III compares the-stage LPIC detector
to the conventional matched-filter detector. Section IV analyzes
operating conditions that lead to the -stage LPIC detector
exhibiting an error probability greater than . Section V de-
velops asymptotic results on the behavior of the-stage LPIC
detector as the number of stages . Section VI examines
the implications of the results in the prior sections for a CDMA
communication system with random spreading sequences in the
“large-system” scenario where the number of usersand the
spreading gain both approach infinity but the ratio is
kept constant.

1In this paper, the symbolM denotes the number of stages of interference
cancellation. It is customary, however, to refer to an LPIC detector with one
stage of interference cancellation as a “two-stage” detector, henceM = 1 con-
sistently denotes the two-stage LPIC detector in this paper.
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II. LPIC VERSUSHPIC PERFORMANCECOMPARISON

This section presents an analytical performance comparison
between the two-stage HPIC and LPIC detectors. The results
in this section are motivated by simulation studies of [16] and
the analysis of [17] and [18] where the authors demonstrated
that the two-stage HPIC detector can significantly outperform
the two-stage LPIC detector in terms of error probability under
a variety of operating conditions. Unfortunately, direct anal-
ysis of the two-stage HPIC detector’s error probability is dif-
ficult in general since the exact HPIC error probability expres-
sions involve -dimensional numerical integration of the joint
Gaussian probability distribution function. Rather than com-
paring the error probabilities of the two-stage HPIC and LPIC
detectors directly, we choose to instead compare the perfor-
mance of their interference estimators with the intuition that
better interference estimates would tend to yield better error
probability performance.

To provide a fair comparison we assume that both the LPIC
and HPIC detectors use a conventional matched-filter first stage.
In this case, and under our synchronous system model, the two-
stage LPIC and HPIC detector outputs for theth user from may
be written as

where is the th element of noise vector, is the
crosscorrelation coefficient between theth and th users’ sig-
nature waveforms, is the th user’s element of the bit vector
, and is the th user’s amplitude. It is evident from

these expressions that the fundamental difference between the
two-stage HPIC and LPIC detectors is in the multiple-access
interference estimates. Intuitively, one would expect better esti-
mates to generally lead to better error probability performance
hence we will examine the bias and mean-squared error (MSE)
of the HPIC and LPIC estimators in the following analytical de-
velopment.

A. LPIC Interference Estimator Performance

We can calculate the bias of the two-stage LPIC detector’s
multiple-access interference estimator (for theth user) as

bias E

E

since E and E for all . This shows that the
matched-filter outputs are conditionally unbiased estimators for
the product of theth user’s bit and amplitude. We note that it
has been observed in [12] that this unbiasedness property does
not extend to additional stages of the LPIC detector and that later
stages of the LPIC detector exhibit bias in the multiple-access
interference estimates.

The MSE of the th user’s LPIC multiple-access interference
estimator can be calculated as

MSE E

E

(3)

where we have used the facts that E , E , and
E .

B. HPIC Interference Estimator Performance

The bias of the th user’s multiple-access interference esti-
mator for the HPIC detector can be calculated as

bias E

where is the matched filter de-
tector’s probability of bit error for user given by the expres-
sion in [1] as

where

We observe that theth user’s HPIC multiple-access interfer-
ence estimator is biased unless .

The MSE of the th user’s HPIC multiple-access interference
estimator can be calculated as

MSE E

E

(4)

We note that both the bias and MSE of the HPIC multiple-access
interference estimator are proportional to the probability of bit
error from the first (matched-filter) stage.

C. LPIC Versus HPIC Performance Comparison

An exact analytical comparison of MSE and MSE
is difficult due to the sum of functions involved in the eval-
uation of (4). An explanation for the significant performance
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difference between the HPIC and LPIC detector seen in the sim-
ulation results of [16] is possible if we resort to a Gaussian ap-
proximation for the multiple-access interference (e.g., see [19]).
Even though this approximation is not valid under all circum-
stances (see [20]), its use in this case provides some insight into
the relative performance of the HPIC and LPIC multiple-access
interference estimators in the absence of more exact methods.
Moreover, the result presented in the following proposition is
shown in Section VI-A to be asymptotically exact in the case of
large CDMA systems with random spreading sequences.

Under the Gaussian approximation assumption, the multiple-
access interference is assumed to be well-modeled as a Gaussian
random variable and the probability of bit error for usercan
be written as

MSE

hence

MSE AMSE
MSE

(5)

where AMSE denotes theapproximateMSE of the th
user’s interference estimate with the HPIC detector. With this
development we can prove the following proposition.

Proposition 1: For arbitrary , , , , and , MSE
AMSE .

Proof: Let

MSE

Then since and MSE . An upper bound
on the function for is given in [1] where

Then

AMSE
MSE

hence it suffices to show

for in order to prove the proposition. Since both sides of
the inequality are positive we can take the natural logarithm to
write

but for all hence

(6)

The discriminant of the right-hand side of (6) is given by

which is strictly less than zero, hence the quadratic equation in
(6) has no real roots. This implies that (6) is either always less
than zero or greater than zero. Inspection of (6) shows that it is
always less than zero, hence MSE AMSE .

As a numerical example of the interference estimator perfor-
mance, consider a multiuser communication system with
equipower, equicorrelated users such that for all .
The exact and approximate interference estimator MSE perfor-
mance for the two-stage LPIC and HPIC detector is shown in
Fig. 1 over a range of typical signal-to-noise ratio (SNR) values
for several values of. Note that the approximate HPIC interfer-
ence estimator MSEAMSE is quite accurate in all of the
cases shown and is nearly indistinguishable from the exact HPIC
interference estimator MSEMSE in the cases where

and . Moreover, these cases demonstrate the supe-
riority of the HPIC interference estimator in terms of MSE and
give some feeling for its relative performance with respect to the
LPIC interference estimator.

III. COMPARISON TO THEMATCHED-FILTER DETECTOR

The goal of this section is to show that the error probability
of the matched-filter detector is lower than that of the-stage
LPIC detector when the desired user’s amplitude exceeds a
finite threshold parameterized by . It was shown in [1, pp.
251–255] that the matched-filter detector can perform better
than the decorrelating detector in the low-SNR case as well as
the two-user case when the desired user’s amplitude is much
larger than the interfering user. More general results comparing
the matched filter to the decorrelating and minimum mean
square error (MMSE) detectors have recently been obtained
by Moustakides and Poor in [21]. Here, we use a similar
method of proof for the LPIC detector but we also derive a
closed-form expression for a sufficient threshold on the desired
user’s amplitude parameterized by the number of interference
cancellation stages.

Proposition 2: Denote the error probability for theth user
of the -stage LPIC and matched-filter detectors as
and , respectively. Given an arbitrary fixed desired user,
an LPIC detector with stages of interference cancella-
tion, a signature crosscorrelation matrix , and noise stan-
dard deviation , then if

(7)
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Fig. 1. MSE of two-stage LPIC and HPIC estimators for six equipower, equicorrelated users versus SNR in decibels.

for

(8)

Proof: For nonzero noise power, the probability of a deci-
sion error for the th user of an arbitrary linear detectorcan
be expressed as

where is the set of all possible bit vectors such that
and for all and denotes the
effective linear operation on the matched-filter bank outputs to
form the decision statistic for user. The matched-filter de-
tector is given as . The -stage LPIC detector can
be written as

hence, . Since is a monotonically de-
creasing function in

(9)

implies that . We note that this is a sufficient
condition and the converse is not necessarily true. Observing
that , , , and
canceling from both sides of the inequality, we can rewrite
(9) as

(10)

for defined by (8). Using the Schwarz inequality and the fact
that is nonnegative definite, we note that

with equality if and only if or if and only if .
In the case where , the users’ signatures are all mutually
orthogonal and the LPIC detector is identical to the matched-
filter detector. Since the proposition assumes that , this
implies that and we can rearrange the terms in (10)
to write
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Fig. 2. Example of error probabilitiesP (M) andP .

We can remove the dependence onfrom this expression by
exploiting the binary nature of its elements to maximize the
right-hand side of the inequality by setting

from which (7) follows directly.

We note that the proof does not rely on the structure of the
LPIC detector and the above analysis applies to any linear de-
tector that is not a function of the user amplitudes including the
decorrelating detector. Computation of the threshold onis,
however, dependent on the particular linear detector. We also
note that the derived threshold is not necessary but sufficient
and is likely to be loose in the sense that values of signifi-
cantly less than the threshold may also cause the LPIC detector
to exhibit a higher probability of bit error than the matched-filter
detector.

As a numerical example, consider a communication system
with users with for . Suppose that
the normalized user signature crosscorrelation matrix is given
by

Computation of the amplitude threshold under these condi-
tions yields values approximately equal to and

for the cases when and respectively.
A plot of the error probabilities in Fig. 2 shows that the actual

crossover points occur at approximately and
respectively. It is also interesting to note that in the
case2 , yet the LPIC detector exhibits better error
probability performance for . This example il-
lustrates that the LPIC detector’s performance is unfortunately
not monotonic in in general and that the error probability
performance of the LPIC detector may actually degrade as
increases even in cases when the LPIC detector is known to con-
verge to the decorrelating detector.

IV. LPIC ERRORPROBABILITY DIVERGENCE FORFINITE

In this section, we derive an explicit description of a class of
signature crosscorrelation matrices under which the LPIC de-
tector exhibits an error probability for ar-
bitrary odd values of .3 This behavior is in contrast to the
matched-filter detector which never exhibits an error probability
greater than under any operating conditions within the scope
of the -user, synchronous, binary system model. We make this
claim more precise with the following proposition.

Proposition 3: For an arbitrary fixed desired user in a
system with users, an LPIC detector with stages

2 lim LLL(M) = RRR since the spectral radius ofRRR is equal to1:6 in this
example.

3We note that if the detector is aware of the fact that its binary decisions have
error probability greater than0:5 then a simple sign change on the decisions
would yield an error probability of less than0:5. In this context, this section
describes a subset of the operating regions where this misperformance occurs
so as to alert the detector when such a bit-flipping strategy might be beneficial.
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of interference cancellation where is odd, and equicorrelated
users such that , then if

(11)

Proof: We can write the argument of the function for
the LPIC detector’s error probability expression as

(12)

where . The error probability of the -stage LPIC
detector may then be expressed as

(13)

where is the set of all vectors such that theth element
and for all . Recognizing that

implies that and that
we can rewrite (13) as

Suppose temporarily that . Since is monoton-
ically decreasing in then

and it follows directly that

Hence it is sufficient to show that if satisfies (11) then
in the equicorrelated case. Since and

then if and only if . We note
that for the matched-filter detector hence

for all . This justifies our earlier claim that the
matched-filter detector cannot have an error probability greater
than .

Returning to the LPIC detector, we wish to show that
for satisfying (11) in the equicorrelated

case. To show this, recall that the multistage LPIC detector may
be written as

Let where is a matrix with columns repre-
senting the eigenvectors of and is a diagonal matrix
of corresponding eigenvalues. Then

It can be shown that each eigenvector of is also an
eigenvector of and that if is an eigenvalue of then

is an eigenvalue of . Using these facts, we can write

hence

(14)

Applying the equicorrelated assumption, it can be shown that
has one eigenvalue equal to and eigen-

values equal to . Furthermore, it can be shown thatcan be
written in the form

where the normalized eigenvectors are given by

...

and where is the eigenvector corresponding to the unique
eigenvalue. We have used the normalized eigenvectors so that

. We can now explicitly evaluate (14) to write

Under our assumption that is odd then

and this expression simplifies to (11) directly.

We note that when , the lower bound on is computed
to be for any value of , hence no admissible choice of
will lead to an error probability greater than at any stage in
the two-user scenario. On the other hand, when then the
lower bound is strictly less than one for all odd values ofand
is decreasing in . The common case of the two-stage LPIC
detector leads to the following condition on:
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Fig. 3. Example of error probabilitiesP (M) andP for an LPIC detector withM stages of interference cancellation in an equicorrelated, equipower
communication system withK = 8 users.

In the limit, as (through all odd values of ) it can be
shown that the condition on is

We note that this condition is equivalent tohaving an eigen-
value greater than in the equicorrelated case. The fact that the
bound is decreasing in implies that the performance of the
LPIC detector may become worse at later stages when compared
to earlier stages, as was also seen in Fig. 2.

As a numerical example, consider a communication system
with equipower, equicorrelated users where
and . Computation of (11) under these conditions in-
dicates that but for all odd
values of . Fig. 3 confirms this analysis. Moreover, note
that, at even values of , the LPIC detector exhibits poor error
probability performance with respect to the matched-filter de-
tector in this example, yet the error probability does not ex-
ceed for any even value of . This example suggests that
the error probabilities for odd and even values ofconverge
to a pair of respective fixed points symmetric around as

. An analysis of this behavior is developed in the next
section.

V. LPIC ERRORPROBABILITY DIVERGENCE AS

This section analyzes the behavior of the LPIC detector in the
asymptotic case where the number of stagesgoes to infinity.
It has been shown in [8] and [9] that the-stage LPIC detector
converges to the decorrelating detector as when the

spectral radius of the crosscorrelation matrix is less than
. This section analyzes the asymptotic behavior of the LPIC

detector when .
Recall that the -stage LPIC detector may be expressed as

Let represent the spectral radius of the crosscorrelation
matrix where and where the is the
set of nonnegative eigenvalues of. Note that
where is the set of eigenvalues of under the
notation established in Section IV. It was shown in [8] and [9]
that

if is nonsingular and . If then there
exists at least one such that and it is clear that

does not converge to as . The following
proposition analyzes the error probability behavior of the LPIC
detector when as .

Proposition 4: Given such that , let and
and be the set of nonnegative eigenvalues and associ-

ated unit-norm eigenvectors of. Assume that the maximum
eigenvalue occurs with algebraic multiplicityand order the
eigenvalues and eigenvectors such that

and are the eigenvectors that constitute a basis for
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the eigenspace of the maximum eigenvalue. If
for a fixed desired user then

(15)

and

(16)

where and are defined in (12). The error prob-
ability of the LPIC detector in terms of and
is given in (13).

Proof: Since is a real symmetric matrix express-
ible as a polynomial in , is diagonalizable with eigen-
vectors and we can write

where

Similarly,

where

Under this notation, we can write

Inspection of and and the fact that im-
plies that the summations over in the numer-
ator and denominator grow without bound as for

. Although the summations over

may also grow without bound as , they do not grow as
fast as the summations over , hence

Since

for even values of

for odd values of

then (15) follows directly. The proof of (16) follows similarly.

One implication of this result is given in the following corol-
lary.

Corollary 1: Under the assumptions of Proposition 4,
and converge to a pair of respec-

tive fixed points symmetric about as .
Proof: This can be seen from the fact that

hence, from (13), we can write

We note that, under the “divergence conditions” of Proposi-
tion 4, Corollary 1 implies that the error probability of the LPIC
detector will oscillate around the value for large values of

. Moreover, since , the error proba-
bility of the LPIC detector will be greater than for large odd
values of . The numerical example of Fig. 3 demonstrates this
behavior. This behavior is in contrast to the asymptotic behavior
of the LPIC detector when where the error probability
converges to a single fixed point equal to the decorrelator’s error
probability.

In the equicorrelated case where for all ,
we showed in Proposition 3 that the normalized eigenvector
associated with the unique maximum eigenvalue is given by

. In this case, it is clear that
for any user . This implies that all users in the equicor-

related system will exhibit divergent error probabilities in the
sense of Proposition 4 and Corollary 1 when .
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For general signature crosscorrelation matrices, no eigen-
vector of can have elements all equal to zero, hence it is
impossible to satisfy the condition for
all . This implies that there will always exist
at least one user whose error probability will diverge when

. It is tempting to think that if , all users must
exhibit divergent error probabilities but the following example
indicates otherwise.

Suppose we have users and a crosscorrelation matrix
given by

(17)

The spectral radius of is given by its largest eigenvalue which
is computed to be and it can be
verified that all other eigenvalues of are in the open interval

. The unit-norm eigenvector associated with the maximum
eigenvalue is given as

It is clear that setting in this case yields .
We can compute that , that

, and that the error probability of user
1 in this case converges to that of the decorrelating detector. The
key to this example is that the eigenvector associated with the
maximum eigenvalue has a zero in a fortuitous location for user
1. The error probability of each other user diverges in the
sense of Proposition 4 and Corollary 1. This example confirms
the claim that not every user will necessarily exhibit error prob-
ability divergence when since there is no guarantee
that the eigenvector associated with the maximum eigenvalue
has all nonzero entries for general.

The natural question to ask is when doeshave an eigen-
vector with nonzero entries associated with an eigenvalue
greater than two? We have not been able to classify all such
crosscorrelation matrices, but Perron’s Theorem [22, p. 500]
and its extensions identify a large class of such matrices. The
theorem states that

Theorem 1 (Perron’s Theorem):If is an matrix with
positive entries, then

1) and is a simple (multiplicity one) eigenvalue of
;

2) the eigenvector associated with has positive
entries.

Although Perron’s Theorem may be generalized from the class
of all positive matrices to particular classes of nonnegative ma-
trices [22, pp. 508, 516], it does not extend to the case of sig-
nature crosscorrelation matrices with negative elements, e.g.,
(17). On the other hand, the implications of Perron’s Theorem
are stronger than necessary and simulations suggest that it is
actually fairly difficult to find valid signature crosscorrelation
matrices with an eigenvalue greater than two and an associated

eigenspace with one or more null dimensions. In Section VI,
we reinforce this intuition by showing via simulations that this
event occurs with low probability in the large-system case with
random spreading sequences.

One additional caveat with respect to Corollary 1 is neces-
sary. Fig. 4 plots the error probability of user 1 versusfor a
four-user, equipower communication system with the signature
crosscorrelation matrix

In this case, and none of the elements of the
eigenvector associated with the unique maximum eigenvalue are
equal to zero. Corollary 1 indicates that the error probability of
the LPIC detector will converge to a pair of fixed points cen-
tered around for each user in this system and Fig. 4 confirms
that this is indeed the case for user 1. Nevertheless, we note that
there are several values of for which the -stage LPIC de-
tector exhibits an error probability several orders of magnitude
better than the matched-filter detector. This example shows that,
even in cases when the LPIC detector is known to diverge, there
may exist values of for which the -stage LPIC de-
tector performs quite well. Unfortunately, there does not appear
to a closed-form expression for and the
matter of finding a simple indicator as to when the performance
of the LPIC detector will deteriorate or improve with the appli-
cation of additional stages remains an open problem.

VI. RANDOM SIGNATURE SEQUENCES:
LARGE-SYSTEM ANALYSIS

This section considers the implications of the general results
developed in the prior sections to a CDMA communication
system where the users’ spreading sequences are chosen ran-
domly. Specifically, we denote theth element of the th user’s
length- spreading sequence as where and

for all and . We also assume
that the elements of the spreading sequences are chosen inde-
pendently such that E unless and .
In this case, we can express the signature crosscorrelation ma-
trix as

(18)

where is a spreading sequence matrix constructed
such that the th column, denoted by , is equal to the th
user’s spreading sequence. To obtain analytical results, we focus
on the “large-system” scenario (described in [23] and [24]),
where the spreading gain and the number of users both
approach infinity but their ratio converges to a fixed
constant.

We note that the results of this section apply both to the case
where the users spreading sequences are initially chosen ran-
domly but remain fixed over the duration of their transmission
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Fig. 4. Example of error probabilitiesP (M) andP .

and to the case where a new set of random spreading sequences
are generated at each bit interval. In each case, we analyze the
expected performance of each user averaged over all possible
realizations of the noise, transmitted data, and spreading se-
quences.

A. LPIC Versus HPIC Performance Comparison

Since Proposition 1 holds for arbitrarythen it also holds for
described by (18). It turns out that the large-system random

spreading sequences case allows us to reconsider Proposition
1 without the use of the Gaussian approximation to achieve an
exactcomparison of the MSE of the interference estimates for
the two-stage LPIC and HPIC detectors.

In the large-system case, it was shown in [1, p. 116] that the
average error probability for the matched-filter detector with
random spreading sequences can be written without approxi-
mation as

E E

where

This result in combination with (4) allows us to express the av-
erage interference estimate MSE for theth user of the two-stage
HPIC detector as

E MSE

It is also possible to calculate the average interference estimate
MSE of the th user of the two-stage LPIC detector in the large-
system random spreading sequences case without approxima-
tion as

E MSE E

E

where we have used the property that

E
if

otherwise.
Hence, in the large-system random spreading sequences case,
we can write theexactexpression

E MSE

E MSE

which leads to the following proposition.

Proposition 5: For random given by (18), arbitrary fixed
, , and

E MSE E MSE

asymptotically as , , and .
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Proof: The proof follows that of Proposition 1.

If we follow the intuition that better interference estimates
should lead to better error probability performance then this
proposition suggests that the two-stage HPIC detector is uni-
formly superior to the two-stage LPIC detector in terms of error
probability for a large CDMA system with synchronous users
and random spreading sequences.

B. Comparison to the Matched-Filter Detector

Direct interpretation of Proposition 2 in the large-system case
with random spreading sequences is difficult since, unlike the
matched filter, an exact expression for the LPIC detector’s av-
erage probability of error E is difficult to obtain
even for the two-stage case. Rather than directly comparing
the error probabilities of the matched-filter and LPIC detectors,
we can instead compare their output signal-to-interference-plus-
noise ratios (SINR).

In the random spreading sequence scenario, SINR is de-
fined [1, p. 280] as the ratio of the second moments of the
desired component to the interference (background noise plus
multiaccess interference) component averaged with respect
to transmitted data, noise, and random spreading sequences.
One justification for analyzing the output SINR of a multiuser
detector is that certain multiuser detectors exhibit a soft-de-
cision statistic that may be described without approximation
as a Gaussian random variable in the large-system, random
spreading sequence scenario. In this case, the multiuser de-
tector’s error probability and output SINR are related by the
expression

E SINR

We note that this property holds for the matched-filter detector
but the same is not immediately true for the-stage LPIC de-
tector. Although numerical evidence suggests that decision sta-
tistics of the -stage LPIC detector may indeed be Gaussian, a
proof of this property appears to be difficult and remains an open
problem. Nevertheless, we analyze the SINR of the LPIC de-
tector in this section under the premise that SINR and error prob-
ability are often closely related even in the case when the deci-
sion statistics are not exactly Gaussian. Moreover, we note that
SINR is also an appropriate performance measure if the LPIC
detector’s outputs are to be used by a soft-decision channel de-
coder.

Proposition 6: Assume the large-system scenario with
randomly chosen spreading sequences. Let SINRand
SINR denote the SINR of theth user at the output of
the matched-filter and the two-stage LPIC detectors, respec-
tively. Then

SINR SINR

if and only if where is given in (20).

Proof: The asymptotic SINR of the matched-filter de-
tector for the large-system random spreading sequence scenario
is given in [1, p. 281] as

SINR (19)

where

(20)

The asymptotic SINR of the approximate decorrelator (equiv-
alent to the two-stage LPIC detector) for a large CDMA system
with random spreading sequences is given in [11] as

SINR SINR

Comparison of SINR to SINR reveals that
can be factored out of both expressions and that there is no am-
plitude threshold behavior as seen in Proposition 2. Instead, the
relationship between SINR and SINR depends on
and the ratio of mean interference to noise power . Setting
the ratio

SINR

SINR

and solving for , we get

(21)

We can draw two conclusions from (21). First, in the case
when is small, the matched-filter detector intuitively per-
forms better than the two-stage LPIC detector because the mul-
tiple-access interference estimates, upon which the LPIC de-
tector crucially relies, are unreliable in this region. In fact, (21)
implies that the matched-filter detector outperforms (in terms of
asymptotic SINR) the two-stage LPIC detector for any
if . Second, for any value of , (21) implies
that the matched-filter detector outperforms the two-stage LPIC
detector if . In this operating region, the ratio of the
number of users to the spreading gain is large enough such that
the LPIC detector’s multiple-access interference estimates are
unreliable and interference cancellation is detrimental to per-
formance. This behavior was first observed in [11] in the noise
free case.

An extension to Proposition 6 for the general case of the
-stage LPIC detector remains an open problem. Calculation

of the asymptotic SINR for an -stage LPIC detector for arbi-
trary is more complicated and appears to require com-
putation of the moments of the random eigenvalues offrom
the distribution given in [23]. An analytical comparison of the
marched-filter and -stage LPIC detector asymptotic SINR’s
remains an open problem.

C. LPIC Error Probability Divergence and Asymptotic Results

Proposition 3 does not have direct application in the case
when the crosscorrelation matrix is random since it involves
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Fig. 5. Expected error probability versus number of LPIC interference cancellation stages for a CDMA system with spreading gainN = 256, random spreading
sequences, anda =� = 1=0:3 for all users. The results shown are averaged over10 realizations of the random spreading sequences, transmitted bits, and noise.

selection of some particular to show error probability diver-
gence of the LPIC detector. However, Proposition 4 and Corol-
lary 1 do have a meaningful interpretation due to the following
theorem by Bai and Yin [25].

Theorem 2 (Bai and Yin):Let be an matrix of inde-
pendent and identically distributed random variables with zero
mean and unit variance. Let If E ,
then, as , , , the largest eigen-
value of converges to with probability one. The
minimum eigenvalue converges to with probability
one.

We apply Theorem 2 in the following proposition.

Proposition 7: Assume the large-system scenario with ran-
domly chosen spreading sequences. If then

with probability one and diverges in the
sense of Proposition 4 and Corollary 1 as for at least
one user.

Proof: Theorem 2 indicates that the largest eigenvalue of
converges to a deterministic value in a large-system random

spreading sequence scenario. Sinceis nonnegative definite,
the maximum eigenvalue is equivalent to the spectral radius

, hence

(22)

Manipulation of (22) yields

with probability . Proposition 4 indicates that, when ,
each user that does not satisfy the property

will exhibit the divergent asymptotic error probabilities de-
scribed by (15) and (16) as . Since the eigenvectors

cannot have all elements equal to zero, error proba-
bility divergence in the sense of Proposition 4 and Corollary 1
occurs with probability for at least one user when

.

We note that, since all users do not necessarily exhibit error
probability divergence for a particular realization of, different
realizations of may cause different users to exhibit error prob-
ability divergence in the sense of Proposition 4 and Corollary 1.
Hence, in the case when the users’ spreading sequences change
between bit intervals, Proposition 7 does not imply that theav-
erageerror probability (over all possible realizations of) nec-
essarily diverges for any of the users. However, simulation evi-
dence suggests that the eigenvectors forming the basis for the
eigenspace of the largest eigenvalue of the random signature
crosscorrelation matrix have elements equal to zero with very
low probability for sufficiently large and . This then implies
that, for nearly all realizations of , all users will exhibit error
probability divergence in the sense of Proposition 4 and Corol-
lary 1 as . Fig. 5 confirms this behavior by examining
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the average error probability performance of the LPIC detector
in the case when changes between bit intervals.

VII. CONCLUSION

This paper examined several performance aspects of the
multistage LPIC detector. We presented analytical evidence
that supports the recent simulation evidence of other authors
suggesting that Varanasi and Aazhang’s HPIC detector may
outperform the LPIC detector in many common operating
scenarios. We derived a closed-form expression for a sufficient
threshold which, if exceeded by the desired user’s amplitude,
causes the matched-filter detector to outperform the LPIC
detector in terms of error probability for the desired user. We
developed an explicit description of a set of signature crosscor-
relation matrices, parameterized by the number of interference
cancellation stages , such that the LPIC detector exhibits
an error probability greater than for binary signaling. The
behavior of the LPIC detector was also investigated in the
asymptotic case when . Under conditions such that the
LPIC detector does not converge to the decorrelator, we derived
a closed-form expression for the asymptotic error probability
of the LPIC detector and showed that it converges to a pair of
fixed points centered around .

The implications of the prior results were studied for CDMA
communication systems with large bandwidth, a large number
of users, and random spreading sequences. We showed that the
HPIC detector is uniformly superior to the LPIC detector in
terms of interference estimator performance in this scenario. We
also showed that the two-stage LPIC detector exhibits worse
asymptotic output SINR performance than the matched-filter
detector when for any choice of desired user am-
plitude and interference or noise powers. Applying a recent re-
sult from random matrix theory, we showed the asymptotic re-
sult that the -stage LPIC detector will not converge to the
decorrelating detector and that at least one user will exhibit an
error probability that converges to a pair of fixed points centered
around as if .

The results presented in this paper are intended to advance
our understanding of PIC detector since they offer many attrac-
tive features in terms of computational complexity and decision
latency. Indeed, there are many documented cases of good per-
formance by both the LPIC and HPIC detectors in the literature.
However, the results derived in this paper are intended to fill in
some of the gaps in our understanding of PIC detectors and to
serve as cautionary guidelines as to when the LPIC detector may
exhibit undesirable performance.
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