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Abstract

The use of a decision feedback equalizer (DFE) that
employs time-reversal of the received sequence in con-
Junction with a normal mode operation is considered for
a packet transmission system. The bidirectional decision
feedback equalizer (BiDFE) combines the output of the
normal mode and time-reversal mode DFEs and is known
to provide improved performance. This paper shows that,
under the decision-error-free assumption, the BiDFE,
with an infinite length MMSE-DFE in each stream, has
a smaller performance penalty from the matched filter
bound (MFB) when compared to each individual stream.
The BiDFE tap coefficients are optimized to minimize
the overall MSE and it is shown that the infinite length
MMSE-BiDFE attains the MFB.

1 Introduction

The use of packet based communication systems, for
example GSM, has made block processing of the received
data feasible and sometimes necessary. In such a scenario
anti-causal processing becomes a possibility and in some
cases may be advantageous. Bidirectional equalization of
the received signal was first considered in [1, 2]. The use
of selective time-reversal for a decision feedback equalizer
(DFE) was described in [2, 3], in which, Ariyavisitakul
proposes the use of two parallel DFE structures, one for
the received sequence and the other for the time-reversed
version of the received sequence. A time-reversal oper-
ation is done by reversing the sequential order of the re-
ceived samples, in time, prior to equalization. As a re-
sult, the equivalent channel impulse response as seen by
the equalizer becomes a time-reverse of the actual channel
impulse response. This results in an inversion of the root
locations of the channel impulse response, i.e., the mini-
mum phase roots become maximum phase roots and vice-
versa. When a finite length DFE is used, the performance
is usually different for the normal mode DFE and the time-
reversal mode DFE, and hence, selecting the stream with
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lesser MSE is beneficial. However, the performance can
be further improved by combining the two streams rather
than selecting one.

This combinatorial approach was proposed in [4], in
which the authors, based on a reconstruction and arbitra-
tion technique, exploit the diversity in the error bursts be-
tween the normal mode DFE outputs and the time-reversal
mode DFE outputs to improve performance. Error propa-
gation, an impairment of the DFE caused by incorrect de-
cision feedback to the feedback filter (FBF), is causal and
hence the error burst for a normal mode DFE and the time-
reversal mode DFE proceed in opposite directions in time.

However, the advantage of combining the normal mode
and the time-reversal mode DFE outputs is not limited to
mitigating error propagation. In fact, even in the presence
ofideal feedback, namely error-free-decision feedback, the
noise at the output of the normal mode DFE and the time-
reversal mode DFE exhibit a low correlation. This results
in a smaller value of noise-enhancement for the compos-
ite structure, namely the bidirectional. decision feedback
equalizer (BiDFE), that combines the normal mode DFE
and the time-reversal mode DFE outputs, when compared
to either of the two constituent DFEs [5]. This “diversity”
arises from the assumption that the past symbols are known
to the normal mode DFE and the future transmitted sym-
bols are known to the time-reversal mode DFE. The anti-
causal processing and the nonlinear structure of the DFE
make this knowledge, although imperfect in the presence
of decision errors, possible.

In {3], the SNR performance loss suffered by an infi-
nite length DFE when compared with the matched filter
bound (MFB) was evaluated. The MFB, also known as
the ISI-free bound, is defined as the SNR that can be ob-
tained with a matched filter at the receiver [6], provided all
the past/future interfering symbols are perfectly known or
if only the current symbol is transmitted. The MFB pro-
vides an upper bound on the SNR that can be obtained by
any equalizer structure. This paper evaluates the reduc-
tion in performance penalty from the MFB of the infinite
length BiDFE when compared to an infinite length DFE.
In addition, the infinite length BiDFE filter coefficients are



optimized to minimize the overall MSE of the structure,
rather than the MSE of the individual streams, and the tap
optimized BiDFE is shown to attain the MFB.

2 System Model

Consider the transmission of a data block of size NV
symbols through a dlgltal base-band channel with a finite-
impulse response (FIR). The received sequence r(n) is

L

Z c(k)s(n — k) + w(n)

k=0

where ¢ = [¢(0) ¢(1) ... ¢(L)]7 is the channel impulse
response with L + 1 taps, w(n) is the additive noise se-
quence, and s(n) is the transmitted source sequence. The
time-reversal of the received block of data can be expressed
as

r(n) = M

0

3" e(=k)i(n— k) +1b(n),
k=-L
@

where tilde implies time-reversal. This is equivalent to
transmitting the time-reversed source sequence through a
channel whose coefficients are the time-reversed version
of the channel c.
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Figure 1: Structure of a Bidirectional DFE.

The block diagram of the BiDFE receiver structure, pro-
posed in [S), is illustrated in Figure 1. The received se-
quence 7(n) is equalized in stream I using a DFE with
coefficients [f1,b1]. The sequence r(n) is time-reversed
in stream II and equalized using another DFE with coeffi-
cients [f2, b2]. The soft outputs of the normal mode and
the time-reversal mode DFE are combined using a diver-
sity combiner. In this paper, a memoryless linear combiner
will be assumed, i.e., y(n) = Ay1(n) + (1 — A)y2(n). The
combiner coefficient ) is optimized (the optimal value of A
is derived in [5]) to minimize the MSE at the output y(n).

In this paper we make the following assumptions.

e The source sequence s(n) is i.i.d with unit variance.
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The noise sequence w(n) is zero mean, white with
variance o2, and is uncorrelated to the source se-
quence.

The channel coefficients are unit norm, i.e.,
>4 le(k)|? = 1 and the channel does not have a spec-
tral null.

The decisions that are fed back to the FBF of the DFE
are correct, i.e., ideal feedback.

3 Performance of Infinite Length BiDFE

The infinite length MMSE-DFE tap coefficients were
derived in [7]. Consider the use of an MMSE-DFE for
each stream of the BiDFE structure illustrated in Figure 1.
In this section, we evaluate the performance improvement
provided by the infinite length BiDFE over an MMSE-
DFE, by comparing the performance loss of these two
equalizers from the MFB. The MFB is defined as (see [6]),

Z lc(k)l2 _

Let the Z-transform of the channel impulse response be

&)

L
C(2) = c(0) [T ~ aiz™), @

=1

where a; are the root locations of the channel impulse re-
sponse polynomial. Then, the Z-transform of the time-
reversed channel impulse response C|(2) is,

Cx) 200,

L
=c(0) [J(1 - @i2)
i=1

L

= L)z [] (1 - f-) : )
. a;
i=1
In equation (5), the second equality follows from
L
oL) _
0 " g a; - 6)

Under the high SNR assumption, the feedforward filter
(FFF) for the normal mode and the time-reversal operations
are given by

1 L (af —2z71)
hl= c(0) i:l,]|;in1>1 F(1-a27Y) @
and
F L a;(1-oa}z7)
Fale)~ o(L) z=1£r[fl<1 (@i = 27%) ®



The feedback filters B, (2) and B»(2) are chosen such that
the post-cursor ISI is perfectly canceled. In [3], Ariyavis-
itakul has shown that both the normal-mode DFE and the
time-reversal mode DFE, under the ideal feedback assump-
tion, have the same MSE performance. Furthermore, it was
demonstrated that each MMSE-DFE stream suffers from a
performance loss from the MFB and output SNR of the
MMSE-DFE was shown to be

-1
0)c*(0 - .
YDFE = 2(—37%—(—)' I o - ®
w i=1,]as{>1

As the two streams yield the same MSE, an equal gain
combining scheme, i.e., A = 1, is optimal (see [5]) for the
diversity combining block of Figure 1. The overall MSE
of the BiDFE is

MSEgipre = Efjy(n) — 5(")|2]
2
{f1(k) + fa(=k)} w(n — k) l _
2

=F 7

(10

Let us define [C(2)]o to represent the constant term in the
polynomial expansion of C(z), namely ¢(0). Then, the
MSE can be evaluated in the frequency domain as

MSEipre = 03, [Feq(2)Fog(27)], an

where

Fi(2) + Fa(z7Y) )
2

The performance gain provided by the BiDFE over the
DFE is given by,

VBIDFE _ [ R (2)Fy(z7h) ] .
“YDFE Feq(z)Fe*q(z—l) 0

Feq(2) = (12)

(13)

Equation (13) can be further simplified as

YBiDFE _ 2
vwre 1+ R{g(0)}’

(14)

where

ai(ef —27)

0)z* L
o= 0g [ =y

C(L) i=1,je;|<1
L

< 11

i=1,la:|>1

oj(1—oz™")

*

(o —27%)

1%

To illustrate the performance improvement that can be
obtained by the use of a BiDFE, we consider two test cases,
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Figure 2: Performance gap from the matched filter bound
for a symmetric 3-tap channel with root locations at

(@ 3)-

namely, a 3-tap real symmetric channel and a 3-tap real
asymmetric channel. Figure 2 illustrates the gap from the
MFB for the conventional DFE and the BiDFE, for a sym-
metric channel with root locations at & and % It is clear
that as the channel becomes severe, i.e., root locations
closer to the unit circle, the performance gain provided by
the BiDFE over the conventional DFE is more than 3 dB.
Figure 3 illustrates similar performance improvements for
the BiDFE, when applied to a 3-tap asymmetric channel
with root locations at o and % Although the BiDFE per-
forms better than the MMSE-DFE, it still suffers from a
performance penalty when compared to the MFB.

4 BIiDFE Tap Optimization

In the analysis of Section 3 and in the examples corre-
sponding to Figures 2 and 3, the DFE coefficients of each
stream of the BiDFE are optimized independently. i.e.,
an MMSE-DFE setting is chosen. On the other hand, if
the DFE filter settings were to be optimized to minimize
the overall MSE of the BiDFE and not merely the MSE
of each individual stream, it would be possible to further
decrease the gap from the MFB. The resulting MSE of
the tap-optimized infinite length BiDFE would provide a
bound on the potential performance improvements that can
be achieved with this structure. It should be noted that
the finite length results, which are more useful in practice,
asymptotically converge to the infinite length results. The
optimization problem consists of determining the BiDFE
tap coefficients, namely [f;,b1], [f2,b2], and the coeffi-
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Figure 3: Performance gap from the matched filter bound
for an asymmetric 3-tap channel with root locations at
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cient of the diversity combiner, A, that minimizes the over-
all MSE of the BiDFE.

Theorem 1 The infinite length MMSE-BiDFE, under the
ideal feedback assumption, attains the MFB.

Proof: Consider the BiDFE receiver structure illustrated
in Figure 4. The received signal r(n) is processed using a
front-end filter matched to the channel impulse response.
The resulting effective impulse response is conjugate sym-
metric and is given by

®(z) = C(2)C*(z7") -

(16)

]
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Figure 4: Tap Optimization of Infinite Length BiDFE.

Since, the noise sequence w(n) is assumed to be white,
the auto-correlation function of the filtered noise has a
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Z-transform ®(z). Assume that the DFE is of infinite
length and is unbiased. Let [F'(z), B(z)] denote the DFE
tap coefficients of the normal mode DFE. As the time-
reversal of ®(z), due to its conjugate symmetry property,
is @*(2), a suitable choice for the time-reversal mode DFE
is [F*(z), B*(#)). Clearly, the DFE structures of the two
streams yield the same MSE, and hence an equal-gain com-
biner, i.e., a choice of A = 1, is optimal (see [5]).
The MSE minimization problem can now be cast in the
form
. . 2 .
min E (Jy(n) - s(n)|’] an
Let us constrain the FBF to remove all the post-cursor ISI.
Then,
F(2)®(z) =U(z) + 1 + B(2) (18)
where U(2) is purely anti-causal and represents the resid-
ual pre-cursor ISI. The MSE of the BiDFE is then given

by

MSE = ;11- [we + vy

2
L%

= [0(2) {F ) + F* )Y -

(19)
Since U(z) is purely anti-causal, the first term can be sim-
plified to

U@ U ), = s WEU ] @)

and attains a minimum value of zero, if and only if U (2) =
0. By using equation (18) and the conjugate symmetry
property of ®(z), the second term of equation (19) can be
rewritten as
7%
2
)} ]

[2() {F@) + F ()] =
o [{2 + B(z) + B*(z~1) + U(z) + U*(z™*
4

3(2) .
2
Let us define
V(s 214 BAXFED IR LU
(22)
Then, equation (21) simplifies to
2 v 2
% o) (P + Py, = o S
(23)



Lemma 1 If[V(2)]p = 1and [C(2)C*(27")]o = 1, then
V(z)V*(z™h)
[0<z)0*(z—1>]0 2t

and equality is attained if and only if V(z)
C(2)C*(z7Y).

Proof: The term [V (2)]o can be evaluated using the well-
known identity based on convolution integral around the
unit circle, i.e.,

W= g [ Vs -

Applying Cauchy-Schwartz inequality to the two continu-
1 .
ous functions, %%T} and C*(e7%), we have

B

24

()]

V(ed?)
C(ei?)
1 /" V(eja)V“(eN)de]

[% —x C(e39)C* ()
— ”C(eﬂ'e)c*(ef")de}, (26)

[1
X
-7

2

2
C(ejo)dﬂ] <

where equality is attained if and only if —g—%:—;;% x C*(e?),
or equivalently, gi(% o C*(z71). Since [V(2)]o = 1 and
[C(2)C*(z2~1)]o = 1, equation (26) reduces to

1 [T V(ed?)V*(e?) ]
['2? L CEencem® =t @D
with equality if and only if V(2) = C(2)C*(z7?). O

From Lemma 1, the second term in equation (19) is min-
imized when V(2) = ®(z). Hence, the MSE of equation
(19) attains a minimum value when U(2) = 0 and
B(z) + B*(27")

2
As the feedback filter B(z) is purely causal, the optimal
tap coefficients are given by,

1+ =&(2) - (28)

b°Pt (k) = 2¢(k) , Vk=1,2,---,L (29)
and the optimum FFF is
1+ B°P(z)
opt — = \Z 0
() = =g (30)

From equations (24), (28) and (30), the minimum MSE
attained by this choice of BiDFE coefficients is

MSEmusE.BiDFE = 0%, (€3))
and hence the maximum output SNR is
1
YMMSE-BIDFE = ~5" » (32)

w
which is same as the MFB, In other words, the MSE opti-
mized infinite length BiDFE attains the MFB. ]
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5 Conclusions

The penalty from the matched filter bound for an infinite
length BiDFE, with DFE filter settings optimized to min-
imize MSE of each stream, is computed and is shown to
be smaller than the penalty of a MMSE-DFE. The BiDFE
tap settings are then optimized to minimize the MSE of
the overall structure and it is demonstrated that the opti-
mal MMSE-BiDFE attains the matched filter bound. This
illustrates that a BIDFE, under the ideal feedback assump-
tion, offers the best possible performance by any equal-
izer structure. Although in practice, only finite length
filter realizations are possible, the performance of the fi-
nite length BiDFE will asymptotically approach the infi-
nite length BiDFE performance. In addition to scaling the
gap from the MFB, the BiDFE which is known for miti-
gating the effects of error propagation may achieve near-
optimal performance, if suitable combining schemes, ca-
pable of exploiting the diversity between the error bursts
caused by the two component DFEs, are employed.
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