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Abstract—This paper analyzes the performance of the linear cess interference from the original observation of the desired
parallel interference cancellation (LPIC) multiuser detector in yser, PIC is applicable to a wide range of asynchronous or

a synchronous multiuser communication scenario with binary . . s .
signaling, nonorthogonal multiple access interference, and an synchronous multiuser communication systems with interfering

additive white Gaussian noise channel. The LPIC detector has Users and is justified by the intuition that if the multiple-access
been considered in the literature lately due to its low computa- interference is estimated perfectly then the resulting decision
tional complexity, potential for good performance under certain  statistic for the desired user contains no multiple-access in-
ggggttg:g ﬁort]ﬁi'gog;iogg dwcéoi%rﬁgg?s Ctt;%nsp;?fé?;gfgg "Oeflattt'%g terfere.nce and single.—user performance is achieved. PIC also
two-stage LPIC detector to the original multistage detector lends itself to a multistage structure wheté concatenated
proposed by Varanasi and Aazhang for CDMA systems. The PIC stages are employed to generate a set of final decision
general M-stage LPIC detector is compared to the conventional gtatistics. Each stage uses the prior stage’s tentative decision
matched filter detector to describe operating conditions where . : .
the matched filter detector outperforms the LPIC detector in OUIPUtS to generate new multiple-access interference estimates
terms of error probability at any stage M. Analytical results are and subtracts these interference estimates from the original
presented that show that the LPIC detector may exhibit divergent observation to produce new tentative decision outputs with

error probability performance under certain operating conditions  a5;maply lower multiple-access interference. The first PIC
and may actually yield error probabilities greater than 0.5 in

some cases. Asymptotic results are presented for the case wherél@tector for code division multiple access (CDMA) communi-
the number of LPIC stages goes to infinity. Implications of the ~cation systems was derived by Varanasi and Aazhang in [2] and
pr_lt?]r resglts f%r_ code leng!n multiple access (%DMA) S()jls_ter?ﬁ [3] where their PIC detector was called a multistage detector.
with random binary spreading sequences are discussed in the : :
“large-system” scenario. Our results are intended to analytically The mqltlstage de_tector was shown to have close connections to
corroborate the simulation evidence of other authors and to the optimum maximum-likelihood detector and also to possess
provide cautionary guidelines concerning the application of LPIC  several desirable properties including the potential for good
detector to CDMA communication systems. performance, low computational complexity, and low decision

Index Terms—Code division multiple access (CDMA), commu- latency.
nication theory, interference cancellation, multiaccess communi-

cation, multiuser detection. Varanasi and Aazhang's multistage detector is a particular

implementation of PIC where each stage generates an output
of tentativehard bit decisions for each user. Using the tenta-
tive hard bit decisions from the prior stage, the next stage gen-
erates its multiple-access interference estimates by multiplying
. INTRODUCTION these tentative decisions by the corresponding user amplitudes

ARALLEL interference cancellation (PIC) is a multiuse@nd appropriate crosscorrelation factors. These interference es-
Pdetection [1] technique where a desired user's decisidfates are then subtracted from the original observation and

statistic is formed by subtracting an estimate of the multiple-alfie result is passed through a hard-decision device to form new
tentative hard bit decisions for the next stage. If the multistage

. . . detector has perfect knowledge of the user amplitudes and cross-
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in [4] that this limit-cycle behavior can be explained by the mulwhereR € RX* X is the symmetric matrix of normalized user
tistage detector’s relationship to the Hopfield neural netwodcosscorrelations such th&,,,, = 1form =1, ..., K and
where limit cycles of lengt2 were shown to exist in a class of|R,,,;| < 1 for all m # ¢, A € RX*X is the diagonal matrix
special cases that includes the multistage detector [5]. Despifepositive-real amplitudes € BX*! is the vector of binary
these shortcomings, analytical and simulation evidence suggestsr symbols wherB = {£1}, ¢ is the standard deviation of
that the multistage detector often yields significant performantiee channel noise, andc R* ! represents a matched filtered,
improvements over the conventional matched-filter detector imit variance AWGN process wherérf = 0 and Enn '] = R.
typical operating scenarios. For the remainder of this paper, Wie conventional matched-filter detector forms hard decisions
will avoid notational confusion with other multistage detectorgiven bybyr = sgn (y). The multistage LPIC detector is given
by denoting the Varanasi and Aazhang multistage detectorass
the “hard PIC” (HPIC) detector based on the hard tentative de-
cisions provided at the output of each stage. z(m+1) =y — (R—I)z(m), m=0,1...,M-1
More recently, Kaul and Woerner [6] proposed and analyzed (2a)
an alternative PIC detector which we call the “linear PIC” 2(0) =y (2b)
(LPIC) detector. The LPIC detector is also a multistage detector b — sen(2(M)) 2¢)
but, in contrast to HPIC, each stage of the LPIC detector gener- -I1¢ ~ 58 '
ates soft tentative decision outputs and a hard-decision devigeder this notation it is evident that the two-stadePIC de-
is not used until the final stage. The soft tentative decisions [@fctor(M = 1) is equivalent to thepproximate decorrelator
the prior stage are used to generate multiple-access interferg¢evhich has received some attention in the literature recently
estimates for each user and these estimates are subtracted f1iandue to its low computational complexity and good perfor-
the original observations to form new soft tentative decisiafiance under certain operating conditions. Hence, the analytical
outputs for the current stage. The first stage of the LPIC detectekults in [11] apply here to the case whigh= 1.
is specified to be a conventional matched-filter bank. Since allThe goal of this paper is to develop a better understanding of
operations in the generation of the final decision statistics atg behavior and performance of the LPIC detector. Other au-
linear, the total operation on the original observations is lineafiors have noted limitations in LPIC performance including the
hence the name LPIC. original paper by Kaul and Woerner [6], where the authors no-
Unlike HPIC, the LPIC detector does not need to know thgced that there existed conditions where interference cancella-
user amplitudes since the soft stage outputs are used as @sifr actually degraded system performance. Since then, several
mates for the product of each user’s bit and amplitude. In fagiuthors have proposed various improvements to the LPIC de-
as will be shown later in this paper, the first stage of the LPIfector including [12]-[16]. We do not propose to fix the LPIC
detector provides unbiased estimates for this bit-amplitugetector in this paper but rather to understand it better so that
product, whereas the first stage of the HPIC detector outpwy® can bound the operating regions where the LPIC detector
biased estimates. Furthermore, since the LPIC detector deghibits good or bad performance. In that spirit, this paper is
not form a hard decision until the last stage, the LPIC detecigresented as a collection of related analytical results that com-
does not inherently possess the interference doubling problgsase the LPIC detector to the HPIC and matched-filter detectors
found in the HPIC detector. These features combined wils well as expose the asymptotic behavior of the LPIC detector
LPIC’s analytical tractability and good performance undejs the number of stages approaches infinity.
certain operating scenarios have led to increased attention in th&he remainder of this paper is organized as follows. Section II
literature lately. The asymptotic multiuser efficiency (AME) oktompares the performance of two-stage HPIC and LPIC detec-
the M -stage LPIC detector was derived in [7] and convergengsrs in order to gain a better understanding of the significant
to the decorrelating detector @ — oo was shown in [8] performance differences between these detectors observed by
when the spectral radius of the user crosscorrelation matg#her authors. Section Ill compares the-stage LPIC detector
is less than two. The convergence behavior of both the LP{€the conventional matched-filter detector. Section IV analyzes
and HPIC detectors was studied in [9]. A generalization to thgerating conditions that lead to the-stage LPIC detector
LPIC detector was reported in [10] where the LPIC detecteihibiting an error probability greater thams. Section V de-
is shown to be a special case of the class of linear multiusgflops asymptotic results on the behavior of #estage LPIC
detectors expressible as a polynomial function of the signatufetector as the number of stagds— ~o. Section VI examines
crosscorrelation matrix. the implications of the results in the prior sections for a CDMA
This paper focuses on analyzing the behavior of the LP§gmmunication system with random spreading sequences in the
detector in a synchronous multiuser communication scenarigrge-system” scenario where the number of ugérand the
with binary signaling, nonorthogonal transmissions, and an aspreading gaidV both approach infinity but the ratif{ /N is
ditive white Gaussian noise (AWGN) channel. Our communkept constant.
cation system model and notation are identical to the basic syn-
chronous CDMA model described in [1]. The number of usersin
the system is denoted ¥y and all detectors considered in this

paper operate on thi€-dimensional matched-filter bank output Zin this paper, the symbdl/ denotes the number of stages of interference

; ; cancellation. It is customary, however, to refer to an LPIC detector with one
given by the expression stage of interference cancellation as a “two-stage” detector, Heheel con-
y=RAb+ on (1) sistently denotes the two-stage LPIC detector in this paper.
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II. LPIC VERSUSHPIC FERFORMANCE COMPARISON The MSE of thefth user’s LPIC multiple-access interference
S

This section presents an analytical performance comparis%%"‘nator can be calculated aQ
between the two-stage HPIC and LPIC detectors. The results MSE(LZI))IC =E [(C(Lér)qc) ‘b“)}
in this section are motivated by simulation studies of [16] and )
the analysis of [17] and [18] where the authors demonstrated
that the two-stage HPIC detector can significantly outperform =E || Y para®™b® + o0l
the two-stage LPIC detector in terms of error probability under e
a variety of operating conditions. Unfortunately, direct anal- 9
ysis of the two-stage HPIC detector’s error probability is dif- = Z (a(k)pek) + o? )
ficult in general since the exact HPIC error probability expres- k7t

sions involveK -dimensional numerical integration of the jointwhere we have used the facts th@btf] =1, E[bnT] =0, and
Gaussian probability distribution function. Rather than cor‘rE[nnT] — R.

paring the error probabilities of the two-stage HPIC and LPIC

detectors directly, we choose to instead compare the perfBr- HPIC Interference Estimator Performance

mance of their interference estimators with the intuition that The pias of thefth user’s multiple-access interference esti-
better interference estimates would tend to yield better eri@ator for the HPIC detector can be calculated as

probability performance. biasgf) —E [e(e) ‘b“)}
To provide a fair comparison we assume that both the LPIC PIC HPIC
and HPIC detectors use a conventional matched-filter first stage. —0.P (Sgn (y(é)) — b(f)) EPWONG)
In this case, and under our synchronous system model, the two-
stage LPIC and HPIC detector outputs for ktle user from may -P (Sgn (y(z)) # b(z))
be written as N ) . .
Zg;))m:a(k)b(k)_i_zpké [a([)b([)—y([)} 1on® =_2q0p0p (sgn (y( >) £ b ))
A where P(sgn(y®) # b®) = P} is the matched filter de-
29 tgcto_r’s[p]robability of bit error for usef given by the expres-
B a0 LN o [ 000 _ g Ogen (O] 4ontn  SONINIL S
HPIO ;mi ot (+)] P (sn (4) #69)
= _eg}ZIG G(Z)b(é) + Z pgka(k)b(k)
wheren®) is thekth element of noise vecter, pr.c = Ry is the = % oo o
crosscorrelation coefficient between thil and¢th users’ sig- 207 o0 1 g
nature waveformgy¥) is thekth user’s element of the bit vector BB e (1) ¥ k2t
b, anda™ = A, is thekth user's amplitude. It is evident from Where
these expressions that the fundamental difference between the A [T e J
two-stage HPIC and LPIC detectors is in the multiple-access Qz) = /w ¢ £

interference estimates. Intuitively, one would expect betterei&- b that théh 's HPIC multiol interf
mates to generally lead to better error probability performandes OP>€rVe that theth USers muipie-access interter-
ce estimator is biased unleBgsgn(y)) # v9) = 0.

hence we will examine the bias and mean-squared error (M , . .
of the HPIC and LPIC estimators in the following analytical de- _he MSE of the'th user's HPIC multiple-access interference
estimator can be calculated as

velopment. 2
4 [4
. MSE%%’IC =E |:(6§{%’IC) ‘b([)}
A. LPIC Interference Estimator Performance
2 2
We can calculate the bias of the two-stage LPIC detector's - (a“)) E Usgn (y“)) - b([)‘ }
multiple-access interference estimator (for fifreuser) as )
(e {4 —(a® . - @y — p©
bia I)’IC =E |:C£I)’IC ‘b([)} o (a ) [O P (Sgn (y ) =0 )
t4P (Sgn (y“)) ” b@ﬂ
—E Z pea®b®) 4 gn 0 )
., = (a([)) 4P (sgn (y([)) #* b([)) . (4)
=0 We note that both the bias and MSE of the HPIC multiple-access

since Bb™*)] = 0 and Bn*)] = 0 for all k. This shows that the interference estimator are proportional to the probability of bit
matched-filter outputs are conditionally unbiased estimators fefror from the first (matched-filter) stage.

the product of the/th user’s bit and amplitude. We note that it i

has been observed in [12] that this unbiasedness property dgeé‘Plc Versus HPIC Performance Comparison

not extend to additional stages of the LPIC detector and that late/An exact analytical comparison of M%ZEIC and MSI‘%%)IC
stages of the LPIC detector exhibit bias in the multiple-acceissdifficult due to the sum of) functions involved in the eval-
interference estimates. uation of (4). An explanation for the significant performance
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difference between the HPIC and LPIC detector seenin the sibutln(x) < = — 1 for all x > 0 hence

ulation results of [16] is possible if we resort to a Gaussian ap-

proximation for the multiple-access interference (e.g., see [19])1. 4 72 4 72
Even though this approximation is not valid under all circum- n(x) +1In <E) T ST 1+1n <E) T (6)
stances (see [20]), its use in this case provides some insight into

the relative performance of the HPIC and LPIC multiple-acces$e discriminant of the right-hand side of (6) is given by
interference estimators in the absence of more exact methods.

Moreover, the result presented in the following proposition is 1 1 4 4
shown in Section VI-A to be asymptotically exact in the case of 1—4 { 1 < )} =-1+2In <f)
large CDMA systems with random spreading sequences. T
Under the Gaussian approximation assumption, the multip
access interference is assumed to be well-modeled as a Gau
random variable and the probability of bit error for ugeran

———In
2 2

V2r

\ﬁhich is strictly less than zero, hence the quadratic equation in
as no real roots. This implies that (6) is either always less
than zero or greater than zero. Inspection of (6) shows that it is

be written as always less than zero, hence Nf@% > AMSE%Q)IC. O

) As a numerical example of the interference estimator perfor-
P (Sgn (y“)) £ b“)) ~Q a mance, consider a multiuser communication system iiti 6
3 (a“)pek)Q +02 equipower, equicorrelated users such fhat= p for all k # ¢.

ket The exact and approximate interference estimator MSE perfor-

a(© mance for the two-stage LPIC and HPIC detector is shown in

=Q| —— Fig. 1 over a range of typical signal-to-noise ratio (SNR) values

1/ MSE(LZI))IC for several values gf. Note that the approximate HPIC interfer-

ence estimator MSEAMSES}),TC) is quite accurate in all of the
cases shown and is nearly indistinguishable from the exact HPIC
4 interference estimator MS(E&/ISE%“I))IC) in the cases where=
——— | (5) 0.2andp = 0.5. Moreover, these cases demonstrate the supe-
A /MSE(L?)IC riority of the HPIC interference estimator in terms of MSE and
give some feeling for its relative performance with respect to the

where AMSE.), . denotes theapproximateMSE of the¢th ~LPIC interference estimator.
user’s interference estimate with the HPIC detector. With this

hence

2
14 [4
MSE{flic ~ AMSE{f}c = 4 (a©) @

development we can prove the following proposition. IIl. COMPARISON TO THEMATCHED-FILTER DETECTOR
Proposition 1: For arbitraryR, o, A, K, and?, MSE{}, . > . C .
AMSEp([) Yo LPIC The goal of this section is to show that the error probability
Proof- Let of the matched-filter detector is lower than that of fiestage

LPIC detector when the desired user's amplitude exceeds a

_® W finite threshold parameterized k. It was shown in [1, pp.
z=a" [\/MSE pc. 251-255] that the matched-filter detector can perform better
than the decorrelating detector in the low-SNR case as well as

; ¢ D)
Thenz > 0'sinceal® > 0 and MSE ;. > 0. An upper bound e two-user case when the desired user's amplitude is much

on thec) function forz > 0 is given in [1] where larger than the interfering user. More general results comparing
1 22 the matched filter to the decorrelating and minimum mean
Q) < €xp <—?> square error (MMSE) detectors have recently been obtained

Vora by Moustakides and Poor in [21]. Here, we use a similar

Then method of proof for the LPIC detector but we also derive a
% closed-form expression for a sufficient threshold on the desired

MSEL 2 user’s amplitude parameterized by the number of interference

AMSEjipc; < 4 I % exp <_7> cancellation stages.

Proposition 2: Denote the error probability for theth user
) of the A/-stage LPIC and matched-filter detectors‘égm(M )
Az exp <_$_> <1 and P{}, respectively. Given an arbitrary fixed desired user
an LPIC detector with\/ > 1 stages of interference cancella-

hence it suffices to show

jon, a signature crosscorrelation matkx£ I, and noise stan-

for z > 0 in order to prove the proposition. Since both sides d p e
PI(,P)IC(M) > P]&Tg if

the inequality are positive we can take the natural logarithm g&"d deviatiors > 0, then

write
> al® |Ore(M) — prel

4 22 N2
() 1 [~ ) -7 <o @ .
n(x) 11<\/%> 5 < a\™’ > = e (3) (7)
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, p=0.1 . p=0.2 . p=0.5
10 T T 10 T T 10 T T
-~ LPIC MSE -6~ LPIC MSE -6~ LPIC MSE
—& HPIC MSE |] - HPICMSE |] - HPIC MSE
—£— HPIC AMSE —9- HPIC AMSE —~ HPIC AMSE
d
D
L 0
= 2 10" P8g
10'4 Il 1 10‘2 1 1 10_1 1 L
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SNR SNR SNR

Fig. 1. MSE of two-stage LPIC and HPIC estimators for six equipower, equicorrelated users versus SNR in decibels.

for implies thatPL('f,)IC(M) > P]\(f} We note that this is a sufficient
condition and the converse is not necessarily true. Observing
e L(M)Re, ) (8) thate) Rey = 1, Aey = aWey, b = e + >, b Ve, and
\/ekTL(M)RL(M)ek cancelings from both sides of the inequality, we can rewrite
(9) as
Proof: For nonzero noise power, the probability of a deci-
sion error for thekth user of an arbitrary linear detectbrcan a® (M) + Z a6, (M)

113

Ore(M)

be expressed as t#k
<a® +3 " aOpy,  VbeB (10)
P _ 1 Z 0 fPTRAD e
F 7 oKk-1
2 E \oJfOTR® for 6, defined by (8). Using the Schwarz inequality and the fact

that R is nonnegative definite, we note that
whereB;, is the set of all possible bit vectors such thiat = +1

andb® € {1} forall £ # k andf* e RE*! denotes the el L(M)Re;, = ¢] L(M)RY?R ¢,
effective linear operation on the matched-filter bank outputs to T T
< 4 4
form the decision statistic for usér. The matched-filter de- - \/e’“ LM)RL(M )er \/e’“ Rex
tector_ is given agf(k) = ey. The M -stage LPIC detector can =\/e] L(M)RL(M)ey
be written as
M with equality if and only ifL(AM) = oI orifand only if R = I.
2(M) = Z (I-R)™y=L(M)y In the case wher®& = I, the users’ signatures are all mutually
m—0 orthogonal and the LPIC detector is identical to the matched-

filter detector. Since the proposition assumes Rag I, this
hence,f(k) = L(M)e;. SinceQ(z) is a monotonically de- implies thatd < #; < 1 and we can rearrange the terms in (10)

creasing function in: to write
> aObO (04 (M) — pre

el L(M)RAb el RAb
x L(M) < . YbeBy (9) o 2 e n
o\/el LIM)RL(M)ey  o\/e] Rey o™ > Ty , c By
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Fig. 2. Example of error probabilitieB{},, (M) and PS.

We can remove the dependencelofiom this expression by crossover points occur at approximatelg, 4.4, 2.8, and2.2,
exploiting the binary nature of its elements to maximize thespectively. It is also interesting to note that in thie= 100
right-hand side of the inequality by setting casé L(100) = R™', yetthe LPIC detector exhibits better error
¢ probability performance fod € {1, 2, 3}. This example il-
b = sen(Oe(M) = pre),  VEF K lustrates that the LPIC detector’s{ perforr};mnce is unfortunately
from which (7) follows directly. O not monotonic inM in general and that the error probability
};i)erformance of the LPIC detector may actually degradé/as

LP\:\/Ce;cite :h?t Lh de tErOOI) d\(/)es :olt r(ialy on "the tstrurc]:tulriﬁ Ofrt increases even in cases when the LPIC detector is known to con-
etectora € above analysis apples 1o any finea %'rge to the decorrelating detector.

tector that is not a function of the user amplitudes including the
decorrelating detector. Computation of the thresholdéhis,
however, dependent on the particular linear detector. We als
note that the derived threshold is not necessary but sufficientn this section, we derive an explicit description of a class of
and is likely to be loose in the sense that values‘6f signifi-  signature crosscorrelation matrices under which the LPIC de-
cantly less than the threshold may also cause the LPIC detegttor exhibits an error probabilitﬁ’é’;))lc(M) > 0.5 for ar-
to exhibit a higher probability of bit error than the matched-filtepitrary odd values of\/.3 This behavior is in contrast to the
detector. matched-filter detector which never exhibits an error probability
As a numerical example, consider a communication systejreater tha®.5 under any operating conditions within the scope
with K = 3users withu(*) /o = 2for k € {2, 3}. Suppose that of the K -user, synchronous, binary system model. We make this
the normalized user signature crosscorrelation matrix is giverim more precise with the following proposition.

Ié/. LPIC ERRORPROBABILITY DIVERGENCE FORFINITE M

b . . ) . .
y Proposition 3: For an arbitrary fixed desired usérin a
1 5 3 1 system withK > 3 users, an LPIC detector with/ > 1 stages
R==-1|3 5 — .
3 1 -1 5 2\}1111 L(M) = R™" since the spectral radius & is equal tol.6 in this
exafmpl?.

Computation of the amplitude threshold under these condi3we note that if the detector is aware of the fact that its binary decisions have

tions yields values approximately equaBtO4 4.40. 3.12.and error probability greater thad.5 then a simple sign change on the decisions
’ ’ ’ would yield an error probability of less thah5. In this context, this section

2.97 for the cases WheM_ = 17_ 2, :.57 and 100, respectively. gescribes a subset of the operating regions where this misperformance occurs
A plot of the error probabilities in Fig. 2 shows that the actuab as to alert the detector when such a bit-flipping strategy might be beneficial.
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of interference cancellation whedd is odd, and equicorrelatedLetI — R = VAV ™" whereV is a matrix with columns repre-
users such thak;; = p Vi # j, thenPE’f))IC(M) > 0.5 if senting the eigenvectors @f — R) andA is a diagonal matrix
4 of corresponding eigenvalues. Then
M41
<(K - MAL (K — 1))

M
LM)=V [Z Am] vh
Proof: We can write the argument of thg function for m=0
the LPIC detector’s error probability expression as It can be shown that each eigenvector($f— R) is also an
e] L(M)RAb eigenvector ofR and that if\ is an eigenvalue off — R) then

1 — Xis an eigenvalue aR. Using these facts, we can write
M

L(M)R=V [Z Am] (I-A)V

m=0

K

<p<L1l (12)

o \/ed L(M)RL(M ey
a®el L(M)Rey, el L(M)RAd
- o \/eZL(M)RL(M)ek +a \/ekTL(M)RL(M)ek 42 M M
VAT R ¢ el10n [ a v

S a(M) = Bi(d, M) m=0 m=0

_ o AMA417 -1
whered = b — e;. The error probability of thé/-stage LPIC =V [I A ] 4

detector may then be expressed as =I-vAMHy
PRo(M) = =2 5™ Qar(M) + rl(d, M)  (13) nence
= —0 g + Pk )
LPIC 9K—1 =z e; L(M)Re, =1 — ] VAMHYV le. (24)

wk}:ereDk is thée set of all vectors such that tii¢h element Applying the equicorrelated assumption, it can be shown that
d® = 0andd € {£1} for all £ # k. Recognizing thall € 1 _ R has one eigenvalue equal(tb— K)p andK — 1 eigen-
Dy, implies that—d € D;. and that,.(—d, M) = —fi(d, M)  values equal tg. Furthermore, it can be shown thétcan be

we can rewrite (13) as written in the form
(*) _ 1 V=[v v - wvg]
PE (M) = — an(M) + Bi(d, M
Lrc (M) 2K d;k Qan(M) + fil ) where the normalized eigenvectors are given by
1
TQok(M) ~ fu(d M) ey = 1111 . )T
- - . 1 ‘\/E [ ]
Suppose temporarily that, (M) < 0. SinceQ(x) is monoton- 1 -
ically decreasing ir: then v2 = [1 -1 0 0 - 0]
Qlar(M) + Si(d, M) + Qow(M) - Br(d, M) vs=—[1 1 -2 0 - 0]
> QUu(d, M) + Q(~fu(d. M) = 1 Ve
and it follows directly that 1
1 Vg =
3K > Qan(M) + Br(d, M) + Q(aw(M) — Bi(d, M) VE -1+ (K -1)?
de Dy, ) Jr1 11 - ~(K=1]7
oL Z _ 2Kt _ 1 and wherew, is the eigenvector corresponding to the unique
K 2K 2" eigenvalue. We have used the normalized eigenvectors so that

deDy, 71 T .. .
V7" =V . We can now explicitly evaluate (14) to write

Hence it is sufficient to show that ip satisfies (11) then 1 —e;—VAM"'lV_lek

ar(M) < 0in the equicorrelated case. Siné®’ /o > 0 and

(1 _ K)M-I-lpM-I-l (K _ 1)2pM+1
=1- + )
\/ekTL(M)RL(M)ek >0 K (K—-1)+ (K - 1)2>
Under our assumption that is odd then
thenax (M) < 0if and only if ] L(M)Re;, < 0. We note (1— KYM+L = () — 1)M+1
thatfor the matched-filter detectd1/) = I hencer.(M) = and this expression simplifies to (11) directly. O

a'® /o > 0 for all R. This justifies our earlier claim that the
matched-filter detector cannot have an error probability greateiWe note that wheik = 2, the lower bound op is computed
than0.5. to be1 for any value of A/, hence no admissible choice pf
Returning to the LPIC detector, we wish to show thawill lead to an error probability greater thé@n at any stage in
e; L(M)Re;, < 0 for p satisfying (11) in the equicorrelatedthe two-user scenario. On the other hand, wher 2 then the
case. To show this, recall that the multistage LPIC detector miayer bound is strictly less than one for all odd valuedffind

be written as is decreasing in/. The common case of the two-stage LPIC

M detectorl M = 1) leads to the following condition op:
LM)=> (I-R™
m=0 \/K -1

<p<L1l



1964 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001

2 Z
Q 1 g -1 : . .
e 10 ............................................ . e 10 ......... R R , ......... -
oS S O T S A P
§ ........ P P [ERRRERRERE ‘9- ....... R P R
® GoODeBCOONEBEOOOEEEDN ® BOOAEEECOONEEBEEOO88GE0D
-~ LPIC - LPIC
. ; : - MF . ‘ : -o0- MF
10 1 1 I 10 1 1 1
5 10 15 20 85 90 95 100
M M

Fig. 3. Example of error probabilitie@é’géc(z\d’) and ngg for an LPIC detector with\/ stages of interference cancellation in an equicorrelated, equipower
communication system with™ = 8 users.

In the limit, asM — oo (through all odd values a¥f) it can be spectral radius of the crosscorrelation mag{R) is less than

shown that the condition opis 2. This section analyzes the asymptotic behavior of the LPIC
1 <p<1 detector whemp(R) > 2.

K—1 Ff=+ Recall that theM -stage LPIC detector may be expressed as
We note that this condition is equivalent®having an eigen- M
value greater tha in the equicorrelated case. The fact that the L(M) = Z (I-R)™.
bound is decreasing if/ implies that the performance of the m=0
LPIC detector may become worse at later stages when compareel o( R) represent the spectral radius of the crosscorrelation
to earlier stages, as was also seen in Fig. 2. matrix R wherep(R) 2 maxg ~ and where thé~, 1| is the

_As a numericgl example,_consider a communication systefg; of nonnegative eigenvalues Bf Note thaty, = 1 — )\
with X' = 8 equipower, _eqwcorrelated users wheye =10 where{\; 1< is the set of eigenvalues ¢f — R) under the
andp = 0.25. Computation of (11) under these conditions ingqtation established in Section IV. It was shown in [8] and [9]
dicates that?¥), (1) < 0.5 but P%) (M) > 0.5 for all odd iyt
values ofM > 3. Fig. 3 confirms this analysis. Moreover, note -
that, at even values dff, the LPIC detector exhibits poor error _ m_ p—1
probability performance with respect to the matched-filter de- L(e0) = Z I-R)" =R
tector in this example, yet the error probability does not ex-
ceed0.4 for any even value ofif. This example suggests thatif R is nonsingular ang(R) < 2. If p(R) > 2 then there
the error probabilities for odd and even valuesidfconverge exists at least ong;, such that/A;| > 1 and it is clear that
to a pair of respective fixed points symmetric around as L(M) does not converge tR™' asM — oo. The following
M — oo. An analysis of this behavior is developed in the nextroposition analyzes the error probability behavior of the LPIC

m=0

section. detector whep(R) > 2 asM — oc.
Proposition 4: GivenR such thap(R) > 2, let{~} /-, and
V. LPIC ERRORPROBABILITY DIVERGENCE ASM — o0 {v¢}X | and be the set of nonnegative eigenvalues and associ-

This section analyzes the behavior of the LPIC detector in théed unit-norm eigenvectors &. Assume that the maximum
asymptotic case where the number of stalyegoes to infinity. eigenvalue occurs with algebraic multiplicityand order the
It has been shown in [8] and [9] that thié-stage LPIC detector eigenvalues and eigenvectors such thats v =« =, =
converges to the decorrelating detectords— oo when the p(R)and{v,},_, are the eigenvectors that constitute a basis for
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the eigenspace of the maximum eigenvalug_if_,

(efve) #

1965

may also grow without bound 88 — oo, they do not grow as

0 for a fixed desired usek then fast as the summations ovée 1, ..., p, hence
. . P
J\}linoo ak(2M) =- ]\}lin ak(2M + 1) a®) éz_:l(ezvg)Qf(p(R), M)
A}im ap(M) = — A}lm =
(k) —00 a —00 P
a®  [p(R )El(ek ve)? \/ > (epve)?g(p(R), M)
= (15) =t
i p
and al®) [ 37 (efve)?
A}im Br(d, 2M) =— lim /3k(d, 2M +1) _ e=1 lim F(p(R), M)
o o M=o \/g(p(R), M)
\/ Z ef v A
(16) Since
P
3 (efve)? [(o(R), M) < S
= L~ Jp(R) sen | D] (1 - p(R)™
V9(p(R), M) ,,z::o
wherew, (M) andgy,(d, M) are definedin (12). The error prob- for even values of\/

ability of the LPIC detector in terms af; (M
is given in (13).

) andﬁk(dv M)

for odd values of\f

_ { p(R),
- p(R),

Proof: SinceL(M)R is a real symmetric matrix express-nen (15) follows directly. The proof of (16) follows similarly.

ible as a polynomial iR, L(M

vectors{wv,}* | and we can write

K

R = Z’U@‘Dz—f(’yé, M

=1

where
f(ve, M) = Z (1 =)
m=0

Similarly,

L(M)RL(M) = 3" v g(e. M)

where

m=0

9(ve, M) = <Z(1 - w)"’) .

Under this notation, we can write

o\/el L(M)RL(M ey
S PHR. M)+ S (€] (e, M)
:L =1 l=p+1
’ \/él(ekw) ooR) M)+ 3 (el vt M)

Inspection off andg and the fact tha}~7_, (ef v¢)* > 0 im-
plies that the summations ovér= 1, ...
ator and denominator grow without bound & — oo for
p(R) > 2. Although the summations ovér=p + 1, ..., K

)R is diagonalizable with eigen-

O

One implication of this result is given in the following corol-
lary.

Corollary 1: Under the assumptions of Proposition 4,
PL(’;)IC(ZM) andPL(’f))IC(ZM + 1) converge to a pair of respec-
tive fixed points symmetric abolit5 asM — co.

Proof: This can be seen from the fact that

lim [Q(ax(M) + Biu(d, M)

M=
+Q(an(M + 1) + Bi(d, M + 1))]

= Q)+ Q(-x) =1

hence, from (13), we can write

. k k
A}lgloo [PIEP)IC(M) + PIEP)IC(M +1) } 21‘ -1 Z 1=1
dCDy

O

We note that, under the “divergence conditions” of Proposi-
tion 4, Corollary 1 implies that the error probability of the LPIC
detector will oscillate around the value5 for large values of
M . Moreover, sincéimp; ... «(2M +1) < 0, the error proba-
bility of the LPIC detector will be greater th&ns for large odd
values ofd . The numerical example of Fig. 3 demonstrates this
behavior. This behavior is in contrast to the asymptotic behavior
of the LPIC detector whep(R) < 2 where the error probability
converges to a single fixed point equal to the decorrelator’s error
probability.

In the equicorrelated case wheRy; = p for all ¢ # 7,
we showed in Proposition 3 that the normalized eigenvector
associated with the unique maximum eigenvalue is given by
vi=[1, 1, ..., 1]T/V/K.Inthis case, it is clear théé, v;)? =

, p in the numer- 1/K >0forany usek. Thisimplies that all users in the equicor-

related system will exhibit divergent error probabilities in the
sense of Proposition 4 and Corollary 1 whei) > 2.
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For general signature crosscorrelation matrices, no eigaigenspace with one or more null dimensions. In Section VI,
vector of R can have elements all equal to zero, hence it Wge reinforce this intuition by showing via simulations that this
impossible to satisfy the conditiop }_,(e]w,)? = 0 for event occurs with low probability in the large-system case with
all t € {1, ..., K}. This implies that there will always existrandom spreading sequences.
at least one user whose error probability will diverge when One additional caveat with respect to Corollary 1 is neces-
p(R) > 2. Itis tempting to think that ip(R) > 2, all users must sary. Fig. 4 plots the error probability of user 1 verddsor a
exhibit divergent error probabilities but the following exampléour-user, equipower communication system with the signature
indicates otherwise. crosscorrelation matrix

Suppose we havE = 5 users and a crosscorrelation matrix .

- 5 -1 -2 =2
R given by

p_l|-1 5 -2 4
11 -1 -1 -1 3 5172 -2 5 -l
P e T L S -2 4 -1 5
R= -1 7 11 7 7\. (A7) nthis casep(R) ~ 2.0485 and none of the elements of the
-1 7 7 7 eigenvector associated with the uniqgue maximum eigenvalue are
3 7 7 [ equal to zero. Corollary 1 indicates that the error probability of

. L . . . the LPIC detector will converge to a pair of fixed points cen-
The spectral radius d® is given by its largest eigenvalue which . O : X
. ; tered aroun®.5 for each user in this system and Fig. 4 confirms
is computed to be(R) = 32/11 = 4 > 2 and it can be L
o . . ; that this is indeed the case for user 1. Nevertheless, we note that
verified that all other eigenvalues & are in the open interval .
. : i . . there are several values &f for which the A -stage LPIC de-
(0, 2). The unit-norm eigenvector associated with the maximun o o .
eigenvalue is given as ector exhibits an error probability several orders of magnitude
better than the matched-filter detector. This example shows that,
1 - even in cases when the LPIC detector is known to diverge, there
v = 5[0 111 1]. may exist values o/ < oo for which the M -stage LPIC de-
tector performs quite well. Unfortunately, there does not appear
It is clear that setting: = 1 in this case yield¢e; v1)?> = 0. to a closed-form expression farg min; PL(’;)IC(M) and the
We can compute thatm ... a1 (M) ~ 0.8528¢%) /o, that matter of finding a simple indicator as to when the performance
limys oo A1(d, M) = 0, and that the error probability of userof the LPIC detector will deteriorate or improve with the appli-
linthis case converges to that of the decorrelating detector. Tdagion of additional stages remains an open problem.
key to this example is that the eigenvector associated with the
maximum eigenvalue has a zero in a fortuitous location for user VI. RANDOM SIGNATURE SEQUENCES
1. The error probability of each other uget 1 diverges in the LARGE-SYSTEM ANALYSIS

sense of Proposition 4 and Corollary 1. This example confirms__, . . . T
. . . o This section considers the implications of the general results
the claim that not every user will necessarily exhibit error prob:

i : . developed in the prior sections to a CDMA communication
ability divergence whep(R) > 2 since there is no guarantee ! .
stem where the users’ spreading sequences are chosen ran-

that the eigenvector associated with the maximum elgenvafllyoemly_ Specifically, we denote theth element of théth user’s
has all nonzero entries for geneiil

; ) (%)
The natural question to ask is when dd@$have an eigen- length<V spreading sequencea%“ wheres,,” € {£1} and

vector with nonzero entries associated with an eigenvalue P(S(k) - 1) = P(S(k) —41)=1/2
greater than two? We have not been able to classify all such " "
crosscorrelation matrices, but Perron’s Theorem [22, p. 50@} all k € {1, ..., K} andn € {1, ..., N}. We also assume
and its extensions identify a large class of such matrices. Tipgit the elements of the spreading sequences are chosen inde-
theorem states that pendently such that[E” s /] = 0 unlessk = &’ andn = »’.

Theorem 1 (Perron’s Theorem)if A is ann x n matrixwith N this case, we can express the signature crosscorrelation ma-
positive entries, then trix as

1) p(A) > 0and is a simple (multiplicity one) eigenvalue of R— 1 STs (18)

A; N
2) ter:ﬁrieelgenvector associated with= p(A) has positive whereS,.;, = s& is a spreading sequence matrix constructed

such that thetth column, denoted by, is equal to theith
Although Perron’s Theorem may be generalized from the classer’s spreading sequence. To obtain analytical results, we focus
of all positive matrices to particular classes of nhonnegative man the “large-system” scenario (described in [23] and [24]),
trices [22, pp. 508, 516], it does not extend to the case of sighere the spreading gaiN and the number of usets both
nature crosscorrelation matrices with negative elements, eapproach infinity but their rati@ = K/N converges to a fixed
(17). On the other hand, the implications of Perron’s Theoreoonstant.
are stronger than necessary and simulations suggest that it /e note that the results of this section apply both to the case
actually fairly difficult to find valid signature crosscorrelationwhere the users spreading sequences are initially chosen ran-
matrices with an eigenvalue greater than two and an associadedly but remain fixed over the duration of their transmission
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Fig. 4. Example of error probabilitieB' s, (M) and PL.

and to the case where a new set of random spreading sequeitdesalso possible to calculate the average interference estimate
are generated at each bit interval. In each case, we analyzeM&E of thelth user of the two-stage LPIC detector in the large-
expected performance of each user averaged over all possflylstem random spreading sequences case without approxima-
realizations of the noise, transmitted data, and spreading 8en as

quences. E [MSE(Lér)qc} _E [(C(Ler))lc) ‘b@)}
A. LPIC Versus HPIC Performance Comparison g
Since.Proposition 1 holds for arbitraRythen it also holds for —E Z 87 8,aMb® 1 on®
R described by (18). It turns out that the large-system random Py
spreading sequences case allows us to reconsider Proposition
1 without the use of the Gaussian approximation to achieve an —o?4+ 3 lim i Z (a(k))Q — o’ + 33
exactcomparison of the MSE of the interference estimates for K—oo K ey,
the two-stage LPIC and HPIC detectors. here we have used the property that
In the large-system case, it was shown in [1, p. 116] that the 1 o
- T /N, if k=
average error probability for the matched-filter detector with E[s/ 818/ 8;] = _
random spreading sequences can be written without approxi- 0, otherwise.
mation as Hence, in the large-system random spreading sequences case,

a® ) we can write theexactexpression

E [ P (Sgn (y@)) + b(f))} E [Plff)F} =Q <W

2 ©
where E [MSE;?)IC} =4 (a“)) Q ¢
1 2 E [MSE")
@ = lim — Z (a(k)) . [ LPTCj|
Koo K ke which leads to the following proposition.

This result in combination with (4) allows us to express the av- Proposition 5: For randomR given by (18), arbitrary fixed
erage interference estimate MSE for ttieuser of the two-stage o, 4, and/
HPIC detector as @ ©
E[MSE; p1c| > E[MSEjpc

[MSE@ } —4 (a@)) 0 a9 )
e Vol +pa’ asymptotically ad{ — oo, N — oo, andK/N — f3.
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Proof: The proof follows that of Proposition 1. O Proof: The asymptotic SINR of the matched-filter de-

If we follow the intuition that better interference estimatelts;aCtﬁlref:r:h[ilarggésf]/satém random spreading sequence scenario
should lead to better error probability performance then thiz 9 P

» . . (0)?
proposition suggests that the two-stage HPIC detector is uni- SINR](\?F _ (a'®) (19)

formly superior to the two-stage LPIC detector in terms of error o2 + Ba*
probability for a large CDMA system with synchronous usenshere
and random spreading sequences. 1 2
@ = Jim > (o) 20
B. Comparison to the Matched-Filter Detector T ke

The asymptotic SINR of the approximate decorrelator (equiv-
Direct interpretation of Proposition 2 in the large-system casgent to the two-stage LPIC detector) for a large CDMA system
with random spreading sequences is difficult since, unlike thdth random spreading sequences is given in [11] as
matched filter, an exact expression for the LPIC detector’'s av- © 5
erage probability of error [IPL(QIC(M)] is difficult to obtain  g|NR) =SINRY, (1) = ) )
even for the two-stage case. Rather than directly comparing e a?(1— B+ p%) +a (52 + 5°)
the error probabilities of the matched-filter and LPIC detectors, Comparison of SINgI)qc(l) to SINRl(\?F reveals tha(a(g))Q

we can instead compare their output signal-to-interference-plyg;, o tactored out of both expressions and that there is no am-
noise ratios (SINR).

. . . plitude threshold behavior as seen in Proposition 2. Instead, the
In the random spreading sequence scenario, SINR is (ﬁ)e P

h— _ 0
fined [1, p. 280] as the ratio of the second moments of tﬁglatlonsmp between S”\{@'K’(l) and SlNﬁ““F depends ory

' . . o .
desired component to the interference (background noise p, Hnsdrtgt(ieoratlo of mean interference to noise posfg . Setting
multiaccess interference) component averaged with respec(:‘[

to transmitted data, noise, and random spreading sequences. S|NR]<\?F
One justification for analyzing the output SINR of a multiuser m
detector is that certain multiuser detectors exhibit a soft-de- LP1C
cision statistic that may be described without approximatic@and solving for3, we get

as a Gaussian random variable in the large-system, random 1 1
spreading sequence scenario. In this case, the multiuser de- p>5- eyl (21)
tector’'s error probability and output SINR are related by the
expression

>1

O

We can draw two conclusions from (21). First, in the case
elp© 12 /SINR([) whena?/o? is small, the matched-filter detector intuitively per-
[ MUD} =@ MUD |- forms better than the two-stage LPIC detector because the mul-

tiple-access interference estimates, upon which the LPIC de-

We note that this property holds for the matched-filter detectEﬁCt(_)r crucially relies, are _unreliable in this region. In_ fact, (21)
but the same is not immediately true for the-stage LPIC de- implies th_at the matched-filter detector outperforms (in terms of
tector. Although numerical evidence suggests that decision #aYMmptotic SINR) the two-stage LPIC d(QatecQtor for ahy- 0
tistics of theM-stage LPIC detector may indeed be Gaussianifa® /¢~ < 1. Second, for any value af*/o", (21) implies
proof of this property appears to be difficult and remains an op tthe matched—fllter det_ector out_performs the two—s_tage LPIC
problem. Nevertheless, we analyze the SINR of the LPIC d@€tector it > 1/3. In this operating region, the ratio of the
tector in this section under the premise that SINR and error prdimPer of users to the spreading gain is large enough such that
ability are often closely related even in the case when the del]e LPIC detector’s multiple-access interference estimates are
sion statistics are not exactly Gaussian. Moreover, we note tHgféliable and interference cancellation is detrimental to per-
SINR is also an appropriate performance measure if the L piermance. This behavior was first observed in [11] in the noise

detector’s outputs are to be used by a soft-decision channel g€ case. -
coder. An extension to Proposition 6 for the general case of the

M-stage LPIC detector remains an open problem. Calculation
Proposition 6: Assume the large-system scenario withyf the asymptotic SINR for an/-stage LPIC detector for arbi-
randomly chosen spreading sequences. Let $JNRand trary M > 1 is more complicated and appears to require com-
SINR(L[I))IC(l) denote the SINR of théth user at the output of putation of the moments of the random eigenvalue& éfom
the matched-filter and the two-stage LPIC detectors, respeige distribution given in [23]. An analytical comparison of the
tively. Then marched-filter andi/-stage LPIC detector asymptotic SINR’s
remains an open problem.

SINR{Y). > SINR, (1) C. LPIC Error Probability Divergence and Asymptotic Results

_ _ o _ Proposition 3 does not have direct application in the case
if and only if 3 > § — m wherea is given in (20). when the crosscorrelation matdis random since it involves
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Fig. 5. Expected error probability versus number of LPIC interference cancellation stages for a CDMA system with spreading @ai¢, random spreading
sequences, and*? /¢ = 1/0.3 for all users. The results shown are averaged d9érealizations of the random spreading sequences, transmitted bits, and noise.

selection of some particuld® to show error probability diver- Manipulation of (22) yields
gence of the LPIC detector. However, Proposition 4 and Corol- 2
lary 1 do have a meaningful interpretation due to the following p(R)>2 < (> (\/5 — 1) ~ 0.17

theorem by Bai and Yin [25]. ] - . o
with probability 1. Proposition 4 indicates that, whe(R) > 2,

Theorem 2 (Bai and Yin)iLet S be anNVx K matrix of inde- gach usek: that does not satisfy the prODG@f,l(ekTvz)Q —
pendent and identically distributed raTndom variables with zegowill exhibit the divergent asymptotic error p_robabilities de-
mean and unit variance. L& = (5)S ' S. If E[|S11[*] < 00,  scribed by (15) and (16) a¥/ — oc. Since the eigenvectors
then, ask — oo, N — o0, () — B €(0, 1), the largest eigen- {v/})_, cannot have all elements equal to zero, error proba-
value of R converges tq1++//3)* with probability one. The pjjity divergence in the sense of Proposition 4 and Corollary 1
minimum eigenvalue converges tb— /3)* with probability  occurs with probability. for at least one user whéy/2—1)2 <
one. B<1. 0

We apply Theorem 2 in the following proposition. We note that, since all users do not necessarily exhibit error

Proposition 7: Assume the large-system scenario with rarRrobability divergence for a particular realizationffdifferent
domly chosen spreading sequence?v@ —1)2 < B < 1then realizations of® may cause different users to exhibit error prob-
p(R) > 2 with probability one andDL’;’)IC(M) diverges in the ability divergence in the sense of Proposition 4 and Corollary 1.

sense of Proposition 4 and Corollary 1785 — o for at least Hence, in the case when the users’ spreading sequences change
one user. between bit intervals, Proposition 7 does not imply thatate

Proof: Theorem 2 indicates that the largest eigenvalue §f2geerror probability (over all possible realizationsBJ nec-

R converges to a deterministic value in a large-system rand&yearily diverges for any of the users. However, simulation evi-
spreading sequence scenario. Sifibés nonnegative definite, dence suggests that the eigenvectors forming the basis for the

the maximum eigenvalue is equivalent to the spectral radifigenspace of the largest eigenvalue of the random signature
p(R), hence crosscorrelation matriR have elements equal to zero with very

low probability for sufficiently largel andNV. This thenimplies
that, for nearly all realizations d&, all users will exhibit error
2 probability divergence in the sense of Proposition 4 and Corol-
p(R) as (1 + \/B) . (22) lary 1 asM — oc. Fig. 5 confirms this behavior by examining
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the average error probability performance of the LPIC detector
in the case whe®® changes between bit intervals. BN

[2
VII. CONCLUSION

This paper examined several performance aspects of thés]
multistage LPIC detector. We presented analytical evidence[4]
that supports the recent simulation evidence of other authors
suggesting that Varanasi and Aazhang's HPIC detector may
outperform the LPIC detector in many common operating [
scenarios. We derived a closed-form expression for a sufficiengg)
threshold which, if exceeded by the desired user's amplitude,
causes the matched-filter detector to outperform the LPICm
detector in terms of error probability for the desired user. We
developed an explicit description of a set of signature crosscor-
relation matrices, parameterized by the number of interferenc%]
cancellation staged/, such that the LPIC detector exhibits
an error probability greater than5 for binary signaling. The
behavior of the LPIC detector was also investigated in the[g]
asymptotic case wheld — oo. Under conditions such that the
LPIC detector does not converge to the decorrelator, we derived
a closed-form expression for the asymptotic error probabilit;}lo]
of the LPIC detector and showed that it converges to a pair of
fixed points centered arourids. [11]

The implications of the prior results were studied for CDMA , ,
communication systems with large bandwidth, a large number
of users, and random spreading sequences. We showed that the
HPIC detector is uniformly superior to the LPIC detector in 13]
terms of interference estimator performance in this scenario. We
also showed that the two-stage LPIC detector exhibits worse
asymptotic output SINR performance than the matched-filteF*!
detector wherf{/N > 1/3 for any choice of desired user am-
plitude and interference or noise powers. Applying a recent re-
sult from random matrix theory, we showed the asymptotic rel1®
sult that theM -stage LPIC detector will not converge to the
decorrelating detector and that at least one user will exhibit af6]
error probability that converges to a pair of fixed points centered
around0.5 asM — ~oif 0.17 < K/N < 1. [17]

The results presented in this paper are intended to advance
our understanding of PIC detector since they offer many attra is
tive features in terms of computational complexity and decision
latency. Indeed, there are many documented cases of good per-
formance by both the LPIC and HPIC detectors in the literature2®!
However, the results derived in this paper are intended to fill in
some of the gaps in our understanding of PIC detectors and {&0]
serve as cautionary guidelines as to when the LPIC detector may,,
exhibit undesirable performance.

[22]
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